共查询到20条相似文献,搜索用时 15 毫秒
1.
The contribution of the parietal cortex to episodic memory is a fascinating scientific puzzle. On the one hand, parietal lesions do not normally yield severe episodic-memory deficits; on the other hand, parietal activations are seen frequently in functional-neuroimaging studies of episodic memory. A review of these two categories of evidence suggests that the answer to the puzzle requires us to distinguish between the contributions of dorsal and ventral parietal regions and between the influence of top-down and bottom-up attention on memory. 相似文献
2.
The neural basis of selective spatial attention presents a significant challenge to cognitive neuroscience. Recent neuroimaging studies have suggested that regions of the parietal and temporal cortex constitute a "supramodal" network that mediates goal-directed attention in multiple sensory modalities. Here we used transcranial magnetic stimulation (TMS) to determine which cortical subregions control strategic attention in vision and touch. Healthy observers undertook an orienting task in which a central arrow cue predicted the location of a subsequent visual or somatosensory target. To determine the attentional role of cortical subregions at different stages of processing, TMS was delivered to the right hemisphere during cue or target events. Results indicated a critical role of the inferior parietal cortex in strategic orienting to visual events, but not to somatosensory events. These findings are inconsistent with the existence of a supramodal attentional network and instead provide direct evidence for modality-specific attentional processing in parietal cortex. 相似文献
3.
BACKGROUND: Recent neuroimaging studies have found that several areas of the human brain, including parietal regions, can respond multimodally. But given single-cell evidence that responses in primate parietal cortex can be motor-related, some of the human multimodal activations might reflect convergent activation of potentially motor-related areas, rather than multimodal representations of space independent of motor factors. Here we crossed sensory stimulation of different modalities (vision or touch, in left or right hemifield) with spatially directed responses to such stimulation by different effector-systems (saccadic or manual). RESULTS: The fMRI results revealed representations of contralateral space in both the posterior part of the superior parietal gyrus and the anterior intraparietal sulcus that activated independently of both sensory modality and motor response. Multimodal saccade-related or manual-related activations were found, by contrast, in different regions of parietal cortex. CONCLUSIONS: Whereas some parietal regions have specific motor functions, others are engaged during the execution of movements to the contralateral hemifield irrespective of both input modality and the type of motor effector. 相似文献
4.
The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control groups, tasks and statistical comparisons. The present study includes these different aspects in a single data set. In our study we included both normal controls and feigners to control for conversion paresis. We studied both movement execution and imagery, and we contrasted both within-group and between-group activation. Moreover, to reveal hemisphere-specific effects that have not been reported before, we performed these analyses using both flipped and unflipped data. This approach resulted in the identification of abnormal parietal activation which was specific for conversion paresis patients. Patients also showed reduced activity in the prefrontal cortex, supramarginal gyrus and precuneus, including hemisphere-specific activation that is lateralized in the same hemisphere, regardless of right- or left-sided paresis. We propose that these regions are candidates for an interface between psychological mechanisms and disturbed higher-order motor control. Our study presents an integrative neurophysiological view of the mechanisms that contribute to the etiology of this puzzling psychological disorder, which can be further investigated with other types of conversion symptoms. 相似文献
5.
Experiments using functional neuroimaging and transcranial magnetic stimulation in humans have revealed regions of the parietal lobes that are specialized for particular visuomotor actions, such as reaching, grasping and eye movements. In addition, the human parietal cortex is recruited by processing and perception of action-related information, even when no overt action occurs. Such information can include object shape and orientation, knowledge about how tools are employed and the understanding of actions made by other individuals. We review the known subregions of the human posterior parietal cortex and the principles behind their organization. 相似文献
6.
Spatial updating in human parietal cortex 总被引:13,自引:0,他引:13
Single neurons in monkey parietal cortex update visual information in conjunction with eye movements. This remapping of stimulus representations is thought to contribute to spatial constancy. We hypothesized that a similar process occurs in human parietal cortex and that we could visualize it with functional MRI. We scanned subjects during a task that involved remapping of visual signals across hemifields. We observed an initial response in the hemisphere contralateral to the visual stimulus, followed by a remapped response in the hemisphere ipsilateral to the stimulus. We ruled out the possibility that this remapped response resulted from either eye movements or visual stimuli alone. Our results demonstrate that updating of visual information occurs in human parietal cortex. 相似文献
7.
