首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Trafficking and sorting of lipids during transport from the endoplasmic reticulum to the Golgi apparatus was studied using a cell-free system from rat liver. Transitional elements of the endoplasmic reticulum were prepared from liver slices prelabeled with [14C]- or [3H]acetate as the donor fraction. Non-radioactive Golgi apparatus were immobilized on nitrocellulose as the acceptor. When reconstituted, the radiolabeled donor retained a capacity to transfer labeled lipids to the non-radioactive Golgi apparatus acceptor. Transfer exhibited two kinetically different components. One was stimulated by ATP, facilitated by cytosol and inhibited by guanosine 5'-O-(thiotriphosphate) and N-ethylmaleimide. In parallel with protein transport, the ATP-dependent lipid transfer occurred with a temperature transition at about 20 degrees C. The other was not stimulated by ATP, did not require cytosol, was acceptor unspecific, was unaffected by inhibitors and, while temperature dependent, did not exhibit a sharp temperature transition. The ATP-independent transfer was non-vesicular. In contrast, the ATP-dependent transfer was vesicular. Transition vesicles isolated by preparative free-flow electrophoresis, when used as the donor fraction, transferred lipids to Golgi apparatus acceptor with a 5-6-fold greater efficiency than that exhibited by the unfractionated transitional endoplasmic reticulum. Formation of transition vesicles was ATP-dependent. Transferred lipids were chiefly phosphatidylcholine and cholesterol. Membrane triglycerides, major constituents of the transitional endoplasmic reticulum membranes, were both depleted in the transition vesicle-enriched fractions and not transferred to Golgi apparatus suggestive of lipid sorting prior to or during transition vesicle formation. The characteristics of the ATP plus cytosol-dependent transfer were similar to those for protein transfer mediated by transition vesicles. Thus, the 50-70-nm vesicles derived from transitional endoplasmic reticulum appear to function in the trafficking of both newly synthesized proteins and lipids from the endoplasmic reticulum to the Golgi apparatus.  相似文献   

2.
Cell-free transfer of membrane lipids. Evidence for lipid processing   总被引:1,自引:0,他引:1  
A latent phospholipase A is concentrated in cis elements of rat liver Golgi apparatus, the presumed sites of fusion of the 50-70-nm transition vesicles formed from endoplasmic reticulum. As a result, conversion of transferred phospholipids to their corresponding lysoforms may provide an index of post transfer lipid processing in a corresponding reconstituted membrane transfer system. To label the phosphatidylcholine of transitional endoplasmic reticulum in vitro, [14C]CDP-choline and endogenous cytidyltransferases were used. In the reconstituted transfer system, the radiolabeled phosphatidylcholine was transferred via transition vesicles to Golgi apparatus immobilized on nitrocellulose strips in a time- and temperature-dependent process. Transfer was promoted by ATP and the ATP-dependent transfer was specific for cis Golgi apparatus elements as acceptor. Trans Golgi apparatus elements were ineffective as acceptors. Median Golgi apparatus elements were intermediate. A portion of the transferred phosphatidylcholine was converted subsequently to lysophosphatidylcholine also in a time- and ATP-dependent manner. The phospholipase A activity of the Golgi apparatus was more than 90% latent (active site located on the lumens of the Golgi apparatus membranes). Therefore, the lipid-containing vesicles derived from endoplasmic reticulum must have combined with cis Golgi apparatus membranes as the basis for Golgi apparatus-dependent phospholipase A processing of endoplasmic reticulum-derived phosphatidylcholine. Since the lipids were processed by phospholipase A in approximately the same proportion as occurs in situ, the findings offer evidence both for the specificity of the ATP-dependent component of cell-free lipid transfer from endoplasmic reticulum to Golgi apparatus and its fidelity to lipid transfer observed in vivo.  相似文献   

