首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mature human erythrocyte is a simple cell that is devoid of intracellular organelles and does not show endocytic or phagocytic activity at the plasma membrane. However, following infection by Plasmodium, the erythrocyte undergoes several morphological and functional changes. Parasite-derived proteins are exported into the erythrocyte cytoplasm and to the membrane, while several proteins are localised to the parasitophorous vacuolar membrane and to the tubovesicular membranous network structures surrounding the parasite. Recent evidence indicates that multiple host proteins, independent of the type of their membrane anchor, that exist in detergent-resistant membrane (DRM) rafts or microdomains enter this apicomplexan vacuole. The internalised host components along with the parasite-encoded transmembrane protein PfEXP1 can be detected as DRM rafts in the vacuole. It appears that in Plasmodium-infected erythrocytes lipid rafts may play a role in endovacuolation and macromolecular transport.  相似文献   

2.
Plasmodium falciparum is the protozoan parasite that causes the most virulent of human malarias. The blood stage parasites export several hundred proteins into their host erythrocyte that underlie modifications linked to major pathologies of the disease and parasite survival in the blood. Unfortunately, most are 'hypothetical' proteins of unknown function, and those that are essential for parasitization of the erythrocyte cannot be 'knocked out'. Here, we combined bioinformatics and genome-wide expression analyses with a new series of transgenic and cellular assays to show for the first time in malaria parasites that microarray read out from a chemical perturbation can have predictive value. We thereby identified and characterized an exported P. falciparum protein resident in a new vesicular compartment induced by the parasite in the erythrocyte. This protein, named Erythrocyte Vesicle Protein 1 (EVP1), shows novel dynamics of distribution in the parasite and intraerythrocytic membranes. Evidence is presented that its expression results in a change in TVN-mediated lipid import at the host membrane and that it is required for intracellular parasite growth, but not invasion. This exported protein appears to be needed for the maintenance of an essential tubovesicular nutrient import pathway induced by the pathogen in the host cell. Our approach may be generalized to the analysis of hundreds of 'hypothetical' P. falciparum proteins to understand their role in parasite entry and/or growth in erythrocytes as well as phenotypic contributions to either antigen export or tubovesicular import. By functionally validating these unknowns, one may identify new targets in host-microbial interactions for prophylaxis against this major human pathogen.  相似文献   

3.
Plasmodium falciparum is a protozoan parasite that causes the most virulent o f human malarias. The asexual blood-stage organism invades and multiplies in a vacuole in the mature erythrocyte. During intravacuolar growth, it induces the formation of a novel network o f tubovesicular membranes, the TVM, that is not present in uninfected red blood cells. Recent data suggest that sphingomyelin biosynthesis by the parasite is an essential requirement for the assembly o f the TVM. Furthermore, sphingolipid synthesis as well as the formation and function o f the TVM may provide new targets for chemotherapy against malaria parasites.  相似文献   

4.
The human malarial parasite Plasmodium falciparum exports virulence determinants, such as the P. falciparum erythrocyte membrane protein 1 (PfEMP1), beyond its own periplasmatic boundaries to the surface of its host erythrocyte. This is remarkable given that erythrocytes lack a secretory pathway. Here we present evidence for a continuous membrane network of parasite origin in the erythrocyte cytoplasm. Co-localizations with antibodies against PfEMP1, PfExp-1, Pf332 and PfSbpl at the light and electron microscopical level indicate that this membrane network is composed of structures that have been previously described as tubovesicular membrane network (TVM), Maurer's clefts and membrane whorls. This membrane network could also be visualized in vivo by vital staining of infected erythrocytes with the fluorescent dye LysoSensor Green DND-153. At sites where the membrane network abuts the erythrocyte plasma membrane we observed small vesicles of 15-25 nm in size, which seem to bud from and/or fuse with the membrane network and the erythrocyte plasma membrane, respectively. On the basis of our data we hypothesize that this membrane network of parasite origin represents a novel secretory organelle that is involved in the trafficking of PfEMP1 across the erythrocyte cytoplasm.  相似文献   

