首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel LFA-1 activation epitope maps to the I domain   总被引:10,自引:1,他引:9       下载免费PDF全文
《The Journal of cell biology》1993,120(6):1519-1527
A panel of 21 alpha-subunit (CD11a) and 10 beta-subunit (CD18) anti-LFA- 1 mAbs was screened for ability to activate LFA-1. A single anti-CD11a mAb, MEM-83, was identified which was able to directly induce the binding of T cells to purified ICAM-1 immobilized on plastic. This ICAM- 1 binding could be achieved by monovalent Fab fragments of mAb MEM-83 at concentrations equivalent to whole antibody, was associated with appearance of the "activation reporter" epitope detected by mAb 24, and was completely inhibited by anti-ICAM-1 and LFA-1 blocking mAbs. The epitope recognized by mAb MEM-83 was distinct from that recognized by mAb NKI-L16, an anti-CD11a mAb previously reported to induce LFA-1 activation, in that it was constitutively present on freshly isolated peripheral blood mononuclear cells and was not divalent cation dependent for expression. The ICAM-1 binding activity induced by mAb MEM-83 was, however, dependent on the presence of Mg2+ divalent cations. Using an in vitro-translated CD11a cDNA deletion series, we have mapped the MEM-83 activation epitope to the "I" domain of the LFA- 1 alpha subunit. These studies have therefore identified a novel LFA-1 activation epitope mapping to the I domain of LFA-1, thereby implicating this domain in the regulation of LFA-1 binding to ICAM-1.  相似文献   

2.
《The Journal of cell biology》1993,123(4):1007-1016
The interaction of lymphocyte function-associated antigen-1 (LFA-1) with its ligands mediates multiple cell adhesion processes of capital importance during immune responses. We have obtained three anti-ICAM-3 mAbs which recognize two different epitopes (A and B) on the intercellular adhesion molecule-3 (ICAM-3) as demonstrated by sequential immunoprecipitation and cross-competitive mAb-binding experiments. Immunoaffinity purified ICAM-3-coated surfaces were able to support T lymphoblast attachment upon cell stimulation with both phorbol esters and cross-linked CD3, as well as by mAb engagement of the LFA-1 molecule with the activating anti-LFA-1 NKI-L16 mAb. T cell adhesion to purified ICAM-3 was completely inhibited by cell pretreatment with mAbs to the LFA-1 alpha (CD11a) or the LFA-beta (CD18) integrin chains. Anti-ICAM-3 mAbs specific for epitope A, but not those specific for epitope B, were able to trigger T lymphoblast homotypic aggregation. ICAM-3-mediated cell aggregation was dependent on the LFA-1/ICAM-1 pathway as demonstrated by blocking experiments with mAbs specific for the LFA-1 and ICAM-1 molecules. Furthermore, immunofluorescence studies on ICAM-3-induced cell aggregates revealed that both LFA-1 and ICAM-1 were mainly located at intercellular boundaries. ICAM-3 was located at cellular uropods, which in small aggregates appeared to be implicated in cell-cell contacts, whereas in large aggregates it appeared to be excluded from cell-cell contact areas. Experiments of T cell adhesion to a chimeric ICAM-1-Fc molecule revealed that the proaggregatory anti-ICAM-3 HP2/19 mAb was able to increase T lymphoblast attachment to ICAM-1, suggesting that T cell aggregation induced by this mAb could be mediated by increasing the avidity of LFA-1 for ICAM-1. Moreover, the HP2/19 mAb was costimulatory with anti-CD3 mAb for T lymphocyte proliferation, indicating that enhancement of T cell activation could be involved in ICAM-3-mediated adhesive phenomena. Altogether, our results indicate that ICAM-3 has a regulatory role on the LFA-1/ICAM-1 pathway of intercellular adhesion.  相似文献   

3.
Activation of human-purified T cells can be mediated by pairwise combinations of monoclonal antibodies directed against T11.1 and T11.2 epitopes on the CD2 molecule. Monoclonal antibodies (mAbs) reactive with either the alpha and beta chains of the lymphocyte-function-associated antigen-1 (LFA-1) molecule or one of its ligands, intercellular adhesion molecule-1 (ICAM-1), were found to accelerate anti-CD2-induced proliferation. This effect was seen on thymocytes and resting or preactivated T cells (phytohemagglutinin blasts and alloproliferative T cell clones) and could be observed, following the introduction of anti-LFA-1 or -ICAM-1 mAbs, up to 50 hr after the CD2 stimulatory signal. This effect was equally abrogated by 55 kDa anti-interleukin-2 (IL-2) receptor mAb, but neither the expression of IL-2 receptor nor the production of IL-2 was modified. The effects of anti-LFA-1 or anti-ICAM-1 on T cell activation through the CD2 pathway were therefore opposite to those observed in the CD3 pathway, where both mAbs strongly delayed T cell proliferation.  相似文献   