3.
 Cell-free systems for the analysis of Golgi apparatus membrane traffic rely either on highly purified cell fractions or analysis by specific trafficking markers or both. Our work has employed a cell-free transfer system from rat liver based on purified fractions. Transfer of any constituent present in the donor fraction that can be labeled (protein, phospholipid, neutral lipid, sterol, or glycoconjugate) may be investigated in a manner not requiring a processing assay. Transition vesicles were purified and Golgi apparatus cisternae were subfractionated by means of preparative free-flow electrophoresis. Using these transition vesicles and Golgi apparatus subfractions, transfer between transitional endoplasmic reticulum and cis Golgi apparatus was investigated and the process subdivided into vesicle formation and vesicle fusion steps. In liver, vesicle formation exhibited both ATP-independent and ATP-dependent components whereas vesicle fusion was ATP-independent. The ATP-dependent component of transfer was donor and acceptor specific and appeared to be largely unidirectional, i.e., ATP-dependent retrograde (cis Golgi apparatus to transitional endoplasmic reticulum) traffic was not observed. ATP-dependent transfer in the liver system and coatomer-driven ATP-independent transfer in more refined yeast and cultured cell systems are compared and discussed in regard to the liver system. A model mechanism developed for ATP-dependent budding is proposed where a retinol-stimulated and brefeldin A-inhibited NADH protein disulfide oxidoreductase (NADH oxidase) with protein disulfide-thiol interchange activity and an ATP-requiring protein capable of driving physical membrane displacement are involved. It has been suggested that this mechanism drives both the cell enlargement and the vesicle budding that may be associated with the dynamic flow of membranes along the endoplasmic reticulum-vesicle-Golgi apparatus-plasma membrane pathway. Accepted: 26 January 1998  相似文献   

4.
Preparations enriched in part-smooth (lacking ribosomes), part-rough (with ribosomes) transitional elements of the endoplasmic reticulum when incubated with ATP plus a cytosol fraction responded by the formation of blebbing profiles and approximately 60-nm vesicles. The 60-nm vesicles formed resembled closely transition vesicles in situ considered to function in the transfer of membrane materials between the endoplasmic reticulum and the Golgi apparatus. The transition elements following incubation with ATP and cytosol were resolved by preparative free-flow electrophoresis into fractions of differing electronegativity. The main fraction contained the larger vesicles of the transitional membrane elements, while a less electronegative minor shoulder fraction was enriched in the 60-nm vesicles. If the vesicles concentrated by preparative free-flow electrophoresis were from material previously radiolabeled with [3H]leucine and then added to Golgi apparatus immobilized to nitrocellulose, radioactivity was transferred to the Golgi apparatus membranes. The transfer was rapid (T1/2 of about 5 min), efficient (10-30% of the total radioactivity of the transition vesicle preparations was transferred to Golgi apparatus), and independent of added ATP but facilitated by cytosol. Transfer was specific and apparently unidirectional in that Golgi apparatus membranes were ineffective as donor membranes and endoplasmic reticulum vesicles were ineffective as recipient membranes. Using a heterologous system with transition