首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
During the development of Peperomia camptotricha leaves, metabolism changes from C3-photosynthesis to Crassulacean acid metabolism (CAM). The youngest leaves showed no diurnal fluctuation of organic acids or P-enolpyruvate carboxylase (PEPc) activity. There was little evidence for PEPc protein using PEPc antibodies prepared from the CAM form of PEPc, nor was there evidence for PEPc mRNA when tested using a cDNA probe made from CAM P. scandens. As leaves matured, there was a parallel increase in titratable acidity, PEPc activity, PEPc protein, and PEPc mRNA. In leaf whorls 1 through 6, there was a significant linear correlation between the diurnal fluctuation of organic acids and PEPc activity indicating a functional relationship. The specific activity of PEPc increased as leaves matured and the Km (PEP) decreased indicating that the enzyme was becoming more active. The ratio of PEPc protein to PEPc mRNA decreased as leaves matured. During the expression of CAM, the spongy mesophyll where most of the CAM activity occurs increased in thickness and per cent air space, whereas the palisade mesophyll where most of the C3 activity occurs did not increase in size dramatically. The diurnal fluctuation of organic acids and the expression of PEPc activity, protein, and mRNA increased as the thickness of the spongy mesophyll increased. During the expression of CAM in Peperomia camptotricha, there appears to be coordinated expression of PEPc mRNA, protein, and activity, the commencement of diurnal organic acid fluctuation, and the development of the CAM-like spongy mesophyll. Thus the evidence suggests that CAM in this species is expressed during normal development and not in response to environmental signals.  相似文献   

2.
We investigated the carbon isotope ratios and the diurnal pattern of malate accumulation in leaves and aerial roots of eight species of Phalaenopsis grown in greenhouses. The leaves of all the species showed carbon isotope ratios and the diurnal patterns of malate content typical of CAM plants. However, the aerial roots exhibited a large variation in the diurnal pattern of malate content among species and even among plants within the same species, although carbon isotope ratios were always CAM-like values. Some aerial roots showed the typical diurnal pattern of CAM, but others maintained high or low malate contents during a day without fluctuation. In order to characterize more strictly the nature of the malate variation in the aerial roots, we further investigated a possible variation of the diurnal pattern of malate among different aerial roots within an individual for Phalaenopsis amabilis and P. cornu-cervi. The diurnal pattern of malate content was varied even among different aerial roots within the same plant. Thus the photosynthetic carbon metabolism in aerial roots of orchids is fairly complex.  相似文献   

3.
During the synthesis of fatty acids and their utilization in plastids, fatty acyl moieties are linked to acyl carrier protein (ACP). In contrast to previously cloned organ-specific ACP isoforms, we have now isolated a cDNA clone for a potentially constitutive ACP isoform from a spinach root library. Identity between the amino acid sequence encoded by this cDNA and N-terminal sequence data for ACP-II protein from spinach leaf indicates that the root cDNA encodes ACP-II. The deduced amino acid sequence for ACP-II shows 62% identity with spinach leaf ACP-I. Southern analysis suggests that multiple ACP genes or pseudogenes occur in the spinach genome. High-stringency northern blot analysis and RNase protection studies confirm that, within the region encoding the mature ACP-II, the cloned ACP sequence is expressed in leaves and seeds as well as in roots. Quantitative RNase protection data indicate that the ratio of ACP-I and ACP-II mRNA sequences in leaf is similar to the ratio of the two proteins.  相似文献   