4.
Engagement of the surface Ig receptor with anti-IgM antibodies stimulates murine B lymphocytes to markedly increase their expression of the cell adhesion molecules ICAM-1 and LFA-1. Stimulated B cells display increased homotypic adhesiveness and form spontaneous heterotypic conjugates with T lymphocytes. This latter T-B cell interaction is further enhanced if T cells have been previously activated with phorbol esters. In all cases, the formation of cell-cell conjugates is dependent on LFA-1-ICAM-1-mediated interactions as assessed in mAb blocking experiments. B lymphocytes stimulated with anti-IgM display a marked increase in binding to ICAM-1-transfected L cells. This cell-cell interaction is inhibited by anti-LFA-1 mAb binding to the B lymphocyte. Together, these results demonstrate that there is an induction of both ICAM-1 and LFA-1 on stimulated B cells and a corresponding increase in the adhesiveness of these cells. These findings suggest that Ag binding to the surface Ig receptor could prepare a B lymphocyte for subsequent interaction with a T lymphocyte. This provides insight into how efficient T-B collaboration may occur between very infrequent Ag-specific lymphocytes.  相似文献   

5.
《The Journal of cell biology》1994,126(5):1277-1286
Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase plays a relevant role in the regulation of both intracellular signaling and cell adhesion induced through ICAM-3 and beta 2 integrins.  相似文献   

6.
A subset of integrin alpha subunits contain an I domain, which is important for ligand binding. We have deleted the I domain from the beta2 integrin lymphocyte function-asssociated antigen-1 (LFA-1) and expressed the resulting non-I domain-containing integrin (DeltaI-LFA-1) in an LFA-1-deficient T cell line. DeltaI-LFA-1 showed no recognition of LFA-1 ligands, confirming the essential role of the I domain in ligand binding. Except for I domain monoclonal antibodies (mAbs), DeltaI-LFA-1 was recognized by a panel of anti-LFA-1 mAbs similarly to wild-type LFA-1. However, DeltaI-LFA-1 had enhanced expression of seven mAb epitopes that are associated with beta2 integrin activation, suggesting that it exhibited an "active" conformation. In keeping with this characteristic, DeltaI-LFA-1 induced constitutive activation of alpha4beta1 and alpha5beta1, suggesting intracellular signaling to these integrins. This "cross-talk" was not due to an effect on beta1 integrin affinity. However, the enhanced activity was susceptible to inhibition by cytochalasin D, indicating a role for the cytoskeleton, and also correlated with clustering of beta1 integrins. Thus, removal of the I domain from LFA-1 created an integrin with the hallmarks of a constitutively active receptor mediating signals into the cell. These findings suggest a key role for the I domain in controlling integrin activity.  相似文献   

7.
在ConA和固相抗CD_3单抗刺激系统中,应用抗LFA-1/ICAM-1单抗,研究其在胸腺细胞活化中的功能作用,结果证明,培养初期加入可溶性抗LFA-1可完全阻断ConA活化胸腺细胞增殖,对固相抗CD3单抗诱导的胸腺细胞活化也表现出相同的抑制效应,但对ConA刺激24h后的胸腺细胞应答以及IL-1 IL-2诱导的胸腺细胞增殖无影响。在可溶性抗LFA-1单抗的存在下,ConA诱导胸腺细胞合成IL-2和IL-6的能力显著下降,IL-2R的表达降低。此外,当用固相抗LFA-1和固相抗CD3或用二抗交联LFA-1和CD3刺激胸腺细胞时,抗LFA-1则具有明显地促增殖应答效应,单纯固相抗LFA-1刺激或交联LFA-1均无诱导活化作用,研究结果表明,LFA-1是未成熟胸腺细胞活化的重要辅助分子之一,它可参与TCR/CD3途径介导的早期活化信号的传导,并为胸腺细胞表达IL-2R 和产生IL-2可能提供复合刺激信号。  相似文献   