vesicles from rat liver and Golgi apparatus isolated from guinea pig liver, coalescence of the small endoplasmic reticulum-derived vesicles with Golgi apparatus membranes was demonstrated using immunocytochemistry. Employed were polyclonal antibodies directed against the isolated rat transition vesicle preparations. When localized by immunogold procedures at the electron microscope level, regions of rat-derived vesicles were found fused with cisternae of guinea pig Golgi apparatus immobilized to nitrocellulose strips. Membrane transfer was demonstrated from experiments where transition vesicle membrane proteins were radioiodinated by the Bolton-Hunter procedure. Additionally, radiolabeled peptide bands not present initially in endoplasmic reticulum appeared following coalescence of the derived vesicles with Golgi apparatus. These bands, indicative of processing, required that both Golgi apparatus and transition vesicles be present and did not occur in incubated endoplasmic reticulum preparations or on nitrocellulose strips to which no Golgi apparatus were added.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Summary The donor and acceptor specificity of cell-free transfer of radiolabeled membrane constituents, chiefly lipids, was examined using purified fractions of endoplasmic reticulum, Golgi apparatus, nuclei, plasma membrane, tonoplast, mitochondria, and chloroplasts prepared from green leaves of spinach. Donor membranes were radiolabeled with [14C]acetate. Acceptor membranes were unlabeled and immobilized on nitrocellulose filters. The assay was designed to measure membrane transfer resulting from ATP-and temperature-dependent formation of transfer vesicles by the donor fraction in solution and subsequent attachment and/or fusion of the transfer vesicles with the immobilized acceptor. When applied to the analysis of spinach fractions, significant ATP-dependent transfer in the presence of cytosol was observed only with endoplasmic reticulum as donor and Golgi apparatus as acceptor. Transfer in the reverse direction, from Golgi apparatus to endoplasmic reticulum, was only 0.2 to 0.3 that from endoplasmic reticulum to Golgi apparatus. ATP-dependent transfers also were indicated between nuclei and Golgi apparatus from regression analysis of transfer kinetics. Specific transfer between Golgi apparatus and plasma membrane and, to a lesser extent, from plasma membrane to Golgi apparatus was observed at 25°C compared to 4°C but was not ATP plus cytosol-dependent. All other combinations of organelles and membranes exhibited no ATP plus cytosol-dependent transfer and only small increments of specific transfer comparing transfer at 37°C to transfer at 4°C. Thus, the only combinations of membranes capable of significant cell-free transfer in vitro were those observed by electron microscopy of cells and tissues to be involved in vesicular transport in vivo (endoplasmic reticulum, Golgi apparatus, plasma membrane, nuclear envelope). Of these, only with endoplasmic reticulum (or nuclear envelope) and Golgi apparatus, where transfer in situ is via 50 to 70 nm transition vesicles, was temperature-and ATP-dependent transfer of acetatelabeled membrane reproduced in vitro. Lipids transferred included phospholipids, mono-and diacylglycerols, and sterols but not triacylglycerols or steryl esters, raising the possibility of lipid sorting or processing to exclude transfer of triacylglycerols and steryl esters at the endoplasmic reticulum to Golgi apparatus step.  相似文献   

