首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphorylation state of large-conductance calcium-activated potassium (BKCa) channels regulates their activity and is dynamically regulated by protein phosphatases and kinases, including protein kinase C (PKC). In this study, we showed that PKC activators up-regulate the activity of the BKCa channel alpha (α)-subunit, Slo1, in cell-attached patches of transfected COS7 cells. In an immune complex kinase assay, BKCa channels isolated from rat brain were phosphorylated in the presence of PKC activators, without the addition of exogenous PKC, which suggests that PKC and BKCa channels functionally interact in vivo. Four different PKC isozymes, including PKCδ, phosphorylated the C-terminus of Slo1 and the addition of purified PKCδ-activated BKCa channels in excised patches of transfected HEK293 cells. Our results demonstrate that PKC up-regulates BKCa channels and that PKCδ may functionally interact with BKCa channel complexes in vivo.  相似文献   

2.
Protein kinase C has been purified by a rapid method resulting in a high-yield, stable enzyme preparation. The catalytic and regulatory properties of this enzyme preparation were characterized employing histone H1 and HMG8, a proteolytic fragment of H1. The enzyme had a lower Km for HMG8, and was stimulated more effectively by diacylglycerol and phorbol esters in the presence of this substrate. Furthermore, these activators markedly increased the Km for HMG8 but not for H1. Protein kinase C and cyclic AMP-dependent protein kinase phosphorylate serine residues which are located in different, single tryptic peptides from HMG8.  相似文献   

3.
To investigate a possible regulatory role of protein kinase C (PKC) on collagen-induced phospholipase activity, human platelets were prelabelled with either [3H] arachidonic acid or [14C]stearic acid and stimulated with collagen (2 micrograms/ml) in the presence or absence of the protein kinase inhibitor, staurosporine (1 microM). The collagen-induced release of [3H]arachidonic acid and formation of [14C]stearoyl-labelled lysophospholipids was inhibited by prior incubation with staurosporine, as was the formation of 3H-labelled thromboxane B2, thereby suggesting inhibition of the collagen-induced phospholipase A2 activity. The degradation of phosphatidylinositol (PI) and elevation of phosphatidic acid (PA) in platelets prelabelled with either radiotracer were also completely blocked by staurosporine pretreatment, indicating a suppression of collagen-stimulated phospholipase C activity. Suppressed phospholipase C activity may have been due to diminished thromboxane A2 formation since treatment with the dual cyclo-oxygenase/lipoxygenase inhibitor, BW755C, also resulted in an inhibition of the collagen-stimulated loss of 14C-labelled PI and rise in PA by 75-80%. Our results suggest that protein kinase, possible PKC, may be involved in the regulation of these phospholipases in collagen-stimulated human platelets.  相似文献   

4.
The role protein kinase C plays in the regulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by insulin and phorbol esters was studied in H4IIE hepatoma cells (ATCC CRL 1548). The combined effects of phorbol 12-myristate 13-acetate (PMA) and insulin on the suppression of mRNA coding for PEPCK (mRNAPEPCK) synthesis were additive. A potent inhibitor of both cyclic nucleotide-dependent protein kinases and protein kinase C, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, inhibited the cAMP and PMA-mediated regulation of mRNAPEPCK synthesis, but did not affect the action of insulin. Desensitization of the protein kinase C pathway by exposure to PMA for 16 h abolished the subsequent action of the phorbol ester, but did not affect insulin- or cAMP-mediated regulation of PEPCK gene expression. We conclude that insulin suppresses PEPCK gene expression independently from the protein kinase C-mediated pathway used by phorbol esters.  相似文献   

5.
Active absorption processes in the duodenal enterocyte are driven by various ATPases. It is known that the activity of Na+,K+-ATPase, Ca2+-ATPase and Mg2+-ATPase can be modulated by polyunsaturated fatty acids of the n-6 series, for example by linoleic and gamma-linolenic acids. These effects may be achieved by protein phosphorylation via protein kinase C. The present study was undertaken to determine the effect of arachidonic acid on Mg2+-ATPase (measured colorimetrically) activity in basolateral membranes prepared from rat duodenum. It shows, for the first time, significant dose-dependent inhibition of Mg2+-ATPase (26-62%) by arachidonic acid (10-50 microg/ml) which already takes place after one minute of exposure, indicating involvement of a rapid signal transduction mechanism. Addition of the protein kinase C inhibitors bisimidolylmaleimide (2.5 microM) and calphostin (0.5 microM) did not influence the action of arachidonic acid on Mg2+-ATPase; protein kinase C involvement in this process is thus not indicated.  相似文献   