M M Mesulam 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1999,354(1387):1325-1346
The syndrome of contralesional neglect reflects a lateralized disruption of spatial attention. In the human, the left hemisphere shifts attention predominantly in the contralateral hemispace and in a contraversive direction whereas the right hemisphere distributes attention more evenly, in both hemispaces and both directions. As a consequence of this asymmetry, severe contralesional neglect occurs almost exclusively after right hemisphere lesions. Patients with left neglect experience a loss of salience in the mental representation and conscious perception of the left side and display a reluctance to direct orientating and exploratory behaviours to the left. Neglect is distributed according to egocentric, allocentric, world-centred, and object-centred frames of reference. Neglected events can continue to exert an implicit influence on behaviour, indicating that the attentional filtering occurs at the level of an internalized representation rather than at the level of peripheral sensory input. The unilateral neglect syndrome is caused by a dysfunction of a large-scale neurocognitive network, the cortical epicentres of which are located in posterior parietal cortex, the frontal eye fields, and the cingulate gyrus. This network coordinates all aspects of spatial attention, regardless of the modality of input or output. It helps to compile a mental representation of extrapersonal events in terms of their motivational salience, and to generate 'kinetic strategies' so that the attentional focus can shift from one target to another. 相似文献
8.
Assad JA 《Current opinion in neurobiology》2003,13(2):194-197
Flexible control of behavior requires the selective processing of task-relevant sensory information and the appropriate linkage of sensory input to action. A great deal of evidence suggests a central role for the parietal cortex in these functions. Recent results from neurophysiological studies in non-human primates and neuroimaging experiments in humans illuminate the importance of parietal cortex for attention, and suggest how parietal neurons might allow the dynamic representation of behaviorally relevant information. 相似文献
9.
Intercortical connections of primary sensory (visual, auditory, somatosensory) areas with the parietal association cortex were studied in cats by the retrograde axonal transport of horseradish peroxidase and the Fink-Heimer silver impregnation of degenerated fibers techniques. This combined study revealed the shape, size, and intracortical location of cells connecting the primary sensory areas monosynaptically with the parietal cortex and also the distribution of preterminals and terminals of the fibers of these cells in the parietal association cortex. The greatest number of cells forming connections with area 7 of the parietal association cortex was shown to occur in visual area V1, and with area 5 in somatosensory area S1. Besides pyramidal neurons tagged with horseradish peroxidase, which were located mainly in layers II–IV, a few tagged stellate and fusiform cells also were found. The results supplement and confirm data on afferent connections of the parietal association cortex in cats.M. Gor'kii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 3–6, January, 1981. 相似文献
10.
Interneuronal connections of area 7 of the cat parietal cortex with projection areas of the visual, auditory, and somatosensory cortex were analyzed by orthograde degeneration and retrograde transport of horseradish peroxidase methods. By combined investigation the cortico-cortical sources of afferentation of parietal area 7 could be precisely identified and concentration sites of neurons sending their axons into this area identified, and the morphological characteristics of these neurons could also be determined.A. A. Ukhtomskii Physiological Institute, A. A. Zhdanov Leningrad State University. Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 13–17, January–February, 1980. 相似文献
11.
Spatially directed attention strongly enhances visual perceptual processing. The metaphor of the "spotlight" has long been used to describe spatial attention; however, there has been considerable debate as to whether spatial attention must be unitary or may be split between discrete regions of space. This question was addressed here through functional MR imaging of human subjects as they performed a task that required simultaneous attention to two briefly displayed and masked targets at locations separated by distractor stimuli. These data reveal retinotopically specific enhanced activation in striate and extrastriate visual cortical representations of the two attended stimuli and no enhancement at the intervening representation of distractor stimuli. This finding of two spotlights was obtained within a single cortical hemisphere and across the two hemispheres. This provides direct evidence that spatial attention can select, in parallel, multiple low-level perceptual representations. 相似文献
12.