4.
Peperomia has species that may be C3, show Crassulacean acid metabolism (CAM), or CAM-cycling. Species that show CAM progress from C3 to CAM through CAM-cycling during leaf development. In CAM and CAM-cycling species, CAM metabolism is predominately in the upper multiple epidermis and lower spongy mesophyll, whereas C3 metabolism is localized mostly in the palisade mesophyll. Using specific protein and cDNA probes prepared from P-enolpyruvate carboxylase (PEPc) and ribulose-1,5-bisphosphate carboxylase (Rubisco), we have now studied the differential distribution of photosynthetic metabolism in Peperomia leaves using the technique of tissue printing. The tissue printing studies detected Rubisco protein in leaves of C3 P. orba, but not PEPc. Young C3 leaves of P. scandens and P. camptotricha showed Rubisco protein, but not PEPc; however, the mature leaves of these two species that have CAM showed PEPc protein and RNAs in both the multiple epidermis and spongy mesophyll. In contrast, Rubisco protein and RNAs were present throughout the leaf. The tissue printing data are consistent with our previously published data showing the differential distribution of photosynthetic metabolism in leaves of Peperomia. Although the tissue printing technique is qualitative, coupled with quantitative data it has proven useful for the study of function related to structure.  相似文献   

5.
Singh S  Choi SB  Modi MK  Okita TW 《Phytochemistry》2002,59(3):261-268
Four cDNA clones encoding two large subunits and two small subunits of the starch regulatory enzyme ADP-glucose pyrophosphorylase (AGPase) were isolated from a chickpea (Cicer arietinum L.) stem cDNA library. DNA sequence and Southern blot analyses of these clones, designated CagpL1, CagpL2 (large subunits) and CagpS1 and CagpS2 (small subunits), revealed that these isoforms represented different AGPase large and small subunits. RNA expression analysis indicated that CagpL1 was expressed strongly in leaves with reduced expression in the stem. No detectable expression was observed in seeds and roots. CagpL2 was expressed moderately in seeds followed by weak expression in leaves, stems and roots. Similar analysis showed that CagpS1 and CagpS2 displayed a spatial expression pattern similar to that observed for CagpL2 with the exception that CagpS1 showed a much higher expression in seeds than CagpS2. The spatial expression patterns of these different AGPase subunit sequences indicate that different AGPase isoforms are used to control starch biosynthesis in different organs during chickpea development.  相似文献   

6.
The isozymic forms of maize phosphoenolpyruvate carboxylase (P-enolpyruvate carboxylase) involved in photosynthetic CO2 fixation were shown by protein gel blot analysis to consist of 100-kDa subunits. The nonautotrophic isoform found in roots is comprised of 96-kDa subunits and is about 50-100-fold less prevalent. Further analysis of P-enolpyruvate carboxylase isoforms made use of cloned cDNA probes. Two cDNA clones were isolated from a library constructed from maize leaf poly(A) RNA. The largest clone was complementary to about 25% of P-enolpyruvate carboxylase mRNA, which is 3.4 kilobases in length. The quantity of P-enolpyruvate carboxylase mRNA in green, mature leaf tissue was estimated to be 0.20% of poly(A) RNA, whereas P-enolpyruvate carboxylase mRNA in roots was about 100-fold less prevalent. We used thermal denaturation of a P-enolpyruvate carboxylase cDNA probe hybridized to RNA gel blots to estimate the degree of sequence difference between mRNAs encoding different P-enolpyruvate carboxylase isoforms. There appear to be at least two prevalent P-enolpyruvate carboxylase mRNAs in green leaves which are significantly different in sequence, as are P-enolpyruvate carboxylase mRNAs in roots and shoots. The hybridization pattern of maize genomic DNA Southern blots indicates that P-enolpyruvate carboxylase is encoded by a small gene family.  相似文献   

7.
8.
Different organs of Mesembryanthemum crystallinum exhibit differing levels of CAM (Crassulacean acid metabolism), identifiable by quantification of nocturnal malate accumulation. Shoots and also basal parts of young leaves were observed to accumulate high concentrations of malate. It was typically found in mature leaves and especially prominent in plants subjected to salt stress. Small amount of nocturnal malate accumulation was found in roots of M. crystallinum plants following age-dependent or salinity-triggered CAM. This is an indication that malate can be also stored in non-photosynthetic tissue. Measurements of catalase activity did not produce evidence of the correlation between activity of this enzyme and the level of malate accumulation in different organs of M. crystallinum although catalase activity also appeared to be dependent on the photoperiod. In all material collected at dusk catalase activity was greater than it was observed in the organs harvested at dawn.  相似文献   