6.
Summary ATP-dependent cell-free transfer of membrane constituents radiolabeled with [14C]acetate, primarily lipids, was demonstrated between isolated nuclei in suspension and purified Golgi apparatus immobilized on nitrocellulose strips prepared from garden pea (Pisum sativum) in the presence of pea cytosol. The ATP-dependent transfer correlated with the ability of the nuclear envelope to form 50–70 nm vesicles and blebs in an ATP-dependent manner. Specific transfer, transfer at 23°C minus transfer at 4°C, was approximately doubled by addition of ATP and was greater for peas germinated for 2 days than for peas germinated for 3 days. ATP plus cytosol-dependent transfer could not be demonstrated using radiolabeled pea nuclei as donor with purified endoplasmic reticulum, plasma membrane, nuclei, mitochondria or amyloplasts as acceptors. The results provide a second example, in addition to transfer between endoplasmic reticulum and Golgi apparatus, where ATP-and temperature-dependent transfer via 50–70 nm transition vesicles can be demonstrated in a cell-free system.  相似文献   

7.
D. J. Morré 《Protoplasma》1994,180(1-2):3-13
Summary Physical membrane displacement is a process common to all forms of vesicle budding as well as cell enlargement and pleomorphic shape changes. Cell-free reconstitution of membrane budding has been achieved with transitional endoplasmic reticulum fractions from both plants and animals where 50 to 70 nm transition vesicles have been observed to bud from the part-rough, part-smooth membrane elements that define transitional endoplasmic reticulum. This budding phenomenon requires ATP, is facilitated by cytosol and guanine nucleotides, and is both time- and temperature-dependent. The transitional endoplasmic reticulum buds that form when concentrated by preparative free-flow electrophoresis will attach specifically to cis Golgi apparatus membranes immobilized on nitrocellulose as an acceptor compartment. Golgi apparatus membranes derived from the trans compartment do not serve as an efficient acceptor compartment. Transfer of the vesicles once formed is rapid, nearly complete and no longer dependent upon added ATP. Transfer shows a strict temperature dependency corresponding to that of the intact cell where at temperatures of 16°C or below, vesicles form but do not attach to cis Golgi whereas at temperatures of greater than 16°C, vesicles both form and fuse. The principle ATPase of transitional endoplasmic reticulum which may be involved in the budding process has been identified, characterized and isolated. A 38 kDa cis Golgi apparatus associated protein also has been identified as a potential candidate as a docking protein. Transfer between trans Golgi apparatus and the plasma membrane also has been studied by cell-free analysis. Here, transfer has been found to be stimulated by NADH or NADH plus ascorbate. The role of NADH is unknown but the ability of plant and Golgi apparatus to oxidize NADH is inhibited by brefeldin A, a compound known to block membrane trafficking even at the level of the trans Golgi network. NADH oxidase activity of plasma membranes also has been described and is inhibited as well by brefeldin. Recent observations suggest that brefeldin A may block both the formation of vesicles at the trans Golgi apparatus as well as auxin hormone-stimulated cell elongation in plants. This once again raises the possibility of whether or not plant cell elongation is obligatorily mediated by membrane input from the Golgi apparatus. The latter seems unlikely based on two additional lines of evidence. The first is that auxin-induced cell elongation in plants shows no sharp temperature transition over the range of 4 to 24°C, whereas production of secretory vesicles from the trans Golgi apparatus appears to be largely prevented at temperatures of 18°C or less. Secondly, the sodium selective ionophore, monensin, which effectively blocks the formation of functional secretory vesicles at the trans Golgi apparatus, is also largely without effect on auxin-induced cell elongation for periods of 4 h or longer. Taken together the findings suggest that the action of brefeldin A on vesicle budding at the Golgi apparatus and cell enlargement, are not directly correlated but may represent a common action of the drug on some constituent essential to membrane displacement mechanisms.Abbreviations BFA brefeldin A - IAA indole-3-acetic acid; 2, 4-D 2, 4-dichlorophenoxyacetic acid - NSF N-ethylmaleimide-sensitive factor Much of the information summarized in this report was presented as a plenary lecture at the XV International Botanical Congress Tokyo, Yokohama, Japan, August 28–September 3, 1993.  相似文献   

8.
D. J. Morré  M. Paulik  D. Nowack 《Protoplasma》1986,132(1-2):110-113
Summary Isolated fractions enriched in transition elements derived from part rough—part smooth regions of endoplasmic reticulum of rat liver respondin vitro to ATP plus a concentrated fraction of cytoplasmic proteins by formation of ca. 60 nm vesicles with nap-like coats resembling those of transition vesicles of the intact cell. Similar vesicles are normally considered to function in the transfer of materials from endoplasmic reticulum to cis elements of the Golgi apparatus.  相似文献   

9.
Transfer of phosphatidylinositol (PI) between membranes was reconstituted in a cell-free system using membrane fractions isolated from dark-grown soybean (Glycine max [L.] Merr.). Donor membrane vesicles contained [3H]myo-inositol-labeled PI. A fraction enriched in endoplasmic reticulum was a more efficient donor than its parent microsomal membrane fraction. As acceptor, cytoplasmic side-out plasma membrane vesicles were more efficient than cytoplasmic side-in plasma membrane vesicles. Endoplasmic reticulum was also an efficient acceptor, suggesting that transfer occurred to cytoplasmic membrane leaflets. PI transfer was time and temperature dependent but did not require cytosolic proteins, ATP, GTP, cytosol, and acyl-coenzyme A. These results suggest that neither lipid transfer proteins nor transition vesicles, similar to those involved in vesicle trafficking from endoplasmic reticulum to the Golgi apparatus, were involved. In the presence of Mg2+ and ATP, endoplasmic reticulum PI was not metabolized, whereas PI transferred to the plasma membrane was metabolized into phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate. To summarize, the cell-free transfer of endoplasmic reticulum-derived PI was distinct from, for example, vesicle transport from endoplasmic reticulum to Golgi apparatus, not only in its regulation but also in its acceptor unspecificity.  相似文献   