Carlos Gallegos Aída García Candelaria Ramírez Jorge Borrani Carolina V. M. Azevedo 《Chronobiology international》2019,36(3):343-352
An important property of attention is the limitation to process new information after responding to a stimulus. This property of attention can be evaluated by the Attentional Blink (AB), a phenomenon that consists of a failure to detect the second of two targets when the interval between them is 200–500 ms. The aim of the present work is to determine the possible existence of time awake (homeostatic changes) and time of day (circadian rhythm) variations in the AB. Eighteen undergraduate students, 11 men and 7 women, age = 18.06 ± 1.16 years, participated voluntarily in this research. They were recorded in a constant routine protocol during 29 h, in which rectal temperature was recorded every minute, while subjective sleepiness and responses to a Rapid Serial Visual Presentation (RSVP) task, to measure the AB, were recorded every hour. Homeostatic and circadian variations in all parameters of the RSVP task were observed, including changes in the capacity to process a new stimulus (Target 1 accuracy), a second stimulus occurring in a short interval after the first (Target 2 accuracy at lag 2, 200 ms) and to process another successive independent stimulus (Target 2 accuracy at lag 8, 800 ms). The acrophase of these parameters occurred with a phase delay of 2 h compared to the circadian rhythm of rectal temperature. The AB magnitude, an index of the AB, showed a decline with time awake, but no variations with time of day. In conclusion, there are homeostatic and circadian variations in the capacity to process any incoming information, especially in tasks with brief duration stimuli presented at a high frequency. 相似文献
13.
Adopting an unusual posture can sometimes give rise to paradoxical experiences. For example, the subjective ordering of successive unseen tactile stimuli delivered to the two arms can be affected when people cross them. A growing body of evidence now highlights the role played by the parietal cortex in spatio-temporal information processing when sensory stimuli are delivered to the body or when actions are executed; however, little is known about the neural basis of such paradoxical feelings resulting from such unusual limb positions. Here, we demonstrate increased fMRI activation in the left posterior parietal cortex when human participants adopted a crossed hands posture with their eyes closed. Furthermore, by assessing tactile temporal order judgments (TOJs) in the same individuals, we observed a positive association between activity in this area and the degree of reversal in TOJs resulting from crossing arms. The strongest positive association was observed in the left intraparietal sulcus. This result implies that the left posterior parietal cortex may be critically involved in monitoring limb position and in spatio-temporal binding when serial events are delivered to the limbs. 相似文献
14.
Interactions between number and space in parietal cortex 总被引:11,自引:0,他引:11
Since the time of Pythagoras, numerical and spatial representations have been inextricably linked. We suggest that the relationship between the two is deeply rooted in the brain's organization for these capacities. Many behavioural and patient studies have shown that numerical-spatial interactions run far deeper than simply cultural constructions, and, instead, influence behaviour at several levels. By combining two previously independent lines of research, neuroimaging studies of numerical cognition in humans, and physiological studies of spatial cognition in monkeys, we propose that these numerical-spatial interactions arise from common parietal circuits for attention to external space and internal representations of numbers. 相似文献
15.
Quick and efficient traversal of learned routes is critical to the survival of many animals. Routes can be defined by both the ordering of navigational epochs, such as continued forward motion or execution of a turn, and the distances separating them. The neural substrates conferring the ability to fluidly traverse complex routes are not well understood, but likely entail interactions between frontal, parietal, and rhinal cortices and the hippocampus. This paper demonstrates that posterior parietal cortical neurons map both individual and multiple navigational epochs with respect to their order in a route. In direct contrast to spatial firing patterns of hippocampal neurons, parietal neurons discharged in a place- and direction-independent fashion. Parietal route maps were scalable and versatile in that they were independent of the size and spatial configuration of navigational epochs. The results provide a framework in which to consider parietal function in spatial cognition. 相似文献
16.
Three experiments were conducted to investigate the effects of working memory content on temporal attention in a rapid serial visual presentation attentional blink paradigm. It was shown that categorical similarity between working memory content and the target stimuli pertaining to the attentional task (both digits) increased attentional blink magnitude compared to a condition in which this similarity was absent (colors and digits, respectively). This effect was only observed when the items in working memory were not presented as conjunctions of the involved categories (i.e., colored digits). This suggested that storage and retrieval from working memory was at least preferentially conjunctive in this case. It was furthermore shown that the content of working memory enhanced the identification rate of the second target, by means of repetition priming, when inter-target lag was short and the attentional blink was in effect. The results are incompatible with theories of temporal attention that assume working memory has no causal role in the attentional blink and support theories that do. 相似文献
17.
