首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Controlled cortical impact (CCI) models in adult and aged Sprague-Dawley (SD) rats have been used extensively to study medial prefrontal cortex (mPFC) injury and the effects of post-injury progesterone treatment, but the hormone''s effects after traumatic brain injury (TBI) in juvenile animals have not been determined. In the present proof-of-concept study we investigated whether progesterone had neuroprotective effects in a pediatric model of moderate to severe bilateral brain injury.

Methods

Twenty-eight-day old (PND 28) male Sprague Dawley rats received sham (n = 24) or CCI (n = 47) injury and were given progesterone (4, 8, or 16 mg/kg per 100 g body weight) or vehicle injections on post-injury days (PID) 1–7, subjected to behavioral testing from PID 9–27, and analyzed for lesion size at PID 28.

Results

The 8 and 16 mg/kg doses of progesterone were observed to be most beneficial in reducing the effect of CCI on lesion size and behavior in PND 28 male SD rats.

Conclusion

Our findings suggest that a midline CCI injury to the frontal cortex will reliably produce a moderate TBI comparable to what is seen in the adult male rat and that progesterone can ameliorate the injury-induced deficits.  相似文献   

2.
Brain injuries promote upregulation of so-called proinflammatory prostaglandins, notably prostaglandin E2 (PGE2), leading to overactivation of a class of its cognate G-protein-coupled receptors, including EP1, which is considered a promising target for treatment of ischemic stroke. However, the role of the EP1 receptor is complex and depends on the type of brain injury. This study is focused on the investigation of the role of the EP1 receptor in a controlled cortical impact (CCI) model, a preclinical model of traumatic brain injury (TBI). The therapeutic effects of post-treatments with a widely studied EP1 receptor antagonist, SC-51089, were examined in wildtype and EP1 receptor knockout C57BL/6 mice. Neurological deficit scores (NDS) were assessed 24 and 48 h following CCI or sham surgery, and brain immunohistochemical pathology was assessed 48 h after surgery. In wildtype mice, CCI resulted in an obvious cortical lesion and localized hippocampal edema with an associated significant increase in NDS compared to sham-operated animals. Post-treatments with the selective EP1 receptor antagonist SC-51089 or genetic knockout of EP1 receptor had no significant effects on cortical lesions and hippocampal swelling or on the NDS 24 and 48 h after CCI. Immunohistochemistry studies revealed CCI-induced gliosis and microglial activation in selected ipsilateral brain regions that were not affected by SC-51089 or in the EP1 receptor-deleted mice. This study provides further clarification on the respective contribution of the EP1 receptor in TBI and suggests that, under this experimental paradigm, the EP1 receptor would have limited effects in modulating acute neurological and anatomical pathologies following contusive brain trauma. Findings from this protocol, in combination with previous studies demonstrating differential roles of EP1 receptor in ischemic, neurotoxic, and hemorrhagic conditions, provide scientific background and further clarification of potential therapeutic application of prospective prostaglandin G-protein-coupled receptor drugs in the clinic for treatment of TBI and other acute brain injuries.  相似文献   

3.

Aims

To investigate the role of dopamine in cognitive and motor learning skill deficits after a traumatic brain injury (TBI), we investigated dopamine release and behavioral changes at a series of time points after fluid percussion injury, and explored the potential of amantadine hydrochloride as a chronic treatment to provide behavioral recovery.

Materials and Methods

In this study, we sequentially investigated dopamine release at the striatum and behavioral changes at 1, 2, 4, 6, and 8 weeks after fluid percussion injury. Rats subjected to 6-Pa cerebral cortical fluid percussion injury were treated by using subcutaneous infusion pumps filled with either saline (sham group) or amantadine hydrochloride, with a releasing rate of 3.6mg/kg/hour for 8 weeks. The dopamine-releasing conditions and metabolism were analyzed sequentially by fast scan cyclic voltammetry (FSCV) and high-pressure liquid chromatography (HPLC). Novel object recognition (NOR) and fixed-speed rotarod (FSRR) behavioral tests were used to determine treatment effects on cognitive and motor deficits after injury.

Results

Sequential dopamine-release deficits were revealed in 6-Pa-fluid-percussion cerebral cortical injured animals. The reuptake rate (tau value) of dopamine in injured animals was prolonged, but the tau value became close to the value for the control group after amantadine therapy. Cognitive and motor learning impairments were shown evidenced by the NOR and FSRR behavioral tests after injury. Chronic amantadine therapy reversed dopamine-release deficits, and behavioral impairment after fluid percussion injuries were ameliorated in the rats treated by using amantadine-pumping infusion.