10.
Summary The process of formation from endoplasmic reticulum and transfer to Golgi apparatus of small 50–70 nm transition vesicles has been reconstituted in a cell-free system. Fractions enriched in transition elements derived from part-rough, part-smooth transitional regions of the endoplasmic reticulum were prepared from elongation zones of hypocotyls of etiolated seedlings of soybean and coleoptiles of maize and were compared with those from rat liver. When activated with nucleoside triphosphate, cytosol and an ATP regenerating system, time- and temperature-dependent transfer of membranes to Golgi apparatus acceptor was demonstrated. The fractions enriched in transition elements were radioiodinated with125I by the Bolton-Hunter procedure. Acceptor Golgi apparatus stacks were immobilized to nitrocellulose strips to facilitate analysis. In heterologous transfer experiments, the plant and animal acceptors and donors could be interchanged. The transfer was limited primarily by the donor (rat liver > soybean hypocotyl > maize coleoptiles) and determined secondarily by the source of the acceptor. The acceptor fractions were most efficacious when prepared from the same source as the donor. Thus, 50–70 nm vesicles bud from transitional endoplasmic reticulum elements of plants function in a manner similar to those of animal cells to transfer membrane materials to the Golgi apparatus. The recognition signals that determine vesicle fusion appear to be conserved both among species and between the plant and animal kingdoms to the extent that donor and acceptor sources may be interchanged with only small reductions in overall efficiency of transfer.Abbrevations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - EDTA ethylenediaminetetraacetic acid  相似文献   

11.
In many systems transfer between the endoplasmic reticulum and the Golgi apparatus is blocked at temperatures below 16 degrees C. In virus-infected cells in culture, a special membrane compartment is seen to accumulate. Our studies with rat liver show a similar response to temperature both in situ with slices and in vitro with isolated transitional endoplasmic reticulum fractions. With isolated transitional endoplasmic reticulum fractions, when incubated in the presence of nucleoside triphosphate and a cytosol fraction, temperature dependent formation of vesicles occurred with a Q10 of approximately 2 but was apparent only at temperatures greater than 12 degrees C. A similar response was seen in situ at 12 degrees C and 16 degrees C where fusion of transition vesicles with cis Golgi apparatus, but not their formation, was blocked and transition vesicles accumulated in large numbers. At 18 degrees C and below and especially at 8 degrees C and 12 degrees C, the cells responded by accumulating smooth tubular transitional membranes near the cis Golgi apparatus face. With cells and tissue slices at 20 degrees C neither transition vesicles nor the smooth tubular elements accumulated. Those transition vesicles which formed at 37 degrees C were of a greater diameter than those formed at 4 degrees C both in situ and in vitro. The findings show parallel responses between the temperature dependency of transition vesicle formation in vitro and in situ and suggest that a subpopulation of the transitional endoplasmic reticulum may be morphologically and functionally homologous to the 16 degrees C compartment observed in virally-infected cell lines grown at low temperatures.  相似文献   

12.
Cell-free transfer of radiolabeled membrane proteins from part-rough, part-smooth transitional elements of the endoplasmic reticulum to Golgi apparatus immobilized to nitrocellulose in the presence of nucleoside triphosphate, an ATP-regenerating system and a cytosol fraction was promoted by retinol. At an optimum concentration of 1 microgram/ml, the rate and amount of transfer was approximately doubled over 1 to 2 h of incubation in the cell-free system. The transition vesicles induced to form in the cell-free system were concentrated by preparative free-flow electrophoresis in order to study separately the steps of vesicle formation from transitional endoplasmic reticulum and the steps of vesicle fusion with Golgi apparatus. The retinol effect was on vesicle formation as evidenced by an approx. 2-fold increase in transition vesicle numbers, as determined by electron microscope morphometry, and amount from protein determinations on the isolated fractions enriched in transition vesicles. The retinol response in the complete transfer could be eliminated by addition of concentrated cytosol, including cytosol depleted of retinol. An interaction of retinol with some component of the vesicle formation process, possibly involving guanine nucleotides, is indicated.  相似文献   