6.
Group IVA phospholipase A2 (GIVA PLA2) catalyzes the release of arachidonic acid (AA) from the sn-2 position of glycerophospholipids. AA is then further metabolized into terminal signaling molecules including numerous prostaglandins. We have now demonstrated the involvement of phosphatidic acid phosphohydrolase 1 (PAP-1) and protein kinase C (PKC) in the Toll-like receptor-4 (TLR-4) activation of GIVA PLA2. We also studied the effect of PAP-1 and PKC on Ca+ 2 induced and synergy enhanced GIVA PLA2 activation. We observed that the AA release induced by exposure of RAW 264.7 macrophages to the TLR-4 specific agonist Kdo2-Lipid A is blocked by the PAP-1 inhibitors bromoenol lactone (BEL) and propranolol as well as the PKC inhibitor Ro 31-8220; however these inhibitors did not reduce AA release stimulated by Ca+ 2 influx induced by the P2X7 purinergic receptor agonist ATP. Additionally, stimulation of cells with diacylglycerol (DAG), the product of PAP-1 mediated hydrolysis, initiated AA release from unstimulated cells as well as restored normal AA release from cells treated with PAP-1 inhibitors. Finally, neither PAP-1 nor PKC inhibition reduced GIVA PLA2 synergistic activation by stimulation with Kdo2-Lipid A and ATP.  相似文献   

7.
High-affinity L-glutamate (GLU) transport is an important regulator of excitatory amino acid (EAA) concentrations in brain extracellular fluid and may play a key role in excitatory synaptic transmission. In view of evidence that EAA transporters (EAAT) are heterogenous and contain consensus sites for phosphorylation, this investigation was undertaken to contrast the effects of transporter phosphorylation in fractions derived from glia and neurons (synaptosomes) of the adult rat forebrain. Treatment with phorbol-12,13-dibutyrate (PDBu), an activator of protein kinase C (PKC), increased the maximal rate of GLU transport in glial plasmalemmal vesicles by greater than 50 percent (237 ± 18 vs. 365 ± 27 pmol/mg protein/90s, p < 0.05) but caused no change in synaptosomes. The effect by PDBu was concentration and time-dependent and was inhibited completely by the PKC inhibitor calphostin C. Inhibition of serine-threonine phosphoprotein phosphatases with okadaic acid produced similar effects which were not additive with PDBu. Together, these results demonstrate that glial EAAT can be regulated by multiple phosphorylation processes.  相似文献   

8.
Hemin is a catalyst of the formation of reactive oxygen species. We proposed that hematophagous insects are exposed to intense oxidative stress because of hemoglobin hydrolysis in their midgut (Petretsky, M. D., Ribeiro, J. M. C., Atella, G. C., Masuda, H., and Oliveira, P. L. (1995) J. Biol. Chem. 270, 10893-10896). We have shown that hemin stimulates urate synthesis in the blood-sucking insect Rhodnius prolixus (Gra?a-Souza, A. V., Petretsky, J. H., Demasi, M., Bechara, E. J. H., and Oliveira, P. L. (1997) Free Radical Biol. Med. 22, 209-214). Once released by fat body cells, urate accumulates in the hemolymph, where this radical scavenger constitutes an important defense against blood-feeding derived oxidative stress. Incubation of Rhodnius fat bodies with okadaic acid raises the level of urate synthesis, suggesting that urate production can be controlled by protein phosphorylation/dephosphorylation. Urate synthesis is stimulated by dibutyryl cAMP and inhibited by N(2((p-bromocinnamil)amino)ethyl)-5-isoquinolinesulfonamide (H-89), an inhibitor of protein kinase A, as well as activated by the protein kinase C activator phorbol 12-myristate 13-acetate. In the presence of hemin, however, inhibition of urate synthesis by H-89 does not occur, suggesting that the hemin stimulatory effect is not mediated by protein kinase A. Calphostin C completely inhibits the hemin-induced urate production, suggesting that the triggering of urate antioxidant response depends on protein kinase C activation. This conclusion is reinforced by the observation that in fat bodies exposed to hemin, both protein kinase C activity and phosphorylation of specific endogenous polypeptides are significantly increased.  相似文献   