Conclusion

Chronic treatment with amantadine hydrochloride can ameliorate dopamine-release deficits as well as cognitive and motor deficits caused by cerebral fluid-percussion injury.  相似文献   

4.
After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation without major differences in morphological brain damage compared to young.  相似文献   

5.
Cerebral edema is a common complication following moderate and severe traumatic brain injury (TBI), and a significant risk factor for development of neuronal death and deterioration of neurological outcome. To this date, medical approaches that effectively alleviate cerebral edema and neuronal death after TBI are not available. Glucagon-like peptide-1 (GLP-1) has anti-inflammatory properties on cerebral endothelium and exerts neuroprotective effects. Here, we investigated the effects of GLP-1 on secondary injury after moderate and severe TBI. Male Sprague Dawley rats were subjected either to TBI by Controlled Cortical Impact (CCI) or sham surgery. After surgery, vehicle or a GLP-1 analogue, Liraglutide, were administered subcutaneously twice daily for two days. Treatment with Liraglutide (200 μg/kg) significantly reduced cerebral edema in pericontusional regions and improved sensorimotor function 48 hours after CCI. The integrity of the blood-brain barrier was markedly preserved in Liraglutide treated animals, as determined by cerebral extravasation of Evans blue conjugated albumin. Furthermore, Liraglutide reduced cortical tissue loss, but did not affect tissue loss and delayed neuronal death in the thalamus on day 7 post injury. Together, our data suggest that the GLP-1 pathway might be a promising target in the therapy of cerebral edema and cortical neuronal injury after moderate and severe TBI.  相似文献   

6.
Impaired cerebral energy metabolism may be a major contributor to the secondary injury cascade that occurs following traumatic brain injury (TBI). To estimate the cortical energy metabolic state following mild and severe controlled cortical contusion (CCC) TBI in rats, ipsi-and contralateral cortical tissues were frozen in situ at 15 and 40 min post-injury and adenylate (ATP, ADP, AMP) levels were analyzed using high-performance liquid chromatography (HPLC) and the energy charge (EC) was calculated. At 15 min post-injury, mildly brain-injured animals showed a 43% decrease in cortical ATP levels and a 2.4-fold increase in AMP levels (P < 0.05), and there was a significant reduction of the ipsilateral cortical EC when compared to sham-injured animals (P < 0.05). At 40 min post-injury, the ipsilateral adenylate levels and EC had recovered to the values observed in the sham-injury group. In the severe CCC group, there was a 51% decrease in ipsilateral cortical ATP levels and a 5.3-fold increase in AMP levels with a significant reduction of cortical EC at 15 min post-injury (P < 0.05). At 40 min post-injury, a 2.6-fold ipsilateral increase in AMP levels and an 11% and 44% decrease in EC and ATP levels, respectively, remained (P < 0.05). A 37–38% reduction of the total adenylate pool was observed ipsilaterally in both CCC severity groups at the early time-point, and a 19% and 28% decrease remained in the mild and severe CCC groups, respectively, at 40 min post-injury. Significant contralateral ATP and EC changes were only observed in the severe CCC group at 40 min post-injury (P < 0.05). The energy-requiring secondary injury cascades that occur early post-injury do not challenge the brain tissue to the extent of ATP depletion and may provide a window of opportunity for therapeutic intervention.  相似文献   

7.
Mitochondria play central roles in acute brain injury; however, little is known about mitochondrial function following traumatic brain injury (TBI) to the immature brain. We hypothesized that TBI would cause mitochondrial dysfunction early (<4 h) after injury. Immature rats underwent controlled cortical impact (CCI) or sham injury to the left cortex, and mitochondria were isolated from both hemispheres at 1 and 4 h after TBI. Rates of phosphorylating (State 3) and resting (State 4) respiration were measured with and without bovine serum albumin. The respiratory control ratio was calculated (State 3/State 4). Rates of mitochondrial H(2)O(2) production, pyruvate dehydrogenase complex enzyme activity, and cytochrome c content were measured. Mitochondrial State 4 rates (ipsilateral/contralateral ratios) were higher after TBI at 1 h, which was reversed with bovine serum albumin. Four hours after TBI, pyruvate dehydrogenase complex activity and cytochrome c content (ipsilateral/contralateral ratios) were lower in TBI mitochondria. These data demonstrate abnormal mitochondrial function early (相似文献   

8.

Background

Animal models are essential to study the pathophysiological changes associated with focal occlusive stroke and to investigate novel therapies. Currently used rodent models have yielded little clinical success, however large animal models may provide a more suitable alternative to improve clinical translation. We sought to develop a model of acute proximal middle cerebral artery (MCA) ischemic stroke in sheep, including both permanent occlusion and transient occlusion with reperfusion.