8.
The VLA-4 (CD49d/CD29) integrin is the only member of the VLA family expressed by resting lymphoid cells that has been involved in cell-cell adhesive interactions. We here describe the triggering of homotypic cell aggregation of peripheral blood T lymphocytes and myelomonocytic cells by mAbs specific for certain epitopes of the human VLA alpha 4 subunit. This anti-VLA-4-induced cell adhesion is isotype and Fc independent. Similar to phorbol ester-induced homotypic adhesion, cell aggregation triggered through VLA-4 requires the presence of divalent cations, integrity of cytoskeleton and active metabolism. However, both adhesion phenomena differed at their kinetics and temperature requirements. Moreover, cell adhesion triggered through VLA-4 cannot be inhibited by cell preincubation with anti-LFA-1 alpha (CD11a), LFA-1 beta (CD18), or ICAM-1 (CD54) mAb as opposed to that mediated by phorbol esters, indicating that it is a LFA-1/ICAM-1 independent process. Antibodies specific for CD2 or LFA-3 (CD58) did not affect the VLA-4-mediated cell adhesion. The ability to inhibit this aggregation by other anti-VLA-4-specific antibodies recognizing epitopes on either the VLA alpha 4 (CD49d) or beta (CD29) chains suggests that VLA-4 is directly involved in the adhesion process. Furthermore, the simultaneous binding of a pair of aggregation-inducing mAbs specific for distinct antigenic sites on the alpha 4 chain resulted in the abrogation of cell aggregation. These results indicate that VLA-4-mediated aggregation may constitute a novel leukocyte adhesion pathway.  相似文献   

9.
We report a methodology for selecting APC with mutations that have impaired their ability to present Ag to T cells. A20 B lymphoblastoid cells were mutagenized and then repeatedly cocultured with murine T-T hybridomas in the presence of specific Ag. During these cocultures, the T-T hybridomas kill the competent APC, allowing the outgrowth of inactive variants. Two variants, A20.M1 and A20.M2, were isolated and studied in detail. These variants are impaired in their ability to present multiple Ag to T cells. This defect is also observed for the presentation of processing independent peptides by fixed APC indicating that a lesion exists in a post-Ag processing step. The level of expression of MHC molecules is unaffected and the functional defect in the APC is not localized to a particular MHC molecule. In contrast, these mutants were found to have a selective decrease in the expression of the murine homolog of ICAM-1, and the residual ability of these cells to present Ag was not blocked by anti-ICAM-1 mAb. Conversely, Ag presentation by the wild-type A20 is inhibited by anti-ICAM-1 mAb. Similarly, anti-LFA-1 mAb inhibited the response of T cells to Ag presented by the wild-type A20 to a much greater degree than by the mutant cells, indicating that LFA-1 is involved in interaction of T cells with the former, but not latter, APC. In the apparent absence of a contribution of LFA-1 to the T cell-APC interaction, either as a result of mAb blocking or the disruption of the APC membrane, the mutant and wild-type APC have a similar level of Ag-presenting activity. Reconstitution of ICAM-1 expression in these mutants by transfection with murine ICAM-1 cDNA fully restores their ability to present Ag. Together these results demonstrate that a murine ICAM-1 homolog is expressed on A20 B cells, where it functions as a major cell interaction molecule. The degree of functional impairment in these mutant APC gives insight into the contribution of cell interaction molecules to efficient Ag presentation and T cell-B cell interaction. Finally, these results also demonstrate the feasibility of selecting APC with mutations affecting Ag presentation.  相似文献   