9.
The proliferation of human skin fibroblasts in culture was examined using a [3H]thymidine incorporation assay. Histamine inhibited thymidine incorporation with an IC50 of about 0.2 microM. This effect was blocked by the H1 receptor antagonist mepyramine but not by the H2 receptor antagonist cimetidine. Protein kinase C activators, including several phorbol esters and mezerine, also inhibited thymidine incorporation. The IC50 for beta-phorbol 12,13-didecanoate was less than 0.1 nM. The alpha-isomer of this compound was inactive. Long-term treatment of cells with the beta-isomer eliminated the ability of both histamine and phorbol ester to inhibit thymidine incorporation, presumably due to downregulation of protein kinase C. Our results suggest that histamine H1 receptors are linked to activation of protein kinase C and that activation of this enzyme leads to an inhibition of cell proliferation.  相似文献   

10.
To investigate the possible role of protein kinase C activation in the desensitization of inositol phosphate production in endothelial cells we compared desensitization induced by agonists to that induced by the phorbol ester TPA. While histamine or thrombin induced desensitization of inositol phosphate production is homologous TPA induced desensitization is heterologous. The protein kinase C inhibitor H-7 reduced TPA desensitization but had no effect on the agonist induced desensitization. While downregulation of protein kinase C by long term (24 hr) treatment of the cells with TPA reduced the desensitization mediated by short term TPA-treatment it did not affect the agonist induced desensitization. These results suggest that desensitization of inositol phosphate production after agonist stimulation of endothelial cells is not mediated by protein kinase C.  相似文献   

11.
Sphingosine inhibited protein kinase C activity and phorbol dibutyrate binding. When the mechanism of inhibition of activity and phorbol dibutyrate binding was investigated in vitro using Triton X-100 mixed micellar methods, sphingosine inhibition was subject to surface dilution; 50% inhibition occurred when sphingosine was equimolar with sn-1,2-dioleoylglycerol (diC18:1) or 40% of the phosphatidylserine (PS) present. Sphingosine inhibition was modulated by Ca2+ and by the mole percent of diC18:1 and PS present. Sphingosine was a competitive inhibitor with respect to diC18:1, phorbol dibutyrate, and Ca2+. Increasing levels of PS markedly reduced inhibition by sphingosine. Since protein kinase C activity shows a cooperative dependence on PS, the kinetic analysis of competitive inhibition was only suggestive. Sphingosine inhibited phorbol dibutyrate binding to protein kinase C but did not cause protein kinase C to dissociate from the mixed micelle surface. Sphingosine addition to human platelets blocked thrombin and sn-1,2-dioctanoylglycerol-dependent phosphorylation of the 40-kDa (47 kDa) dalton protein. Moreover, sphingosine was subject to surface dilution in platelets. The mechanism of sphingosine inhibition is discussed in relation to a previously proposed model of protein kinase C activation. The possible physiological role of sphingosine as a negative effector of protein kinase C is suggested and a plausible cycle for its generation is presented. The potential physiological significance of sphingosine inhibition of protein kinase C is further established in accompanying papers on HL-60 cells (Merrill, A. H., Jr., Sereni, A. M., Stevens, V. L., Hannun, Y. A., Bell, R. M., Kinkade, J. M., Jr. (1986) J. Biol. Chem. 261, 12010-12615) and human neutrophils (Wilson, E., Olcott, M. C., Bell, R. M., Merrill, A. H., Jr., and Lambeth, J. D. (1986) J. Biol. Chem. 261, 12616-12623). These results also suggest that sphingosine will be a useful inhibitor for investigating the function of protein kinase C in vitro and in living cells.  相似文献   

12.
Our previous studies have shown that steady shear stress causes a transient increase of platelet-derived growth factor (PDGF) A and B chain mRNA levels in human umbilical vein endothelial cells (HUVEC). In the present study, we elucidated the signaling pathway of shear stress in HUVEC by examining the roles of protein kineses, intracellular calcium, cyclooxygenase, and guanine nucleotide-binding proteins (G proteins) in the PDGF gene induction by shear. The protein kinase C inhibitors, H7 and staurosporine, strongly inhibited the shear-induced PDGF gene expression in HUVEC. In contrast, HA1004, a cAMP- and cGMP-dependent protein kinases inhibitor, was only slightly inhibitory. BAPTA/AM, an intracellular calcium chelator, partially (50%) inhibited the shear-induced PDGF gene expression. The cyclooxygenase inhibitors, ibuprofen and indomethacin, were slightly inhibitory. A 35-50% inhibition of shear-induced PDGF gene expression was found with GDP-beta-S, an inhibitor of G proteins. These results suggest that shear-induced PDGF gene expression in HUVEC is mainly mediated by protein kinase C activation and requires intracellular calcium. Furthermore, G proteins seem to be involved in this process, whereas prostaglandin synthesis via cyclooxygenase pathway is not. We propose a mechanism of shear-induced PDGF gene expression in HUVEC: Shear stress, either directly or indirectly (G protein-mediated), enhances the membrane phosphoinositide turnover via phospholipase C, producing diacylglycerol, an activator of protein kinase C. The activated protein kinase C then triggers the subsequent PDGF gene expression.  相似文献   

