首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an effort to determine diversity and function of mammalian myosin I molecules, we report here the cloning and characterization of myr 3 (third unconventional myosin from rat), a novel mammalian myosin I from rat tissues that is related to myosin I molecules from protozoa. Like the protozoan myosin I molecules, myr 3 consists of a myosin head domain, a single light chain binding motif, and a tail region that includes a COOH-terminal SH3 domain. However, myr 3 lacks the regulatory phosphorylation site present in the head domain of protozoan myosin I molecules. Evidence was obtained that the COOH terminus of the tail domain is involved in regulating F-actin binding activity of the NH2-terminal head domain. The light chain of myr 3 was identified as the Ca(2+)-binding protein calmodulin. Northern blot and immunoblot analyses revealed that myr 3 is expressed in many tissues and cell lines. Immunofluorescence studies with anti-myr 3 antibodies in NRK cells demonstrated that myr 3 is localized in the cytoplasm and in elongated structures at regions of cell-cell contact. These elongated structures contained F-actin and alpha-actinin but were devoid of vinculin. Incubation of NRK cells with Con A stimulated the formation of myr 3-containing structures along cell-cell contacts. These results suggest for myr 3 a function mediated by cell-cell contact.  相似文献   

2.
《The Journal of cell biology》1993,120(6):1393-1403
We have identified, characterized and cloned a novel mammalian myosin-I motor-molecule, called myr 1 (myosin-I from rat). Myr 1 exists in three alternative splice forms: myr 1a, myr 1b, and myr 1c. These splice forms differ in their numbers of putative calmodulin/light chain binding sites. Myr 1a-c were selectively released by ATP, bound in a nucleotide-dependent manner to F-actin and exhibited amino acid sequences characteristic of myosin-I motor domains. In addition to the motor domain, they contained a regulatory domain with up to six putative calmodulin/light chain binding sites and a tail domain. The tail domain exhibited 47% amino acid sequence identity to the brush border myosin-I tail domain, demonstrating that myr 1 is related to the only other mammalian myosin-I motor molecule that has been characterized so far. In contrast to brush border myosin-I which is expressed in mature enterocytes, myr 1 splice forms were differentially expressed in all tested tissues. Therefore, myr 1 is the first mammalian myosin-I motor molecule with a widespread tissue distribution in neonatal and adult tissues. The myr 1a splice form was preferentially expressed in neuronal tissues. Its expression was developmentally regulated during rat forebrain ontogeny and subcellular fractionation revealed an enrichment in purified growth cone particles, data consistent with a role for myr 1a in neuronal development.  相似文献   

3.
Ca(2+)-dependent regulation of the motor activity of myosin V   总被引:2,自引:0,他引:2  
Mouse myosin V constructs were produced that consisted of the myosin motor domain plus either one IQ motif (M5IQ1), two IQ motifs (M5IQ2), a complete set of six IQ motifs (SHM5), or the complete IQ motifs plus the coiled-coil domain (thus permitting formation of a double-headed structure, DHM5) and expressed in Sf9 cells. The actin-activated ATPase activity of all constructs except M5IQ1 was inhibited above pCa 5, but this inhibition was completely reversed by addition of exogenous calmodulin. At the same Ca(2+) concentration, 2 mol of calmodulin from SHM5 and DHM5 or 1 mol of calmodulin from M5IQ2 were dissociated, suggesting that the inhibition of the ATPase activity is due to dissociation of calmodulin from the heavy chain. However, the motility activity of DHM5 and M5IQ2 was completely inhibited at pCa 6, where no dissociation of calmodulin was detected. Inhibition of the motility activity was not reversed by the addition of exogenous calmodulin. These results indicate that inhibition of the motility is due to conformational changes of calmodulin upon the Ca(2+) binding to the high affinity site but is not due to dissociation of calmodulin from the heavy chain.  相似文献   