10.
The comparative roles of the endothelial cell (EC) adhesion receptors VCAM-1 and ICAM-1 during the adhesion and transendothelial migration of T cells were examined. The adhesion of T cells to IL-1-activated EC was markedly, but not completely, inhibited by mAb to VCAM-1 as well as to its counter-receptor, VLA-4, whereas, T cell binding to IL-1-activated EC was not blocked by mAb to ICAM-1 or to its counter-receptor, LFA-1. In contrast, LFA-1/ICAM-1, but not VLA-4/VCAM-1, mediated much, but not all, of the binding of T cells to unstimulated EC. Activation of T cells with phorbol dibutyrate and ionomycin alter the receptor-counter-receptor pairs used for binding to EC. Regardless of the activation status of the EC, the binding of activated T cells was not blocked by mAb to VLA-4 or VCAM-1. Moreover, the binding of activated T cells to EC was blocked to a lesser degree by mAb to LFA-1 than that of resting T cells, and mAb to ICAM-1 blocked binding only modestly. The role of VCAM-1 and ICAM-1 during the transendothelial migration of T cells was also examined. Regardless of the activation status of the T cells or the EC, VCAM-1 was never found to function during transendothelial migration, even when it mediated the binding of resting T cells to IL-1-activated EC. In contrast, ICAM-1 played an important role in transendothelial migration under all of the conditions examined, including situations when T cell-EC binding was not mediated by ICAM-1. Immunoelectron microscopic analysis of transendothelial migration supported the conclusion that ICAM-1 but not VCAM-1 played a central role in this process. Thus, ICAM-1 was prominently and uniformly expressed at all EC membrane sites that were in contact with bound and migrating T cells, whereas VCAM-1 was localized to the luminal surface of IL-1-activated EC, but was often absent from the surface of the EC in contact with T cells undergoing transendothelial migration. These studies confirm that ICAM-1 and VCAM-1 play reciprocal roles in the binding of resting T cells to resting and IL-1-activated EC, respectively, but a less prominent role in the binding of activated T cells. Moreover, ICAM-1 but not VCAM-1 plays a role in transendothelial migration, regardless of the receptor-counter-receptor pairs used for initial binding.  相似文献   

11.
Large granular lymphocytes, mediators of NK activity, bind to other cells using both the LFA (lymphocyte function-associated)-1-ICAM and the CD2-LFA-3 adhesion pathways. Here we have studied the motility and ultrastructure of large granule lymphocyte (LGL) on lipid bilayers containing purified LFA-1, ICAM-1, and the transmembrane and glycophosphatidylinositol isoforms of LFA-3. LGLs moved at 8 microns/min on ICAM-1 but poorly (less than 1 microns/min) on its receptor pair LFA-1. TM-LFA-3 promoted locomotion at a rate close to ICAM-1, whereas the cells were less motile on GPI-LFA-3. The difference in the rates of locomotion on the two isoforms of LFA-3 is presumably attributable to their difference in anchoring and lateral mobility in the bilayer. In spite of the variation in motility the ultrastructure of the adhering cells was similar on all four ligands. LGLs contacted the membrane variably, i.e., cells adhering only in a few small areas or in larger areas were detected on each ligand. The relative percentage of the plasma membrane facing the lipid bilayer was greatest on ICAM-1 and least on the transmembrane isoform of LFA-3, demonstrating no correlation with motility. The ratio of adjacent plasma membrane to lipid bilayer was virtually constant for all four ligands. Activation of the LGLs with a combination of CD2 mAb T11(2) and T11(3) (T11(2/3) mAb) reduced the movement on ICAM-1 and virtually immobilized the cells on the other bilayers. In the presence of T11(2/3) mAb, the area of cell membrane attaching to bilayers containing ICAM-1 and GPI-LFA-3 was decreased and the percentage of plasma membrane facing other cells was increased. No preferential orientation of the Golgi apparatus or degranulation was detected in the absence or presence of T11(2/3) mAb, but a significantly lower percentage of LGLs on ICAM-1 contained a profile of the Golgi apparatus after exposure to T11(2/3) mAb. The results demonstrate that the motility of LGLs depends on the type of receptor in the opposing bilayer, the receptor mobility in the bilayer, and the activation of the cells. The ultrastructure of LGLs binding to any of the adhesion molecules does not have the characteristics of LGLs in cytolytic contact with target cells, suggesting that the mediation of an attack on a target requires more complex stimulus than any one of the single adhesion proteins tested here.  相似文献   