13.
Urokinase-type plasminogen activator (uPA) gene expression in LLC-PK1 cells is induced by activation of cAMP-dependent protein kinase (cAMP-PK) or protein kinase C (PK-C). To determine whether protein phosphatases can also modulate uPA gene expression, we tested okadaic acid, a potent specific inhibitor of protein phosphatases 1 and 2A, in the presence and absence of cAMP-PK and PK-C activators. Okadaic acid by itself induced uPA mRNA accumulation. This induction was strongly attenuated by the inhibition of protein synthesis. In contrast, the inhibition of protein synthesis enhanced induction by 8-bromo-cAMP and only delayed induction by 12-O-tetradecanoylphorbol-13-acetate (TPA). In addition, down-regulation of PK-C by chronic treatment with TPA did not abrogate the okadaic acid-dependent induction. These results provide evidence for a novel signal transduction pathway leading to gene regulation that involves protein phosphorylation but is independent of both cAMP-PK and PK-C.  相似文献   

14.
Enhancing apoptosis to remove abnormal cells has potential in reversing cancerous processes. Caspase-3 activation generally accompanies apoptosis and its substrates include enzymes responsible for DNA fragmentation and isozymes of protein kinase C (PKC). Recent data, however, question its obligatory role in apoptosis. We have examined whether modulation of PKC activity induces apoptosis in COLO 205 cells and the role of caspase-3. Proliferation ([3H]thymidine) and apoptosis (DNA fragmentation and FACS) of COLO 205 cells were measured in response to PKC activation and inhibition. Caspase-3 activity was assayed and the effects of its inhibition with Ac-DEVD-cmk, and the effect of other protease inhibitors, on apoptosis were determined. PKC activation and inhibition both reduced DNA synthesis and induced DNA fragmentation. As PKC inhibitors induced DNA fragmentation more rapidly than PKC activators and failed to block activator effects, we conclude that it is PKC down-regulation (i.e., inhibition) after activator exposure that mediates apoptosis. Increases in caspase-3 activity occurred during apoptosis but apoptosis was not blocked by caspase inhibition. By contrast, the cysteine protease inhibitor, E-64d, blocked apoptosis. Cysteine proteases not of the caspase family may either act more closely to the apoptotic process than caspases or lie on an alternative, more active pathway.  相似文献   

15.
Stress-activated protein kinases (SAPKs) are stimulated by cell damaging agents as well as by physiological receptor agonists. In this study we show that human platelets contain the isoforms SAPK2a, SAPK2b, SAPK3 and SAPK4 as determined by immunoblotting with specific antibodies. All four kinases were activated in thrombin-stimulated platelets whereas only SAPK2a and SAPK2b were significantly stimulated by collagen. All four isoforms were able to phosphorylate wild-type human cPLA2 in vitro, although to different extents, but not cPLA2 mutants that had Ser505 replaced by alanine. Phosphorylation at Ser505 was confirmed by phosphopeptide mapping using microbore HPLC. SAPK2a and 42-kDa mitogen-activated protein kinase incorporated similar levels of phosphate into cPLA2 relative to the ability of each kinase to stimulate phosphorylation of myelin basic protein. SAPK2b and SAPK4 incorporated less phosphate, and cPLA2 was a poor substrate for SAPK3. The inhibitor of SAPK2a and SAPK2b, SB 202190, completely blocked collagen-induced phosphorylation of cPLA2 at its two phosphorylation sites in vivo, Ser505 and Ser727. We have also reported previously that SB 202190 partially ( approximately 50%) blocks phosphorylation at both sites and to a similar extent in thrombin-stimulated platelets. Inhibition of phosphorylation resulted in a two- to threefold shift to the right in the concentration response curves for arachidonic acid release from thrombin- and collagen-stimulated platelets. Our data suggest that cPLA2 is a substrate for several SAPK cascades and that phosphorylation of cPLA2 augments arachidonic acid release.  相似文献   