4.
MYR-1, a mammalian class I myosin, consisting of a heavy chain and 4-6 associated calmodulins, is represented by the 130-kDa myosin I (or MI(130)) from rat liver. MI(130) translocates actin filaments in vitro in a Ca(2+)-regulated manner. A decrease in motility observed at higher Ca(2+) concentrations has been attributed to calmodulin dissociation. To investigate mammalian myosin I regulation, we have coexpressed in baculovirus calmodulin and an epitope-tagged 85-kDa fragment representing the amino-terminal catalytic "motor" domain and the first calmodulin-binding IQ domain of rat myr-1; we refer to this truncated molecule here as MI(1IQ). Association of calmodulin to MI(1IQ) is Ca(2+)-insensitive. MI(1IQ) translocates actin filaments in vitro at a rate resembling MI(130), but unlike MI(130), does not exhibit sensitivity to 0.1-100 micrometer Ca(2+). In addition to demonstrating successful expression of a functional truncated mammalian myosin I in vitro, these results indicate that: 1) Ca(2+)-induced calmodulin dissociation from MI(130) in the presence of actin is not from the first IQ domain, 2) velocity is not affected by the length of the IQ region, and 3) the Ca(2+) sensitivity of actin translocation exhibited by MI(130) involves 1 or more of the other 5 IQ domains and/or the carboxyl tail.  相似文献   

5.
Manceva S  Lin T  Pham H  Lewis JH  Goldman YE  Ostap EM 《Biochemistry》2007,46(42):11718-11726
Myo1c is an unconventional myosin involved in cell signaling and membrane dynamics. Calcium binding to the regulatory-domain-associated calmodulin affects myo1c motor properties, but the kinetic details of this regulation are not fully understood. We performed actin gliding assays, ATPase measurements, fluorescence spectroscopy, and stopped-flow kinetics to determine the biochemical parameters that define the calmodulin-regulatory-domain interaction. We found calcium moderately increases the actin-activated ATPase activity and completely inhibits actin gliding. Addition of exogenous calmodulin in the presence of calcium fully restores the actin gliding rate. A fluorescently labeled calmodulin mutant (N111C) binds to recombinant peptides containing the myo1c IQ motifs at a diffusion-limited rate in the presence and absence of calcium. Measurements of calmodulin dissociation from the IQ motifs in the absence of calcium show that the calmodulin bound to the IQ motif adjacent to the motor domain (IQ1) has the slowest dissociation rate (0.0007 s-1), and the IQ motif adjacent to the tail domain (IQ3) has the fastest dissociation rate (0.5 s-1). When the complex is equilibrated with calcium, calmodulin dissociates most rapidly from IQ1 (60 s-1). However, this increased rate of dissociation is limited by a slow calcium-induced conformational change (3 s-1). Fluorescence anisotropy decay of fluorescently labeled N111C bound to myo1c did not depend appreciably on Ca2+. Our data suggest that the calmodulin bound to the IQ motif adjacent to the motor domain is rapidly exchangeable in the presence of calcium and is responsible for regulation of myo1c ATPase and motile activity.  相似文献   

6.
Myosin 5a is as yet the best-characterized unconventional myosin motor involved in transport of organelles along actin filaments. It is well-established that myosin 5a is regulated by its tail in a Ca(2+)-dependent manner. The fact that the actin-activated ATPase activity of myosin 5a is stimulated by micromolar concentrations of Ca(2+) and that calmodulin (CaM) binds to IQ motifs of the myosin 5a heavy chain indicates that Ca(2+) regulates myosin 5a function via bound CaM. However, it is not known which IQ motif and bound CaM are responsible for the Ca(2+)-dependent regulation and how the head-tail interaction is affected by Ca(2+). Here, we found that the CaM in the first IQ motif (IQ1) is responsible for Ca(2+) regulation of myosin 5a. In addition, we demonstrate that the C-lobe fragment of CaM in IQ1 is necessary for mediating Ca(2+) regulation of myosin 5a, suggesting that the C-lobe fragment of CaM in IQ1 participates in the interaction between the head and the tail. We propose that Ca(2+) induces a conformational change of the C-lobe of CaM in IQ1 and prevents interaction between the head and the tail, thus activating motor function.  相似文献   

7.
Each heavy chain of dimeric chick brain myosin V (BMV) has a neck domain consisting of six IQ motifs with different amino acid sequences. The six IQ motifs form binding sites for five calmodulin (CaM) molecules and one essential light chain (either 17 or 23 kDa). When the calcium concentration is high, a small fraction of the 10 total CaM molecules dissociates from one molecule of BMV, resulting in loss of actin-based motor activity. At low Ca2+ concentrations, two molecules of exogenous CaM associate with one molecule of CaM-released BMV. This suggests that there is a single specific IQ motif responsible for the calcium-induced dissociation of CaM. In this study, we identify the specific IQ motif to be IQ2, the second IQ motif when counted from the N-terminal end of the neck domain. In addition, we showed that the essential light chains do not reside on IQ1 and IQ2. These findings were derived from proteolysis of BMV at high Ca2+ concentrations specifically at the neck region and SDS-PAGE analyses of the digests.  相似文献   