12.
Leukocyte activation is a complex process that involves multiple cross- regulated cell adhesion events. In this report, we investigated the role of intercellular adhesion molecule-3 (ICAM-3), the third identified ligand for the beta 2 integrin leukocyte function-associated antigen-1 (LFA-1), in the regulation of leukocyte adhesion to ICAM-1, vascular cell adhesion molecule-1 (VCAM-1), and the 38- and 80-kD fragments of fibronectin (FN40 and FN80). The activating anti-ICAM-3 HP2/19, but not other anti-ICAM-3 mAb, was able to enhance T lymphoblast adhesion to these proteins when combined with very low doses of anti-CD3 mAb, which were unable by themselves to induce this phenomenon. In contrast, anti-ICAM-1 mAb did not enhance T cell attachment to these substrata. T cell adhesion to ICAM-1, VCAM-1, FN40, and FN80 was specifically blocked by anti-LFA-1, anti-VLA alpha 4, and anti-VLA alpha 5 mAb, respectively. The activating anti-ICAM-3 HP2/19 was also able to specifically enhance the VLA-4- and VLA-5-mediated binding of leukemic T Jurkat cells to VCAM-1, FN40, and FN80, even in the absence of cooccupancy of the CD3-TcR complex. We also studied the localization of ICAM-3, LFA-1, and the VLA beta 1 integrin, by immunofluorescence microscopy, on cells interacting with ICAM-1, VCAM-1 and FN80. We found that the anti-ICAM-3 HP2/19 mAb specifically promoted a dramatic change on the morphology of T lymphoblasts when these cells were allowed to interact with those adhesion ligands. Under these conditions, it was observed that a large cell contact area from which an uropod-like structure (heading uropod) was projected toward the outer milieu. However, when T blasts were stimulated with other adhesion promoting agents as the activating anti-VLA beta 1 TS2/16 mAb or phorbol esters, this structure was not detected. The anti-ICAM-3 TP1/24 mAb was also unable to induce this phenomenon. Notably, a striking cell redistribution of ICAM-3 was induced specifically by the HP2/19 mAb, but not by the other anti-ICAM-3 mAb or the other adhesion promoting agents. Thus, ICAM-3 was almost exclusively concentrated in the most distal portion of the heading uropod whereas either LFA-1 or the VLA beta 1 integrin were uniformly distributed all over the large contact area. Moreover, this phenomenon was also observed when T cells were specifically stimulated with the HP2/19 mAb to interact with TNF alpha-activated endothelial cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
14.
We determined the expression of intercellular adhesion molecules (ICAM) on neuro-2a cells in order to evaluate whether they were involved in cytolysis of murine neuroblastoma. Fluorescence-activated cell sorting analysis revealed that the control neomycin-resistance-genetransduced line (neuro-2a/LN) had poor expression of ICAM-1 (mean channel fluorescence, MCF=3.7). An ICAM-1-positive transfectant of neuro-2a (neuro-2a/ICAM-1+) (CMF=64.3) was generated to evaluate directly the role of this adhesion molecule in cytolysis. Neuro-2a/ICAM-1+ was more sensitive to LAK killing (69.7% at an effector-to-target ratio of 1001) compared to neuro-2a/LN (48.6%) (P<0.001). Blocking of neuro-2a/LN and neuro-2a/ICAM-1+ lysis with anti-ICAM-1 monoclonal antibodies (mAbs) did not account for all the LFA-1-dependent killing. These data indicate that even in neuro-2a/ICAM-1+ cells, other LFA-1 ligands participated in the effector-target interaction. Therefore, we examined these cell lines for ICAM-2 expression. Both neuro-2a/LN and neuro-2a/ICAM-1+ lines expressed ICAM-2 (MCF=16.4 and 16.5). ICAM-2 accounted for the majority of the LFA-1-dependent killing in the ICAM-1-negative target, neuro-2a/LN, while ICAM-1 played a primary role in the cytolysis of the ICAM-1+ transfectant. Inhibition of lysis in the presence of anti-ICAM-1 and ICAM-2 mAbs was comparable to that seen with the addition of anti-LFA-1 mAb, indicating that other LFA-1 ligands were not involved in this system. ICAM-1 expression was associated with decreased in vivo tumorigenicity; mice inoculated with neuro-2a/ICAM-1+ cells had a significantly longer survival compared to those receiving neuro-2a/LN cells (median survival time 35.5 versus 24.5 days) (P<0.001). It is important to note that ICAM-1 transfection of murine neuroblastoma did not alter its metastatic potential. We conclude that transfection of mouse neuroblastome with ICAM-1 increases its sensitivity to in vitro lysis and reduces its in vivo tumorgenicity. In ICAM-1-negative murine neuroblastoma cells, ICAM-2 plays a primary role in cell-mediated lysis.This work was supported in part by the Children's Cancer Research Fund, the Minnesota Medical Foundation, the Viking Children's Fund and NIH grants PO1-CA-21737, NO1-AI-85002. E. K. is a recipient of the Irvine McQuarrie Research Scholar Award and B. R. B. a recipient of the Edward Mallinkrodt Foundation Scholar Award  相似文献   