9.
10.
11.
从植物组织中提取高质量的RNA是进行cDNA文库构建等分子生物学研究的前提。在苯酚法的基础上,改进并得到了一种适合紫茎泽兰根、茎、叶总RNA快速提取的方法,消除了蛋白质、DNA、多糖等的污染。该方法提取的紫茎泽兰不同组织总RNA纯度高、完整性好,可用于RT-PCR、cDNA文库构建、Northern杂交等分子生物学实验,而且简单、经济、重复性好,适合于多种植物组织总RNA的提取。Northern杂交表明F3’H基因在紫茎泽兰的根、茎、叶等组织中广泛存在,但在叶中的表达量最高,在根中的表达量最低。  相似文献   

12.
Expression levels of anther-expressed genes in rice were estimated by plaque hybridization. A total of 33 cDNAs, isolated randomly from an anther-enriched cDNA library, were used as probes to hybridize both anther and leaf cDNAs. The expression level of individual cDNA clones was then estimated by counting the number of plaques hybridized to each probe. Based on abundance patterns that appeared in both anther and leaf cDNA libraries, the clones were classified into three groups. This classification showed that the majority of the clones (one group) exhibited expression in both cDNA libraries at almost equal frequency. The other two groups showed either low or no expression in the leaf cDNA library. Among the cDNA clones,RA1003 (detected only in the anther cDNA library) was selected and further characterized at the molecular level. Consistent with the results of the plaque hybridization experiment, northern blot analysis also revealed no gene expression in vegetative organs, leaves, or roots. However, expression was high in the flowers, especially in the anthers. Detailed molecular studies of the gene are also described and discussed here.  相似文献   

13.
Genomic clone coding for the 16R isoform of 14-3-3 proteins from potato plants has recently been described. This paper reports on 20R-gene isolation and analysis, and compares two isoforms. The northern blot analysis of mRNA of the 20R 14-3-3 isoform suggests its similarity to 16R. Vascular tissue-specific expression and age-dependent synthesis in potato leaves has been detected in both promoters. Screening of the potato genomic library using 20R cDNA isoform resulted in identification and isolation of the corresponding gene. This gene contains four exons and three introns. Inspecting the promoter sequence of the 20R isoform revealed several boxes important for the regulation of gene expression. The strongest GUS expression in transgenic potato plants transformed with the uidA reporter gene under the 20R promoter has been found in young leaf and stem vascular tissue, root tips, pollen and ovules. Mature fragments exhibit a significant decrease in GUS staining, which suggests age-dependent promoter activity. The analysis of transgenic plants transformed with 20R-GUS in contrast to 16R-GUS has revealed strong activation of the 20R promoter by metal ions and NaCl. Instead the 16R promoter is strongly affected by virus and salicylic acid treatments. The only factor, which strongly induced both promoters, was abscisic acid. It is thus suggested that promoter domain composition is the main factor differentiating the appearance of 14-3-3 isoforms.  相似文献   