13.
Coated vesicles were isolated from rat liver in about 80% fraction purity as determined from electron microscopy and analyses of marker enzymes and compared with Golgi apparatus and other membrane fractions isolated in parallel. The fractions were enriched in NADH-monodehydroascorbate reductase, ascorbate oxidase and ascorbic acid. The NADH-monodehydroascorbate reductase and ascorbate oxidase of the Golgi apparatus and coated vesicles differed from that of the endoplasmic reticulum in being inhibited by the sodium selective ionophore, monensin, at physiological concentrations while these activities were stimulated by ethylenediaminetetraacetic acid in coated vesicles but not in Golgi apparatus. Activities of both coated vesicles and Golgi apparatus fractions depleted in the coat protein, clathrin, were activated by the addition of clathrin-rich supernatant fractions. The results are discussed in the context of monodehydroascorbate as an acceptor for electron transport-mediated transfer of electrons from NADH by coated vesicles as part of a possible mechanism to drive membrane translocations or to acidify the interiors of vesicles.  相似文献   

14.
Rat liver Golgi vesicles were isolated by differential and density gradient centrifugation. A fraction enriched in galactosyl transferase and depleted in plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal markers was found to contain an ATP-dependent H+ pump. This proton pump was not inhibited by oligomycin but was sensitive to N-ethyl maleimide, which distinguishes it from the F0-F1 ATPase of mitochondria. GTP did not induce transport, unlike the lysosomal H+ pump. The pump was not dependent on the presence of potassium nor was it inhibited by vanadate, two of the characteristics of the gastric H+ ATPase. Addition of ATP generated a membrane potential that drove chloride uptake into the vesicles, suggesting that Golgi membranes contain a chloride conductance in parallel to an electrogenic proton pump. These results demonstrate that Golgi vesicles can form a pH difference and a membrane potential through the action of an electrogenic proton translocating ATPase.  相似文献   

15.
Golgi apparatus of livers of rats receiving 60 mg/100 g body weight all-trans retinol (vitamin A) in olive oil responded by a reproducible and significant increase both in the number of cisternae per Golgi apparatus stack and in the number of transition vesicles of the cis Golgi apparatus face compared to rats receiving olive oil alone as determined by quantitation from electron micrographs. These vesicles were identified by a simple, non-clathrin coat, a uniform diameter of about 60 nm and a location primarily in association with cis Golgi apparatus elements. They were distinct from clathrin-coated vesicles of the trans Golgi apparatus face which was unaffected by vitamin A treatment. Transition vesicles may be involved in the transfer of membrane materials to the Golgi apparatus from endoplasmic reticulum.  相似文献   

16.
Protein sorting upon exit from the endoplasmic reticulum   总被引:18,自引:0,他引:18  
Muñiz M  Morsomme P  Riezman H 《Cell》2001,104(2):313-320
It is currently thought that all secretory proteins travel together to the Golgi apparatus where they are sorted to different destinations. However, the specific requirements for transport of GPI-anchored proteins from the endoplasmic reticulum to the Golgi apparatus in yeast could be explained if protein sorting occurs earlier in the pathway. Using an in vitro assay that reconstitutes a single round of budding from the endoplasmic reticulum, we found that GPI-anchored proteins and other secretory proteins exit the endoplasmic reticulum in distinct vesicles. Therefore, GPI-anchored proteins are sorted from other proteins, in particular other plasma membrane proteins, at an early stage of the secretory pathway. These results have wide implications for the mechanism of protein exit from the endoplasmic reticulum.  相似文献   

17.
《The Journal of cell biology》1985,101(5):1733-1740
The Golgi apparatus mediates intracellular transport of not only secretory and lysosomal proteins but also membrane proteins. As a typical marker membrane protein for endoplasmic reticulum (ER) of rat hepatocytes, we have selected phenobarbital (PB)-inducible cytochrome P- 450 (P-450[PB]) and investigated whether P-450(PB) is transported to the Golgi apparatus or not by combining biochemical and quantitative ferritin immunoelectron microscopic techniques. We found that P-450(PB) was not detectable on the membrane of Golgi cisternae either when P-450 was maximally induced by phenobarbital treatment or when P-450 content in the microsomes rapidly decreased after cessation of the treatment. The P-450 detected biochemically in the Golgi subcellular fraction can be explained by the contamination of the microsomal vesicles derived from fragmented ER membranes to the Golgi fraction. We conclude that when the transfer vesicles are formed by budding on the transitional elements of ER, P-450 is completely excluded from such regions and is not transported to the Golgi apparatus, and only the membrane proteins destined for the Golgi apparatus, plasma membranes, or lysosomes are selectively collected and transported.  相似文献   