15.
ICAMs are ligands for LFA-1, a major integrin of mononuclear cells involved in the immune and inflammatory processes. We previously showed that endothelial cell specific molecule-1 (ESM-1) is a proteoglycan secreted by endothelial cells under the control of inflammatory cytokines. Here, we demonstrate that ESM-1 binds directly to LFA-1 onto the cell surface of human blood lymphocytes, monocytes, and Jurkat cells. The binding of ESM-1 was equally dependent on Ca(2+), Mg(2+), or Mn(2+) divalent ions, which are specific, saturable, and sensitive to temperature. An anti-CD11a mAb or PMA induced a transient increase in binding, peaking 5 min after activation. Direct binding of ESM-1 to LFA-1 integrin was demonstrated by specific coimmunoprecipitation by CD11a and CD18 mAbs. A cell-free system using a Biacore biosensor confirmed that ESM-1 and LFA-1 dynamically interacted in real time with high affinity (K(d) = 18.7 nM). ESM-1 consistently inhibited the specific binding of soluble ICAM-1 to Jurkat cells in a dose-dependent manner. These results suggest that ESM-1 and ICAM-1 interact with LFA-1 on binding sites very close to but distinct from the I domain of CD11a. Through this mechanism, ESM-1 could be implicated in the regulation of the LFA-1/ICAM-1 pathway and may therefore influence both the recruitment of circulating lymphocytes to inflammatory sites and LFA-1-dependent leukocyte adhesion and activation.  相似文献   

16.
Exposure of human KC to IFN-gamma increases their susceptibility to lysis by CTL. The mechanism of this enhanced lysis was investigated by analyzing interactions of IFN-gamma-treated and nontreated cultured KC with allogeneic class I-specific CTL clones. rIFN-gamma treatment augmented KC lysis in a time- and dose-dependent manner. Increased lysis of IFN-KC was detected after only 2 h of IFN-gamma treatment and was maximal by 12 h. Enhanced lysis of IFN-KC was Ag-specific, inasmuch as nonantigenic IFN-KC were not lysed either directly or as bystanders during the lysis of antigenic KC. Parallel immunofluorescence and cytotoxicity assays of KC treated with IFN-gamma for various intervals revealed a direct correlation between the degree of increased KC lysis and levels of cell surface ICAM-1 (CD54), but not of specific alloantigen or beta 2-microglobulin. Lysis of nontreated KC was blocked by mAb against class I or CD3, but not by mAb against ICAM-1 or LFA-1. In contrast, lysis of IFN-KC was partially inhibited by anti-ICAM-1 or anti-LFA-1 mAb, but resisted inhibition by anti-class I mAb except in the presence of anti-ICAM-1. These results indicate that both ICAM-1/LFA-1 and Ag/CD3-TcR interactions are important for Ag-specific lysis of IFN-KC, whereas lysis of nontreated KC depends on Ag/CD3-TcR but not ICAM-1/LFA-1 interactions. Equivalent inhibition of IFN-KC lysis by mAb against ICAM-1 or LFA-1 suggests that ICAM-1 is the only LFA-1 ligand involved in enhanced IFN-KC lysis. Furthermore, enhanced CTL lysis of KC after short-term IFN-gamma treatment can be explained solely on the basis of ICAM-1 induction, because all of the increase in specific lysis associated with IFN-gamma treatment could be blocked by mAb that block ICAM-1/LFA-1 interactions.  相似文献   

17.
The integrin surface molecule termed lymphocyte functional antigen-1 (LFA-1), and its physiological ligand intercellular adhesion molecule-1 (ICAM-1), have been proven to play a relevant role in several immune reactions where cell-to-cell contact is required: these reactions include allogeneic mixed lymphocyte reaction (MLR) and direct cytotoxicity. In the present study, we show that monoclonal antibodies (mAbs) directed to LFA-1 as well as to ICAM-1 molecules are able to inhibit T cell proliferation in autologous MLR (AMLR). Such an in vitro reaction is generally considered a functional model of Ia-mediated immunocompetent cell cooperation, and is impaired in several pathological conditions. It is noteworthy that the LFA-1 molecule is largely represented on the T cell surface, whereas ICAM-1 is poorly expressed on resting T cells: autologous stimulation slightly increases ICAM-1 expression. Pretreatment studies indicate that the inhibitory effect of anti-ICAM-1 mAb on T cell proliferation in AMLR is exerted on responder T cells.  相似文献   