5.
Plasmodium falciparum (P. falciparum) secretes hundreds of proteins--including major virulence proteins--into the host erythrocyte. In order to reach the host cytoplasm, most P. falciparum proteins contain an N terminal host-targeting (HT) motif composed of 11 amino acids. In silico analyses have suggested that the HT motif is conserved throughout the Plasmodium species but experimental evidence only exists for P. falciparum. Here, we show that in the rodent malaria parasite Plasmodium berghei (P. berghei) a reporter-like green fluorescent protein expressed by the parasite can be exported to the erythrocyte cytoplasm in a HT-specific manner. This provides the first experimental proof that the HT motif can function as a signal for protein delivery to the erythrocyte across Plasmodium species. Further, it suggests that P. berghei may serve as a model for validation of P. falciparum secretome proteins. We also show that tubovesicular membranes extend from the vacuolar parasite into the erythrocyte cytoplasm and speculate that these structures may facilitate protein export to the erythrocyte.  相似文献   

6.
During the asexual stage of malaria infection, the intracellular parasite exports membranes into the erythrocyte cytoplasm and lipids and proteins to the host cell membrane, essentially "transforming" the erythrocyte. To investigate lipid and protein trafficking pathways within Plasmodium falciparum-infected erythrocytes, synchronous cultures are temporally analyzed by confocal fluorescence imaging microscopy for the production, location and morphology of exported membranes (vesicles) and parasite proteins. Highly mobile vesicles are observed as early as 4 h postinvasion in the erythrocyte cytoplasm of infected erythrocytes incubated in vitro with C6-NBD-labeled phospholipids. These vesicles are most prevalent in the trophozoite stage. An immunofluorescence technique is developed to simultaneously determine the morphology and distribution of the fluorescent membranes and a number of parasite proteins within a single parasitized erythrocyte. Parasite proteins are visualized with FITC- or Texas red-labeled monoclonal antibodies. Double-label immunofluorescence reveals that of the five parasite antigens examined, only one was predominantly associated with membranes in the erythrocyte cytoplasm. Two other parasite antigens localized only in part to these vesicles, with the majority of the exported antigens present in lipid-free aggregates in the host cell cytoplasm. Another parasite antigen transported into the erythrocyte cytoplasm is localized exclusively in lipid-free aggregates. A parasite plasma membrane (PPM) and/or parasitophorous vacuolar membrane (PVM) antigen which is not exported always colocalizes with fluorescent lipids in the PPM/PVM. Visualization of two parasite proteins simultaneously using FITC- and Texas red-labeled 2 degrees antibodies reveals that some parasite proteins are constitutively transported in the same vesicles, whereas other are segregated before export. Of the four exported antigens, only one appears to cross the barriers of the PPM and PVM through membrane-mediated events, whereas the others are exported across the PPM/PVM to the host cell cytoplasm and surface membrane through lipid (vesicle)-independent pathways.  相似文献   

7.
The human malaria parasite Plasmodium falciparum invades erythrocytes and develops within a parasitophorous vacuole. It has been proposed that constitutive protein export from the intracellular parasite is mediated by two types of secretory vesicles. One is targeted to the parasite plasma membrane and the other to a domain where the plasma and vacuolar membranes of the parasite are fused into a single bilayer. This differential targeting of vesicles may be regulated by the developmental stage of the parasite. Regulated secretion through the apical organelles at or immediately after the invasion of a new red cell may allow protein insertion at the erythrocyte surface and mediate formation of the joint membrane domain of constitutive secretion.  相似文献   

8.
The asexual development of malaria parasites inside the erythrocyte is accompanied by changes in the composition, structure, and function of the host cell membrane and cytoplasm. The parasite exports a membrane network into the host cytoplasm and several proteins that are inserted into the erythrocyte membrane, although none of these proteins has been shown to have enzymatic activity. We report here that a functional malaria parasite-encoded vacuolar (V)-H(+)-ATPase is exported to the erythrocyte and localized in membranous structures and in the plasma membrane of the infected erythrocyte. This localization was determined by separation of parasite and erythrocyte membranes and determination of enzyme marker activities and by immunofluorescence microscopy assays using antibodies against the B subunit of the malarial V-H(+)-ATPase and erythrocyte (spectrins) and parasite (merozoite surface protein 1) markers. Our results suggest that this pump has a role in the maintenance of the intracellular pH (pH(i)) of the infected erythrocyte. Our results also indicate that although the pH(i) maintained by the V-H(+)-ATPase is important for maximum uptake of small metabolites at equilibrium, it does not appear to affect transport across the erythrocyte membrane and is, therefore, not involved in the previously described phenomenon of increased permeability of infected erythrocytes that is sensitive to chloride channel inhibitors (new permeation pathway). This constitutes the first report of the presence of a functional enzyme of parasite origin in the plasma membrane of its host.  相似文献   