18.
We report the reconstitution of the transfer of a membrane glycoprotein (vesicular stomatitis virus glycoprotein, VSV-G protein) from endoplasmic reticulum to Golgi apparatus and its subsequent Man8-9GlcNAc2 to Man5GlcNAc2 processing in a completely cell-free system. The acceptor was Golgi apparatus from rat liver immobilized on nitrocellulose. The endoplasmic reticulum donor was from homogenates of VSV-G-infected BHK cells. Nucleoside triphosphate plus cytosol-dependent transfer and processing of radiolabeled VSV-G protein was observed with donor from BHK cells infected at 37 degrees C with wild-type VSV or at the permissive temperature of 34 degrees C with the ts045 mutant. With Golgi apparatus as acceptor, specific transfer at 37 degrees C in the presence of nucleoside triphosphate was eightfold that at 4 degrees C or in the absence of ATP. About 40% of the VSV-G protein transferred was processed to the Man5GlcNAc2 form. Processing was specific for cis Golgi apparatus fractions purified by preparative free-flow electrophoresis. Fractions derived from the trans Golgi apparatus were inactive in processing. With the ts045 temperature-sensitive mutant, transfer and processing were much reduced even in the complete system when microsomes were from cells infected with mutant virus and incubated at the restrictive temperature of 39.5 degrees C but were able to proceed at the permissive temperature of 34 degrees C. Thus, Man8-9GlcNAc2 to Man5GlcNAc2 processing of VSV-G protein occurs following transfer in a completely cell-free system using immobilized intact Golgi apparatus or cis Golgi apparatus cisternae as the acceptor and shows temperature sensitivity, donor specificity, requirement for ATP, and response to inhibitors similar to those exhibited by transfer and processing of VSV-G protein in vivo.  相似文献   

19.
Albumin was isolated immunologically from various subcellular fractions from livers of adult male rats receiving an intraperitoneal injection of [3H]leucine to investigate the kinetics and pathway of subcellular transfer of newly synthesized albumin during secretion. At appropriate time intervals, livers were excised and fractionated into endoplasmic reticulum and Golgi apparatus. Golgi apparatus were further subfractionated into cisternae and secretory vesicles. In endoplasmic reticulum fractions, labeled albumin appeared within 7.5 min of injection of isotope, followed by a rapid decline in specific activity. Albumin in Golgi apparatus was labeled and concentrated in secretory vesicles over 25 min. The radioactivity in albumin per mg total protein was highest in secretory vesicles and insignificant in the cisternal fraction. Labeled albumin was present in serum by 30 min and radioactivity in serum albumin reached a plateau within 60–90 min after injection of isotope. Results provide evidence for the migration of albumin from its site of synthesis on endoplasmic reticulum membrane-bound polyribosomes to its site of secretion into the circulation via the Golgi apparatus. The pathway of albumin transport to secretory vesicles is suggested to involve peripheral elemenst of the Golgi apparatus. Secretory vesicle formation and maturation required 20 to 30 min for completion, via a mechanism whereby the inner spaces of the central saccules may be bypassed.  相似文献   

20.
A Golgi apparatus-rich fraction and a plasma membrane-rich fraction were isolated from a common homogenate of rat liver. Their respective buovant densities, appearances in the electron microscope and 5'-nucleotidase and UDP-galactose ovalbumin galactosyltransferase activities were in accord with published data on separately isolated Golgi apparatus-rich and plasma membrane-rich fractions. Contamination by endoplasmic reticulum and mitochondria was low. Gel electrophoresis of the membrane proteins of the Golgi apparatus-rich and plasma membrane-rich fractions (separately and mixed) showed a close similarity. After Neville's demonstration that electrophoretic patterns of membrane protein subunits from different subcellular fractions are easily distinguishable, the present work demonstrates an unusually close relationship between the Golgi apparatus membrane and the cell membrane. It is possible that membrane similarity may be mediated by the transfer of membrane-bound vesicles from the Golgi apparatus to the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号