18.
S D Marlin  T A Springer 《Cell》1987,51(5):813-819
Lymphocyte function-associated antigen 1 (LFA-1) is a leukocyte cell surface glycoprotein that promotes intercellular adhesion in immunological and inflammatory reactions. It is an alpha beta complex that is structurally related to receptors for extracellular matrix components, and thus belongs to the integrin family. ICAM-1 (intercellular adhesion molecule-1) is a distinct cell surface glycoprotein. Its broad distribution, regulated expression in inflammation, and involvement in LFA-1-dependent cell-cell adhesion have suggested that ICAM-1 may be a ligand for LFA-1. We have purified ICAM-1 and incorporated it into artificial supported lipid membranes. LFA-1+ but not LFA-1- cells bound to ICAM-1 in the artificial membranes, and the binding could be specifically inhibited by anti-ICAM-1 treatment of the membranes or by anti-LFA-1 treatment of the cells. The cell binding to ICAM-1 required metabolic energy production, an intact cytoskeleton, and the presence of Mg2+ and was temperature dependent, characteristics of LFA-1- and ICAM-1-dependent cell-cell adhesion.  相似文献   

19.
We have shown that human thymic epithelial (TE) cells produce IL-1 alpha, IL-1 beta, and TE cells bind to thymocytes by CD2 and LFA-1 molecules on thymocytes and LFA-3, ICAM-1 on TE cells. We investigated whether ligand binding to LFA-3 on human TE cells can modulate TE cell IL-1 production. First, we investigated the ability of human thymocytes to regulate IL-1 release by TE cells. Both autologous and allogenic emetine-treated thymocytes when cultured with TE cells augmented IL-1 release by TE cells. The augmentation of IL-1 release was cell density dependent. Inasmuch as the interaction between thymocytes and TE cells is mediated in part by CD2 molecules on thymocytes and LFA-3 molecules on TE cells we next determined the effect on IL-1 release of ligand binding (anti-LFA-3 mAb TS2/9) to TE cell surface LFA-3. Purified anti-LFA-3 mAb augmented IL-1 release in a concentration-dependent fashion. The anti-LFA-3-mediated augmentation of IL-1 release required both new protein and RNA synthesis as shown by the ability of cycloheximide and actinomycin-D to inhibit augmentation of IL-1 production by TE cells, and by direct quantitation of IL-1 alpha and IL-1 beta mRNA by Northern blot analysis. Both F(ab)'2 and Fab' fragments of anti-LFA-3 mAb augmented IL-1 alpha and IL-1 beta mRNA production, indicating that monovalent binding to cell surface LFA-3 was sufficient to provide the inducing signal. The identification of LFA-3, the cell surface ligand for thymocyte CD2 molecules, as a molecule via which TE cell-derived cytokine production may be regulated suggests a mechanism at the cell surface by which direct TE cell-thymocyte interaction might result in the triggering of local IL-1 release within the human thymic microenvironment.  相似文献   

20.
The integrin LFA-1 interacts with a variety of ligands termed ICAMs. ICAM-1 and ICAM-2 are both expressed on endothelium and serve as counterreceptors during lymphocyte trafficking. In this study, we analyzed their relative contribution to lymphocyte recirculation through lymph nodes and to recruitment into lung and inflamed skin by blocking mAbs against ICAM-1 and ICAM-2 and mice deficient for ICAM-1. The entry of lymphocytes into peripheral and mesenteric lymph nodes was found to be unaffected by the functional deletion of either ICAM-1 or ICAM-2. However, when both pathways were blocked, recirculation through lymph nodes was strongly reduced. Trapping of lymphocytes in the lung after i.v. injection is partly mediated by LFA-1/ICAM interactions; the data presented in this study show an exclusive role of ICAM-1 in LFA-1-dependent lung trapping. Similarly, ICAM-1, but not ICAM-2, was required for the migration of T effector cells into the inflamed skin. These results indicate that ICAM-1 and ICAM-2 have redundant functions in lymphocyte recirculation through lymph nodes, but ICAM-1 is unique in supporting migration into inflamed sites and trapping within the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号