16.
Caldesmon is a widely distributed calmodulin- and actin-binding protein which occurs in different forms depending on the tissue or cell type under examination. On the basis of molecular weight, caldesmon species can be divided into two classes: caldesmon77 (Mr 70,000-80,000) and caldesmon150 (Mr 140,000-150,000). We have examined the phosphorylation of caldesmon77 by protein kinase C (the Ca2+/phospholipid-dependent enzyme) in vitro and in intact platelets. Caldesmon77, purified from bovine liver, could be phosphorylated by purified rat brain protein kinase C to a level of approximately 1.0 mol of phosphate per mol of caldesmon77 monomer. Two-dimensional tryptic peptide mapping and phosphoamino acid analysis reveals that caldesmon77 is phosphorylated at two major sites exclusively on serine residues. Following treatment of platelets with tumor-promoting phorbol ester, caldesmon77 phosphorylation was elevated 4-fold. Tryptic peptide mapping of phosphorylated platelet caldesmon77 demonstrates that phosphorylation is most significantly enhanced on two peptides which had migration patterns identical with those of the two major phosphopeptides of bovine liver caldesmon77 phosphorylated in vitro. The results of this study indicate that protein kinase C can phosphorylate caldesmon77 in vitro and in intact platelets, suggesting a role for protein kinase C in the regulation of caldesmon77 function or localization.  相似文献   

17.
18.
Co-injection of wortmannin (inhibitor of phosphatidylinositol-3 kinase, PI3K) and GF109203X(inhibitor of protein kinase C, PKC) into the rat brain was found to induce spatial memory deficiency and enhance tau hyperphosphorylation in the hippocampus of rat brain. To establish a cell model with durative Alzheimer-like tau hyperphosphorylation in this study, we treated N2a neuroblastoma cells with wortmannin and GF109203X separately and simultaneously, and measured the glycogen synthase kinase 3 (GSK-3)activity by y-32p-labeling and the level of tau phosphorylation by Western blotting. It was found that the application of wortmannin alone only transitorily increased the activity of GSK-3 (about 1 h) and the level of tau hyperphosphorylation at Ser^396/Ser^404 and Ser^199/Ser^202 sites (no longer than 3 h); however, a prolonged and intense activation of GSK-3 (over 12 h) and enhanced tau hyperphosphorylation (about 24 h) were observed when these two selective kinase inhibitors were applied together. We conclude that the simultaneous inhibition of PI3K and PKC can induce GSK-3 overactivation, and further strengthen and prolong the Alzheimerlike tau hyperphosphorylation in N2a cells, suggesting the establishment of a cell model with early pathological events of Alzheimer‘s disease.  相似文献   

19.
We reported that protein kinase C (PKC) inhibitors increase the release of arachidonic acid induced by fluoroaluminate (AlF4-), an unspecific G-protein activator, in intact human platelets. Now we demonstrate that this effect is independent of the extracellular Ca2+ concentration and that AlF4(-)-induced release of AA is abolished by BAPTA, an intracellular Ca2+ chelator, even in the presence of GF 109203X, a specific and potent PKC inhibitor. This compound also blocks the liberation of the secretory phospholipase A2 in the extracellular medium, indicating that this enzyme is not involved in the potentiation of arachidonic acid by PKC inhibitors. On the other hand, the latter effect is completely abolished by treatment of platelets with AACOCF3, a specific inhibitor of cytosolic phospholipase A2 (cPLA2). These observations indicate that cPLA2 is responsible for the AlF4(-)-induced release of arachidonic acid by a mechanism that is down-regulated by PKC.  相似文献   

20.
There is general agreement that the connexin43 gap junction protein is a substrate for phosphorylation by protein kinase C but there is no similar consensus regarding the action of protein kinase A. Our previous studies demonstrated that channels formed by connexin43 were reversibly gated in response to microinjected protein kinase A and protein kinase C, but we did not determine whether these effects involved direct action on the connexin43 protein. Using a combination of in vivo metabolic labeling and in vitro phosphorylation of recombinant protein and synthetic peptides, we now find that connexin43 is a relatively poor substrate for purified protein kinase A compared to protein kinase C, but that phosphorylation can be accelerated by 8-Br-cAMP (8-bromoadenosine 3,5-cyclic monophosphate) which also enhances connexin43 synthesis but at a much slower rate than phosphorylation. Phosphorylation of a critical amino acid, Ser364, by protein kinase A, appears to be necessary for subsequent multiple phosphorylations by protein kinase C. However, protein kinase C can phosphorylate connexin43 at a reduced level in the absence of prior phosphorylation. The results suggest that the correct regulation of channels formed by connexin43 may require sequential phosphorylations of this protein by protein kinase A and protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号