8.
A novel widely expressed type of myosin (fifth unconventional myosin from rat: myr 5) from rat tissues, defining a ninth class of myosins, was identified. The predicted amino acid sequence of myr 5 exhibits several features not found previously in myosins. The myosin head domain contains a unique N-terminal extension and an insertion of 120 amino acids at a postulated myosin-actin contact site. Nevertheless, myr 5 is able to bind actin filaments in an ATP-regulated manner. The head domain is followed by four putative light chain binding sites. The tail domain of myr 5 contains a region which coordinates two atoms of zinc followed by a region that stimulates GTP hydrolysis of members of the ras-related rho subfamily of small G-proteins. Myr 5 therefore provides the first direct link between rho GTPases which have been implicated in the regulation of actin organization and the actin cytoskeleton. It is also the first unconventional myosin for which a tail binding partner(s), namely members of the rho family, has been identified.  相似文献   

9.
Ca2+-dependent inactivation (CDI) and facilitation (CDF) of the Ca(v)1.2 Ca2+ channel require calmodulin binding to a putative IQ motif in the carboxy-terminal tail of the pore-forming subunit. We present the 1.45 A crystal structure of Ca2+-calmodulin bound to a 21 residue peptide corresponding to the IQ domain of Ca(v)1.2. This structure shows that parallel binding of calmodulin to the IQ domain is governed by hydrophobic interactions. Mutations of residues I1672 and Q1673 in the peptide to alanines, which abolish CDI but not CDF in the channel, do not greatly alter the structure. Both lobes of Ca2+-saturated CaM bind to the IQ peptide but isoleucine 1672, thought to form an intramolecular interaction that drives CDI, is buried. These findings suggest that this structure could represent the conformation that calmodulin assumes in CDF.  相似文献   

10.
Human calmodulin-like protein (CLP) is an epithelial-specific Ca(2+)-binding protein whose expression is strongly down-regulated in cancers. Like calmodulin, CLP is thought to regulate cellular processes via Ca(2+)-dependent interactions with specific target proteins. Using gel overlays, we identified a approximately 210-kDa protein binding specifically and in a Ca(2+)-dependent manner to CLP, but not to calmodulin. Yeast two-hybrid screening yielded a CLP-interacting clone encoding the three light chain binding IQ motifs of human "unconventional" myosin X. Pull-down experiments showed CLP binding to the IQ domain to be direct and Ca(2+)-dependent. CLP interacted strongly with IQ motif 3 (K(d) approximately 0.5 nm) as determined by surface plasmon resonance. Epitope-tagged myosin X was localized preferentially at the cell periphery in MCF-7 cells, and CLP colocalized with myosin X in these cells. Myosin X was able to coprecipitate CLP and, to a lesser extent, calmodulin from transfected COS-1 cells, indicating that CLP is a specific light chain of myosin X in vivo. Because unconventional myosins participate in cellular processes ranging from membrane trafficking to signaling and cell motility, myosin X is an attractive CLP target. Altered myosin X regulation in (tumor) cells lacking CLP may have as yet unknown consequences for cell growth and differentiation.  相似文献   

11.
Apo-Calmodulin acts as the light chain for unconventional myosin V, and treatment with Ca(2+) can cause dissociation of calmodulin from the 6IQ region of the myosin heavy chain. The effects of Ca(2+) on the stoichiometry and affinity of interactions of calmodulin and its two domains with two myosin-V peptides (IQ3 and IQ4) have therefore been quantified in vitro, using fluorescence and near- and far-UV CD. The results with separate domains show their differential affinity in interactions with the IQ motif, with the apo-N domain interacting surprisingly weakly. Contrary to expectations, the effect of Ca(2+) on the interactions of either peptide with either isolated domain is to increase affinity, reducing the K(d) at physiological ionic strengths by >200-fold to approximately 75 nM for the N domain, and approximately 10-fold to approximately 15 nM for the C domain. Under suitable conditions, intact (holo- or apo-) calmodulin can bind up to two IQ-target sequences. Interactions of apo- and holo-calmodulin with the double-length, concatenated sequence (IQ34) can result in complex stoichiometries. Strikingly, holo-calmodulin forms a high-affinity 1:1 complex with IQ34 in a novel mode of interaction, as a "bridged" structure wherein two calmodulin domains interact with adjacent IQ motifs. This apparently imposes a steric requirement for the alpha-helical target sequence to be discontinuous, possibly in the central region, and a model structure is illustrated. Such a mode of interaction could account for the Ca(2+)-dependent regulation of myosin V in vitro motility, by changing the structure of the regulatory complex, and paradoxically causing calmodulin dissociation through a change in stoichiometry, rather than a Ca(2+)-dependent reduction in affinity.  相似文献   