14.
We have characterized the occurrence and expression of multiple acyl carrier protein (ACP) isoforms in Arabidopsis thaliana (L.) Heynh ecotype Columbia. Immunoblot analysis of ACPs from Arabidopsis tissues separated by native polyacrylamide gel electrophoresis and 1 molar urea polyacrylamide gel electrophoresis revealed a complex pattern of multiple ACP isoforms. All tissues examined (leaves, roots, and seeds) expressed at least three forms of ACP. The immunoblot identifications of ACP bands were confirmed by acylation of ACP extracts with Escherichia coli acyl-ACP synthetase. A full-length cDNA clone has been isolated that has 70% identity with a previously characterized Arabidopsis genomic ACP clone (ACP-1) (MA Post-Beittenmiller, A Hloušek-Radojčić, JB Ohlrogge [1989] Nucleic Acids Res 17: 1777). Based on RNA blot analysis, the cDNA clone represents an ACP that is expressed in leaves, seeds, and roots. In order to identify the protein products of each known ACP gene, their mature coding sequences have been expressed in E. coli. Using polymerase chain reactions, exons II and III of the genomic ACP-1 clone and the mature coding sequences of the ACP-2 cDNA clone were subcloned into E. coli expression vectors. Site-directed mutagenesis was used to convert the amino acid sequence of the ACP-2 cDNA clone to that of the A2 clone of Lamppa and Jacks ([1991] Plant Mol Biol 16: 469-474), ACP-3. The three E. coli-expressed proteins have different mobilities on polyacrylamide gel electrophoresis gels and each comigrates with a different Arabidopsis ACP isoform expressed in leaves, seeds, and roots. Thus, all of the three cloned ACPs appear to be constitutively expressed Arabidopsis ACPs. In addition to these three ACP isoforms, protein blots indicate that seed, leaf, and root each express one or more tissue-specific isoforms.  相似文献   

15.
The seasonal changes in crassulacean acid metabolism (CAM) activity in response to daily integrated photon flux density (PFD) and precipitation were compared in sun and shade leaves of the C3-CAM intermediate tree Clusia minor L. Measurements of CAM activity (H+) showed that maximum leaf acidity consistently occurred 4 h after dawn, suggesting that new sampling procedures need to be adopted in order to quantify CAM in Clusia species. Whilst exposed leaves responded to intermittent dry conditions, shaded leaves showed a clear induction of CAM activity as conditions became drier. The magnitude of CAM activity correlated well with daily integrated PFD, such that the extent of decarboxylation of organic acids was consistently associated with increased acidification during the subsequent dark period. Over two sampling days, both sun and shade leaves exhibited the four phases of CAM, although PEPc remained active throughout phase II with the result that 50% of the maximum leaf acidity in shade leaves was accumulated during this time. During phase III, internal CO2 supply was augmented by substantial citrate decarboxylation, in addition to malic acid. Chlorophyll fluorescence characteristics were dominated by high rates of PSII electron transport, together with an extremely high potential for thermal dissipation, such that excess light was maintained within safe limits at times of maximum PFD. Photochemical stability was maintained by matching supply and demand for internal CO2: in the morning, C3 and C4 carboxylation processes were regulated by extended PEPc activity, so that decarboxylation was delayed until temperature and light stress were highest at midday.  相似文献   

16.
17.
Phosphoenolpyruvate carboxylase (PEPc) catalyzes the primary fixation of CO2 in Crassulacean acid metabolism plants. Flux through the enzyme is regulated by reversible phosphorylation. PEPc kinase is controlled by changes in the level of its translatable mRNA in response to a circadian rhythm. The physiological significance of changes in the levels of PEPc-kinase-translatable mRNA and the involvement of metabolites in control of the kinase was investigated by subjecting Kalanchoë daigremontiana leaves to anaerobic conditions at night to modulate the magnitude of malate accumulation, or to a rise in temperature at night to increase the efflux of malate from vacuole to cytosol. Changes in CO2 fixation and PEPc kinase activity reflected those in kinase mRNA. The highest rates of CO2 fixation and levels of kinase mRNA were observed in leaves subjected to anaerobic treatment for the first half of the night and then transferred to ambient air. In leaves subjected to anaerobic treatment overnight and transferred to ambient air at the start of the day, PEPc-kinase-translatable mRNA and activity, the phosphorylation state of PEPc, and fixation of atmospheric CO2 were significantly higher than those for control leaves for the first 3 h of the light period. A nighttime temperature increase from 19°C to 27°C led to a rapid reduction in kinase mRNA and activity; however, this was not observed in leaves in which malate accumulation had been prevented by anaerobic treatment. These data are consistent with the hypothesis that a high concentration of malate reduces both kinase mRNA and the accumulation of the kinase itself.  相似文献   