Background
During rapid serial visual presentation (RSVP), observers often miss the second of two targets if it appears within 500 ms of the first. This phenomenon, called the attentional blink (AB), is widely held to reflect a bottleneck in the processing of rapidly sequential stimuli that arises after initial sensory registration is complete (i.e., at a relatively late, post-perceptual stage of processing). Contrary to this view, recent fMRI studies have found that activity in the primary visual area (V1), which represents the earliest cortical stage of visual processing, is attenuated during the AB. Here we asked whether such changes in V1 activity during the AB arise in the initial feedforward sweep of stimulus input, or instead reflect the influence of feedback signals from higher cortical areas.Methodology/Principal Findings
EEG signals were recorded while participants monitored a sequential stream of distractor letters for two target digits (T1 and T2). Neural responses associated with an irrelevant probe stimulus presented simultaneously with T2 were measured using an ERP marker – the C1 component – that reflects initial perceptual processing of visual information in V1. As expected, T2 accuracy was compromised when the inter-target interval was brief, reflecting an AB deficit. Critically, however, the magnitude of the early C1 component evoked by the probe was not reduced during the AB.Conclusions/Significance
Our finding that early sensory processing of irrelevant probe stimuli is not suppressed during the AB is consistent with theoretical models that assume that the bottleneck underlying the AB arises at a post-perceptual stage of processing. This suggests that reduced neural activity in V1 during the AB is driven by re-entrant signals from extrastriate areas that regulate early cortical activity via feedback connections with V1. 相似文献18.
Although the parietal cortex is traditionally associated with spatial attention and sensorimotor integration, recent evidence also implicates it in higher order cognitive functions. We review relevant results from neuron recording studies showing that inferior parietal neurons integrate information regarding target location with a variety of non-spatial signals. Some of these signals are modulatory and alter a stimulus-evoked response according to the action, category, or reward associated with the stimulus. Other non-spatial inputs act independently, encoding the context or rules of a task even before the presentation of a specific target. Despite the ubiquity of non-spatial information in individual neurons, reversible inactivation of the parietal lobe affects only spatial orienting of attention and gaze, but not non-spatial aspects of performance. This suggests that non-spatial signals contribute to an underlying spatial computation, possibly allowing the brain to determine which targets are worthy of attention or action in a given task context. 相似文献
19.
Eye movements constitute one of the most basic means of interacting with our environment, allowing to orient to, localize and scrutinize the variety of potentially interesting objects that surround us. In this review we discuss the role of the parietal cortex in the control of saccadic and smooth pursuit eye movements, whose purpose is to rapidly displace the line of gaze and to maintain a moving object on the central retina, respectively. From single cell recording studies in monkey we know that distinct sub-regions of the parietal lobe are implicated in these two kinds of movement. The middle temporal (MT) and medial superior temporal (MST) areas show neuronal activities related to moving visual stimuli and to ocular pursuit. The lateral intraparietal (LIP) area exhibits visual and saccadic neuronal responses. Electrophysiology, which in essence is a correlation method, cannot entirely solve the question of the functional implication of these areas: are they primarily involved in sensory processing, in motor processing, or in some intermediate function? Lesion approaches (reversible or permanent) in the monkey can provide important information in this respect. Lesions of MT or MST produce deficits in the perception of visual motion, which would argue for their possible role in sensory guidance of ocular pursuit rather than in directing motor commands to the eye muscle. Lesions of LIP do not produce specific visual impairments and cause only subtle saccadic deficits. However, recent results have shown the presence of severe deficits in spatial attention tasks. LIP could thus be implicated in the selection of relevant objects in the visual scene and provide a signal for directing the eyes toward these objects. Functional imaging studies in humans confirm the role of the parietal cortex in pursuit, saccadic, and attentional networks, and show a high degree of overlap with monkey data. Parietal lobe lesions in humans also result in behavioral deficits very similar to those that are observed in the monkey. Altogether, these different sources of data consistently point to the involvement of the parietal cortex in the representation of space, at an intermediate stage between vision and action. 相似文献
20.
Visual attention operates by biasing competitive interactions between neural representations, favoring relevant over irrelevant visual inputs. Attention can enhance the processing of relevant information using location-based, feature-based or object-based selection mechanisms. Studies using event-related potential and event-related magnetic field recordings, together with functional magnetic resonance imaging, show that the temporal sequencing of these different selection mechanisms is flexible. Depending on the specific processing demands of the experimental task, location-based, feature-based or object-based selection might be given temporal priority on a time scale of tens of milliseconds. 相似文献