12.
Brush border myosin I from chicken intestine is phosphorylated in vitro by chicken intestinal epithelial cell protein kinase C. Phosphorylation on serine and threonine to a maximum of 0.93 mol of P/mol of myosin I occurs within an approximately 20 kDa region at the end of the COOH-terminal tail of the 119-kDa heavy chain. The effects of Ca2+ on myosin I phosphorylation by protein kinase C are complex, with up to 4-fold stimulation occurring at 0.5-3 microM Ca2+, and up to 80% inhibition occurring at 3-320 microM Ca2+. Phosphorylation required that brush border myosin I be in its phosphatidylserine vesicle-bound state. Previously unknown Ca2+ stimulation of brush border myosin I binding to phosphatidylserine vesicles was found to coincide with Ca2+ stimulation of phosphorylation. A myosin I proteolytic fragment lacking approximately 20 kDa of its tail retained Ca(2+)-stimulated binding, but showed reduced Ca(2+)-independent binding. Ca(2+)-dependent phosphatidylserine binding is apparently due to the concomitant phosphatidylserine-promoted, Ca(2+)-induced dissociation of up to three of the four calmodulin light chains from myosin I. Four highly basic putative calmodulin-binding sites in the Ca(2+)-dependent phosphatidylserine binding region of the heavy chain were identified based on the similarity in their sequence to the calmodulin- and phosphatidylserine-binding site of neuromodulin. Calmodulin dissociation is now shown to occur in the low micromolar Ca2+ concentration range and may regulate the association of brush border myosin I with membranes and its phosphorylation by protein kinase C.  相似文献   

13.
Lieto-Trivedi A  Coluccio LM 《Biochemistry》2008,47(38):10218-10226
To investigate the interaction of mammalian class I myosin, Myo1c, with its light chain calmodulin, we expressed (with calmodulin) truncation mutants consisting of the Myo1c motor domain followed by 0-4 presumed calmodulin-binding (IQ) domains (Myo1c (0IQ)-Myo1c (4IQ)). The amount of calmodulin associating with the Myo1c heavy chain increased with increasing number of IQ domains from Myo1c (0IQ) to Myo1c (3IQ). No calmodulin beyond that associated with Myo1c (3IQ) was found with Myo1c (4IQ) despite its availability, showing that Myo1c binds three molecules of calmodulin with no evidence of a fourth IQ domain. Unlike Myo1c (0IQ), the basal ATPase activity of Myo1c (1IQ) was >10-fold higher in Ca (2+) vs EGTA +/- exogenous calmodulin, showing that regulation is by Ca (2+) binding to calmodulin on the first IQ domain. The K m and V max of the actin-activated Mg (2+)-ATPase activity were largely independent of the number of IQ domains present and moderately affected by Ca (2+). In binding assays, some calmodulin pelleted with Myo1c heavy chain when actin was present, but a considerable fraction remained in the supernatant, suggesting that calmodulin is displaced most likely from the second IQ domain. The Myo1c heavy chain associated with actin in a nucleotide-dependent fashion. In ATP a smaller proportion of calmodulin pelleted with the heavy chain, suggesting that Myo1c undergoes nucleotide-dependent conformational changes that affect the affinity of calmodulin for the heavy chain. The studies support a model in which Myo1c in the inner ear is regulated by both Ca (2+) and nucleotide, which exert their effects on motor activity through the light-chain-binding region.  相似文献   