9.
In our attempt to assess the topology of glucosylceramide biosynthesis, we have employed a truncated ceramide analogue that permeates cell membranes and is converted into water soluble sphingolipid analogues both in living and in fractionated cells. Truncated sphingomyelin is synthesized in the lumen of the Golgi, whereas glucosylceramide is synthesized at the cytosolic surface of the Golgi as shown by (a) the insensitivity of truncated sphingomyelin synthesis and the sensitivity of truncated glucosylceramide synthesis in intact Golgi membranes from rabbit liver to treatment with protease or the chemical reagent DIDS; and (b) sensitivity of truncated sphingomyelin export and insensitivity of truncated glucosylceramide export to decreased temperature and the presence of GTP-gamma-S in semiintact CHO cells. Moreover, subfractionation of rat liver Golgi demonstrated that the sphingomyelin synthase activity was restricted to fractions containing marker enzymes for the proximal Golgi, whereas the capacity to synthesize truncated glucosylceramide was also found in fractions containing distal Golgi markers. A similar distribution of glucosylceramide synthesizing activity was observed in the Golgi of the human liver derived HepG2 cells. The cytosolic orientation of the reaction in HepG2 cells was confirmed by complete extractability of newly formed NBD-glucosylceramide from isolated Golgi membranes or semiintact cells by serum albumin, whereas NBD-sphingomyelin remained protected against such extraction.  相似文献   

10.
The particular virulence of the human malaria parasite Plasmodium falciparum derives from export of parasite-encoded proteins to the surface of the mature erythrocytes in which it resides. The mechanisms and machinery for the export of proteins to the erythrocyte membrane are largely unknown. In other eukaryotic cells, cholesterol-rich membrane microdomains or "rafts" have been shown to play an important role in the export of proteins to the cell surface. Our data suggest that depletion of cholesterol from the erythrocyte membrane with methyl-beta-cyclodextrin significantly inhibits the delivery of the major virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). The trafficking defect appears to lie at the level of transfer of PfEMP1 from parasite-derived membranous structures within the infected erythrocyte cytoplasm, known as the Maurer's clefts, to the erythrocyte membrane. Thus our data suggest that delivery of this key cytoadherence-mediating protein to the host erythrocyte membrane involves insertion of PfEMP1 at cholesterol-rich microdomains. GTP-dependent vesicle budding and fusion events are also involved in many trafficking processes. To determine whether GTP-dependent events are involved in PfEMP1 trafficking, we have incorporated non-membrane-permeating GTP analogs inside resealed erythrocytes. Although these nonhydrolyzable GTP analogs reduced erythrocyte invasion efficiency and partially retarded growth of the intracellular parasite, they appeared to have little direct effect on PfEMP1 trafficking.  相似文献   

11.
The intracellular location of sphingomyelin formation via the cholinephosphotransferase reaction from both endogenous an exogenous phosphatidylcholine and ceramide substrates has been studied in the subcellular membrane fractions prepared from mouse fibroblasts. The enzyme was found to be located in both the plasma membrane and the Golgi fractions. Activity in the Golgi fraction was stimulated to a greater extent by the addition of exogenous ceramide than was the activity in the plasma membrane fraction. It is concluded that endogenous phosphatidylcholine is available to the cholinephosphotransferase at saturating concentration and, therefore, is not rate-limiting. In contrast, the very low concentration of endogenous ceramide seems to limit the reaction rate, necessitating supplementation with exogenous material Both endogenous substrates are shown to be utilized in an intramembranous rather than an intermembranous reaction. The capacity of the plasma membrane fraction to synthesize sphingomyelin from endogenous phosphatidylcholine and ceramide was found to be sufficiently high to account for the rate of net synthesis of plasma membrane-bound sphingomyelin observed in the logarithmically multiplying cell culture. In contrast, the Golgi fraction displayed only 26% of the expected capacity, but it was stimulated 6-fold by the addition of exogenous ceramide. These results demonstrate that the total cellular sphingomyelin of the mouse fibroblasts can be provided via the cholinephosphotransferase pathways and that the plasma membrane and the Golgi fraction are most probably the intracellular sites of sphingomyelin biosynthesis.  相似文献   