18.
19.
Leport  Laurent  Kandlbinder  Andrea  Baur  Bernhard  Kaiser  Werner M. 《Planta》1996,198(4):495-501
Phosphoenolpyruvate (PEP) carboxylation was measured as dark 14CO2 fixation in leaves and roots (in vivo) or as PEP carboxylase (PEPCase) activity in desalted leaf and roof extracts (in vitro) from Pisum sativum L. cv. Kleine Rheinländerin. Its relation to the malate content and to the nitrogen source (nitrate or ammonium) was investigated. In tissue from nitrate-grown plants, PEP carboxylation varied diurnally, showing an increase upon illumination and a decrease upon darkening. Diurnal variations in roots were much lower than in leaves. Fixation rates in leaves remained constantly low in continuous darkness or high in continuous light. Dark CO2 fixation of leaf slices also decreased when leaves were preilluminated for 1 h in CO2-free air, suggesting that the modulation of dark CO2 fixation was related to assimilate availability in leaves and roots. Phosphoenolpyruvate carboxylase activity was also measured in vitro. However, no difference in maximum enzyme activity was found in extracts from illuminated or darkened leaves, and the response to substrate and effectors (PEP, malate, glucose-6-phosphate, pH) was also identical. The serine/threonine protein kinase inhibitors K252b, H7 and staurosporine, and the protein phosphatase 2A inhibitors okadaic acid and cantharidin, fed through the leaf petiole, did not have the effects on dark CO2 fixation predicted by a regulatory system in which PEPCase is modulated via reversible protein phosphorylation. Therefore, it is suggested that the diurnal modulation of PEP carboxylation in vivo in leaves and roots of pea is not caused by protein phosphorylation, but rather by direct allosteric effects. Upon transfer of plants to ammonium-N or to an N-free nutrient solution, mean daily malate levels in leaves decreased drastically within 4–5 d. At that time, the diurnal oscillations of PEP carboxylation in vivo disappeared and rates remained at the high light-level. The coincidence of the two events suggests that PEPCase was de-regulated because malate levels became very low. The drastic decrease of leaf malate contents upon transfer of plants from nitrate to ammonium nutrition was apparently not caused by increased amino acid or protein synthesis, but probably by higher decarboxylation rates.Abbreviations CAM crassulacean acid metabolism - PEP Phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase - PP protein phosphatase - PK protein kinase This work was supported by the Deutsche Forschungsgemeinschaft. B. Baur was a recipient of a doctoral grant, and L. Leport recipient of a post-doctoral grant of the DFG. The skilled technical assistance of Eva Wirth and Maria Lesch is gratefully acknowledged.  相似文献   

20.
We have characterized the distinct polypeptides, primary translation products and mRNAs encoding glutamine synthetase (GS) in the various organs of pea. Western blot analysis of soluble protein has identified five distinct GS polypeptides which are expressed at different relative levels in leaves, roots and nodules of pea. Of the two GS polypeptides in leaves (44 and 38 kd), the 44-kd GS polypeptide is predominant and is localized to the chloroplast stroma. In roots, the predominant GS polypeptide is 38 kd. Upon Rhizobium infection of roots, three 37-kd GS polypeptides increase in abundance in the nodules relative to uninfected roots. cDNA clones encoding three different GS mRNAs have been characterized. Hybrid-select translation has identified three different GS primary translation products (49, 38 and 37 kd). Two cDNA clones (pGS134 and pGS341) are homologous to GS mRNAs most abundant in nodules which encode the 38- and 37-kd GS primary translation products. A third cDNA (pGS197) corresponds to a larger GS mRNA species specific to leaf poly(A) RNA, which encodes a 49-kd putative precursor to the mature chloroplast GS polypeptide. cDNA sequence analysis and Southern blot analysis of pea nuclear DNA identifies at least three genes encoding GS in pea which are related but distinct in structure and in vivo pattern of expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号