14.
MI(1IQ) is a complex of calmodulin and an epitope-tagged 85-kDa fragment representing the amino-terminal catalytic motor domain and the first of 6 calmodulin-binding IQ domains of the mammalian myosin I gene, rat myr-1 (130-kDa myosin I or MI(130)). We have determined the transient kinetic parameters that dictate the ATP hydrolysis cycle of mammalian myosin I by examining the properties of MI(1IQ). Transient kinetics reveal that the affinity of MI(1IQ) for actin is 12 nm. The ATP-induced dissociation of actin-MI(1IQ) is biphasic. The fast phase is dependent upon [ATP], whereas the slow phase is not; both phases show a Ca(2+) sensitivity. The fast phase is eliminated by the addition of ADP, 10 micrometer being required for half-saturation of the effect in the presence of Ca(2+) and 3 micrometer ADP in the absence of Ca(2+). The slow phase shares the same rate constant as ADP release (8 and 3 s(-)(1) in the presence and absence of Ca(2+), respectively), but cannot be eliminated by decreasing [ADP]. We interpret these results to suggest that actin-myosin I exists in two forms in equilibrium, one of which is unable to bind nucleotide. These results also indicate that the absence of the COOH-terminal 5 calmodulin binding domains of myr-1 do not influence the kinetic properties of MI(130) and that the Ca(2+) sensitivity of the kinetics are in all likelihood due to Ca(2+) binding to the first IQ domain.  相似文献   

15.
Calmodulin, regulatory, and essential myosin light chain are evolutionary conserved proteins that, by binding to IQ motifs of target proteins, regulate essential intracellular processes among which are efficiency of secretory vesicles release at synapsis, intracellular signaling, and regulation of cell division. The yeast Saccharomyces cerevisiae calmodulin Cmd1 and the essential myosin light chain Mlc1p share the ability to interact with the class V myosin Myo2p and Myo4 and the class II myosin Myo1p. These myosins are required for vesicle, organelle, and mRNA transport, spindle orientation, and cytokinesis. We have used the budding yeast model system to study how calmodulin and essential myosin light chain selectively regulate class V myosin function. NMR structural analysis of uncomplexed Mlc1p and interaction studies with the first three IQ motifs of Myo2p show that the structural similarities between Mlc1p and the other members of the EF-hand superfamily of calmodulin-like proteins are mainly restricted to the C-lobe of these proteins. The N-lobe of Mlc1p presents a significantly compact and stable structure that is maintained both in the free and complexed states. The Mlc1p N-lobe interacts with the IQ motif in a manner that is regulated both by the IQ motifs sequence as well as by light chain structural features. These characteristic allows a distinctive interaction of Mlc1p with the first IQ motif of Myo2p when compared with calmodulin. This finding gives us a novel view of how calmodulin and essential light chain, through a differential binding to IQ1 of class V myosin motor, regulate this activity during vegetative growth and cytokinesis.  相似文献   

16.
The neuronal voltage-dependent sodium channel (Na(v)1.2), essential for generation and propagation of action potentials, is regulated by calmodulin (CaM) binding to the IQ motif in its α subunit. A peptide (Na(v)1.2(IQp), KRKQEEVSAIVIQRAYRRYLLKQKVKK) representing the IQ motif had higher affinity for apo CaM than (Ca(2+))(4)-CaM. Association was mediated solely by the C-domain of CaM. A solution structure (2KXW.pdb) of apo (13)C,(15)N-CaM C-domain bound to Na(v)1.2(IQp) was determined with NMR. The region of Na(v)1.2(IQp) bound to CaM was helical; R1902, an Na(v)1.2 residue implicated in familial autism, did not contact CaM. The apo C-domain of CaM in this complex shares features of the same domain bound to myosin V IQ motifs (2IX7) and bound to an SK channel peptide (1G4Y) that does not contain an IQ motif. Thermodynamic and structural studies of CaM-Na(v)1.2(IQp) interactions show that apo and (Ca(2+))(4)-CaM adopt distinct conformations that both permit tight association with Na(v)1.2(IQp) during gating.  相似文献   