12.
Sphingomyelin is synthesized in the cis Golgi   总被引:11,自引:0,他引:11  
We have employed in vitro a truncated ceramide analogue with 8 carbon atoms in the sphingosine and the fatty acyl residue, each, to investigate the activity of various membrane fractions to synthesize truncated sphingomyelin. This shortened ceramide readily diffuses through membranes and therefore can easily find access to the lumina of intact organelles. Sphingomyelin synthase activity resides in the Golgi apparatus, and after sucrose density gradient centrifugation of Golgi-enriched fractions sphingomyelin synthesis follows a cis Golgi marker enzyme.  相似文献   

13.
The asexual development of the human malaria parasite Plasmodium falciparum is largely intraerythrocytic. When 1-palmitoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazole-4-yl)amino]caproyl] phosphatidylcholine (NBD-PC) was incorporated into infected and uninfected erythrocyte membranes at 0 degrees C, it remained at the cell surface. At 10 degrees C, the lipid was rapidly internalized in infected erythrocytes at all stages of parasite growth. Our results indicate that the internalization of NDB-PC was not because of endocytosis but rapid transbilayer lipid flip-flop at the infected erythrocyte membrane, followed by monomer diffusion to the parasite. Internalization of the lipid was inhibited by (a) depleting cellular ATP levels; (b) pretreating the cells with N-ethyl maleimide or diethylpyrocarbonate; and (c) 10 mM L-alpha-glycerophosphorylcholine. The evidence suggests protein-mediated and energy dependent transmembrane movement of the PC analogue. The conditions for the internalization of another phospholipid analogue N-4-nitrobenzo-2-oxa-1,3-diazoledipalmitoyl phosphatidylethanolamine (N-NBD-PE) were distinct from that of NBD-PC and suggest the presence of additional mechanism(s) of parasite-mediated lipid transport in the infected host membrane. In spite of the lack of bulk, constitutive endocytosis at the red cell membrane, the uptake of Lucifer yellow by mature infected cells suggests that microdomains of pinocytotic activity are induced by the intracellular parasite. The results indicate the presence of parasite-induced mechanisms of lipid transport in infected erythrocyte membranes that modify host membrane properties and may have important implications on phospholipid asymmetry in these membranes.  相似文献   

14.
Membrane potential of Plasmodium-infected erythrocytes   总被引:2,自引:0,他引:2       下载免费PDF全文
The membrane potential (Em) of normal and Plasmodium chabaudi-infected rat erythrocytes was determined from the transmembrane distributions of the lipophilic anion, thiocyanate (SCN), and cation, triphenylmethylphosphonium (TPMP). The SCN- and TPMP-measured Em of normal erythrocytes are -6.5 +/- 3 mV and -10 +/- 4 mV, respectively. The TPMP-measured Em of infected cells depended on parasite developmental stage; "late" stages (schizonts and gametocytes) were characterized by a Em = -35 mV "early stages (ring and copurifying noninfected) by a low Em (-16 mV). The SCN-determined Em of infected cells was -7 mV regardless of parasite stage. Studies with different metabolic inhibitors including antimycin A, a proton ionophore (carbonylcyanide m-chlorophenylhydrazone [CCCP] ), and a H+ -ATPase inhibitor (N,N'-dicyclohexylcarbodiimide, [DCCD] ) indicate that SCN monitors the Em across the erythrocyte membrane of infected and normal cells whereas TPMP accumulation reflects the Em across the plasma membranes of both erythrocyte and parasite. These inhibitor studies also implicated proton fluxes in Em-generation of parasitized cells. Experiments with weak acids and bases to measure intracellular pH further support this proposal. Methylamine distribution and direct pH measurement after saponin lysis of erythrocyte membranes demonstrated an acidic pH for the erythrocyte matrix of infected cells. The transmembrane distributions of weak acids (acetate and 5,5-dimethyloxazolidine-2,4-dione) indicated a DCCD-sensitive alkaline compartment. The combined results suggest that the intraerythrocyte parasite Em and delta pH are in part the consequence of an electrogenic proton pump localized to the parasite plasma membrane.  相似文献   

15.
The freeze fracture technique has been used to study the internal cyto-architecture of the surface membranes of the parasite and erythrocyte in Plasmodium knowlesi infections. Six fracture faces, derived from the plasma membrane and 2 pellicular membranes, have been identified at the surface of the free merozoite. The apposed leaflets of the 2 pellicular membranes show the characteristic features of E fracture faces, a result compatible with the view that the pellicular membranes line a potential cisterna. There is evidence to suggest that there may be changes in the distribution and density of the integral proteins in the merozoite plasma membrane at invasion. Furthermore, vesicles consisting of stacked membranes occur within and around the erythrocyte invagination at invasion; it is suggested that these vesicles are released from the merozoite rhoptries. Formation of the parasitophorous vacuole is accompanied by dramatic changes in the density and distribution of intra-membraneous particles (IMP) in the vacuolar membrane. Initially there is a great reduction in particle numbers, but subsequently the particles reappear and show reversed polarity. The possible causes and implications of these changes are discussed. The intra-erythrocytic parasite synthesizes new transmembrane proteins as development proceeds, and the trophozoite and schizont stages of development are characterized by the appearance of circular, particle-free regions in the parasite plasmalemma. There is a decrease in the density of transmembrane proteins in the erythrocyte plasma membrane during parasite maturation, and the P face IMP show the characteristic features of aggregation.  相似文献   

16.
The export of numerous proteins to the plasma membrane of its host erythrocyte is essential for the virulence and survival of the malaria parasite Plasmodium falciparum. The Maurer's clefts, membrane structures transposed by the parasite in the cytoplasm of its host erythrocyte, play the role of a marshal platform for such exported parasite proteins. We identify here the export pathway of three resident proteins of the Maurer's clefts membrane: the proteins are exported as soluble forms in the red cell cytoplasm to the Maurer's clefts membrane in association with the parasite group II chaperonin (PfTRIC), a chaperone complex known to bind and address a large spectrum of unfolded proteins to their final location. We have also located the domain of interaction with PfTRiC within the amino‐terminal domain of one of these Maurer's cleft proteins, PfSBP1. Because several Maurer's cleft membrane proteins with different export motifs seem to follow the same route, we propose a general role for PfTRiC in the trafficking of malarial parasite proteins to the host erythrocyte.   相似文献   

17.
The human malaria parasite Plasmodium falciparum exports determinants of virulence and pathology to destinations within the host erythrocyte, including the erythrocyte cytoplasm, plasma membrane and membrane profiles of parasite origin termed Maurer's clefts. Most of the exported proteins contain a conserved pentameric motif termed plasmodial export element (PEXEL)/vacuolar transfer signal (VTS) that functions as a cleavable sorting signal permitting export to the host erythrocyte. However, there are some exported proteins, such as the skeleton-binding protein 1 (PfSBP1) that lack the PEXEL/VTS motif and that are not N-terminally processed, suggesting the presence of alternative sorting signals and/or mechanisms. In this study, we have investigated trafficking of PfSBP1 to the Maurer's clefts. Our data show that the transmembrane domain of PfSBP1 functions as an internal signal sequence for entry into the parasite's secretory pathway and for transport to the parasite plasma membrane. Trafficking beyond the parasite's plasma membrane required additional N-terminal domains, which are characterized by a high negative net charge. Biochemical data indicate that these domains affect the solubility and extraction profile, the orientation of the protein within the membrane and the subcellular localization. Our findings suggest new principles of protein export in P.   falciparum -infected erythrocytes.  相似文献   