17.
Dictyostelium discoideum MyoB is a single-headed class I myosin. Analysis of purified MyoB by SDS-PAGE indicated the presence of an approximately 9-kDa light chain. A tryptic digest of MyoB yielded a partial sequence for the light chain that exactly matched a sequence in a 73-amino acid, 8,296-Da protein (dictyBase number DDB0188713). This protein, termed MlcB, contains two EF-hand motifs and shares approximately 30% sequence identity with the N- and C-terminal lobes of calmodulin. FLAG-MlcB expressed in Dictyostelium co-immunoprecipitated with MyoB but not with the related class myosins and MyoD. Recombinant MlcB bound Ca2+ with a Kd value of 0.2 microm and underwent a Ca2+-induced change in conformation that increased alpha-helical content and surface hydrophobicity. Mutational analysis showed that the first EF-hand was responsible for Ca2+ binding. In the presence and absence of Ca2+ MlcB was a monomer in solution and bound to a MyoB IQ motif peptide with a Kd value of approximately 0.5 microm. A MyoB head-neck construct with a Ser to Glu mutation at the TEDS site bound MlcB and displayed an actin-activated Mg2+ ATPase activity that was insensitive to Ca2+. We conclude that MlcB represents a novel type of small myosin light chain that binds to IQ motifs in a manner comparable with a single lobe of a typical four-EF-hand protein.  相似文献   

18.
The long neck of unconventional myosin V is composed of six tandem "IQ motifs," which are fully occupied by calmodulin (CaM) in the absence of calcium. Calcium regulates the activity, the folded-to-extended conformational transition, and the processive run length of myosin V, and thus, it is important to understand how calcium affects CaM binding to the IQ motifs. Here we used electron cryomicroscopy together with computer-based docking of crystal structures into three-dimensional reconstructions of actin decorated with a motor domain-two IQ complex to provide an atomic model of myosin V in the presence of calcium. Calcium causes a major rearrangement of the bound CaMs, dissociation of CaM bound to IQ motif 2, and propagated changes in the motor domain. Tryptophan fluorescence spectroscopy showed that calcium-CaM binds to IQ motifs 1, 3, and 5 in a different conformation than apoCaM. Proteolytic cleavage was consistent with CaM preferentially dissociating from the second IQ motif. The enzymatic and mechanical functions of myosin V can, therefore, be modulated both by calcium-dependent conformational changes of bound CaM as well as by CaM dissociation.  相似文献   

19.
Chara myosin in green algae, Chara corallina, is the fastest myosin of all those observed so far. To shed light on the molecular mechanism of this fast sliding, we determined the primary structure of Chara myosin heavy chain (hc). It has a motor domain, six IQ motifs for calmodulin binding, a coiled-coil structure to dimerize, and a globular tail. Chara myosin hc is very similar to some plant myosins and has been predicted to belong to the class XI. Short loop 1 and loop 2 may account for the characteristics of mechanochemical properties of Chara myosin.  相似文献   

20.
Crawley SW  Liburd J  Shaw K  Jung Y  Smith SP  Côté GP 《Biochemistry》2011,50(30):6579-6588
Dictyostelium discoideum express seven single-headed myosin-I isozymes (MyoA-MyoE and MyoK) that drive motile processes at the cell membrane. The light chains for MyoA and MyoE were identified by expressing Flag-tagged constructs consisting of the motor domain and the two IQ motifs in the neck region in Dictyostelium. The MyoA and MyoE constructs both copurified with calmodulin. Isothermal titration calorimetry (ITC) showed that apo-calmodulin bound to peptides corresponding to the MyoA and MyoE IQ motifs with micromolar affinity. In the presence of calcium, calmodulin cross-linked two IQ motif peptides, with one domain binding with nanomolar affinity and the other with micromolar affinity. The IQ motifs were required for the actin-activated MgATPase activity of MyoA but not MyoE; however, neither myosin exhibited calcium-dependent activity. A Flag-tagged construct consisting of the MyoC motor domain and the three IQ motifs in the adjacent neck region bound a novel 8.6 kDa two EF-hand protein named MlcC, for myosin light chain for MyoC. MlcC is most similar to the C-terminal domain of calmodulin but does not bind calcium. ITC studies showed that MlcC binds IQ1 and IQ2 but not IQ3 of MyoC. IQ3 contains a proline residue that may render it nonfunctional. Each long-tailed Dictyostelium myosin-I has now been shown to have a unique light chain (MyoB-MlcB, MyoC-MlcC, and MyoD-MlcD), whereas the short-tailed myosins-I, MyoA and MyoE, have the multifunctional calmodulin as a light chain. The diversity in light chain composition is likely to contribute to the distinct cellular functions of each myosin-I isozyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号