18.
We examined the uptake and intracellular transport of the fluorescent glucosylceramide analogue N-[5-(5,7-dimethyl BODIPYTM)-1-pentanoyl]- glucosyl sphingosine (C5-DMB-GlcCer) in human skin fibroblasts, and we compared its behavior to that of the corresponding fluorescent analogues of sphingomyelin, galactosylceramide, and lactosylceramide. All four fluorescent analogues were readily transferred from defatted BSA to the plasma membrane during incubation at 4 degrees C. When cells treated with C5-DMB-GlcCer were washed, warmed to 37 degrees C, and subsequently incubated with defatted BSA to remove fluorescent lipid at the cell surface, strong fluorescence was observed at the Golgi apparatus, as well as weaker labeling at the nuclear envelope and other intracellular membranes. Similar results were obtained with C5-DMB- galactosylceramide, except that labeling of the Golgi apparatus was weaker than with C5-DMB-GlcCer. Internalization of C5-DMB-GlcCer was not inhibited by various treatments, including ATP depletion or warming to 19 degrees C, and biochemical analysis demonstrated that the lipid was not metabolized during its internalization. However, accumulation of C5-DMB-GlcCer at the Golgi apparatus was reduced when cells were treated with a nonfluorescent analogue of glucosylceramide, suggesting that accumulation of C5-DMB-GlcCer at the Golgi apparatus was a saturable process. In contrast, cells treated with C5-DMB-analogues of sphingomyelin or lactosylceramide internalized the fluorescent lipid into a punctate pattern of fluorescence during warming at 37 degrees C, and this process was temperature and energy dependent. These results with C5-DMB-sphingomyelin and C5-DMB-lactosylceramide were analogous to those obtained with another fluorescent analogue of sphingomyelin in which labeling of endocytic vesicles and plasma membrane lipid recycling were documented (Koval, M., and R. E. Pagano. 1990. J. Cell Biol. 111:429-442). Incubation of perforated cells with C5-DMB- sphingomyelin resulted in prominent labeling of the nuclear envelope and other intracellular membranes, similar to the pattern observed with C5-DMB-GlcCer in intact cells. These observations are consistent with the transbilayer movement of fluorescent analogues of glucosylceramide and galactosylceramide at the plasma membrane and early endosomes of human skin fibroblasts, and suggest that both endocytic and nonendocytic pathways are used in the internalization of these lipids from the plasma membrane.  相似文献   

19.
The malaria parasite, Plasmodium falciparum, exports proteins beyond the confines of its own plasma membrane, however there is debate regarding the machinery used for these trafficking events. We have generated transgenic parasites expressing chimeric proteins and used immunofluorescence studies to determine the locations of plasmodial homologues of the COPII component, Sar1p, and the Golgi-docking protein, Bet3p. The P. falciparum Sar1p (PfSar1p) chimeras bind to the endoplasmic reticulum surface and define a network of membranes wrapped around parasite nuclei. As the parasite matures, the endomembrane systems of individual merozoites remain interconnected until very late in schizogony. Antibodies raised against plasmodial Bet3p recognise two foci of reactivity in early parasite stages that increase in number as the parasite matures. Some of the P. falciparum Bet3p (PfBet3p) compartments are juxtaposed to compartments defined by the cis Golgi marker, PfGRASP, while others are distributed through the cytoplasm. The compartments defined by the trans Golgi marker, PfRab6, are separate, suggesting that the Golgi is dispersed. Bet3p-green fluorescent protein (GFP) is partly associated with punctate structures but a substantial population diffuses freely in the parasite cytoplasm. By contrast, yeast Bet3p is very tightly associated with immobile structures. This study challenges the view that the COPII complex and the Golgi apparatus are exported into the infected erythrocyte cytoplasm.  相似文献   

20.
To survive within erythrocytes, Plasmodium parasites have to put into place different membrane and sub-cellular compartments in order to import different nutrients and to export proteins/antigens. Infected cells pose not only a major world health risk by killing two million people per year, but also a very interesting cell biology problem, as within the erythrocyte the parasite resides inside a vacuole called the parasitophorous vacuole and as a consequence, it is separated from the blood stream by three membrane barriers, its own plasma membrane, the parasitophorous vacuole membrane and the erythrocyte plasma membrane. In spite of these three barriers the parasite is capable of secreting antigens and importing nutrients, and to do this, it has developed a complex vesicular system that extends into the red blood cell cytoplasm to the plasma membrane. Understanding how the parasite controls this extensive vesicular traffic has driven research into Plasmodium Rabs, whose potential role is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号