Materials and Methods

18 adult male and female Merino sheep were randomly allocated to one of three groups (n = 6/gp): 1) sham surgery; 2) permanent proximal MCA occlusion (MCAO); or 3) temporary MCAO with aneurysm clip. All animals had invasive arterial blood pressure, intracranial pressure and brain tissue oxygen monitoring. At 4 h following vessel occlusion or sham surgery animals were killed by perfusion fixation. Brains were processed for histopathological examination and infarct area determination. 6 further animals were randomized to either permanent (n = 3) or temporary MCAO (n = 3) and then had magnetic resonance imaging (MRI) at 4 h after MCAO.

Results

Evidence of ischemic injury in an MCA distribution was seen in all stroke animals. The ischemic lesion area was significantly larger after permanent (28.8%) compared with temporary MCAO (14.6%). Sham animals demonstrated no evidence of ischemic injury. There was a significant reduction in brain tissue oxygen partial pressure after permanent vessel occlusion between 30 and 210 mins after MCAO. MRI at 4 h demonstrated complete proximal MCA occlusion in the permanent MCAO animals with a diffusion deficit involving the whole right MCA territory, whereas temporary MCAO animals demonstrated MRA evidence of flow within the right MCA and smaller predominantly cortical diffusion deficits.

Conclusions

Proximal MCAO can be achieved in an ovine model of stroke via a surgical approach. Permanent occlusion creates larger infarct volumes, however aneurysm clip application allows for reperfusion.  相似文献   

9.
We investigated effects of diazoxide, a selective opener of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels, against brain damage after middle cerebral artery occlusion (MCAO) in male Wistar rats. Diazoxide (0.4 or 2 mM in 30 microl saline) or saline (sham) was infused into the right lateral ventricle 15 min before MCAO. Neurological score was improved 24 h later in the animals treated with 2 mM diazoxide (13.8 +/- 0.7, n = 13) compared with sham treatment (9.5 +/- 0.2, n = 6, P < 0.01). The total percent infarct volume (MCAO vs. contralateral side) of sham treatment animals was 43.6 +/- 3.6% (n = 12). Treatment with 2 mM diazoxide reduced the infarct volume to 20.9 +/- 4.8% (n = 13, P < 0.05). Effects of diazoxide were prominent in the cerebral cortex. The protective effect of diazoxide was completely prevented by the pretreatment with 5-hydroxydecanoate (100 mM in 10 microl saline), a selective blocker of mitoK(ATP) channels (n = 6). These results indicate that selective opening of the mitoK(ATP) channel has neuroprotective effects against ischemia-reperfusion injury in the rat brain.  相似文献   

10.
Astrocytes can act as intermediaries between neurons and cerebral arterioles to regulate vascular tone in response to neuronal activity. Release of glutamate from presynaptic neurons increases blood flow to match metabolic demands. CO is a gasotransmitter that can be related to neural function and blood flow regulation in the brain. The present study addresses the hypothesis that glutamatergic stimulation promotes perivascular astrocyte CO production and pial arteriolar dilation in the newborn brain. Experiments used anesthetized newborn pigs with closed cranial windows, piglet astrocytes, and cerebrovascular endothelial cells in primary culture and immunocytochemical visualization of astrocytic markers. Pial arterioles and arteries of newborn pigs are ensheathed by astrocytes visualized by glial fibrillary acidic protein staining. Treatment (2 h) of astrocytes in culture with L-2-alpha-aminoadipic acid (L-AAA), followed by 14 h in toxin free medium, dose-dependently increased cell detachment, suggesting injury. Conversely, 16 h of continuous exposure to L-AAA caused no decrease in endothelial cell attachment. In vivo, topical L-AAA (2 mM, 5 h) disrupted the cortical glia limitans histologically. Such treatment also eliminated pial arteriolar dilation to the astrocyte-dependent dilator ADP and to glutamate but not to isoproterenol or CO. Glutamate stimulated CO production by the brain surface that also was abolished following L-AAA. In contrast, tetrodotoxin blocked dilation to N-methyl-D-aspartate but not to glutamate, isoproterenol, or CO or the glutamate-induced increase in CO. The concurrent loss of CO production and pial arteriolar dilation to glutamate following astrocyte injury suggests astrocytes may employ CO as a gasotransmitter for glutamatergic cerebrovascular dilation.  相似文献   

11.
The effects of high oxygen pressure on pyruvate dehydrogenase (pyruvate: lipoate oxidoreductase (decarboxylating and acceptor-acylating), EC 1.2.4.1) activity, tissue concentration of ATP, and CO2 production from glucose were studied in rat brain cortical slices. The increase in pyruvate dehydrogenase activity and the lowering of cellular ATP, occurring during potassium-induced depolarization at 1 atm of oxygen, were reversed by increasing the oxygen pressure to 5 atm. When brain slices were incubated at 1 atm oxygen with [U-14C]glucose, a high potassium medium approximately doubled the production of 14CO2. Oxygen at 5 atm abolished this potassium-dependent increase in 14CO2 production with no significant effect on glucose oxidation in normal Krebs-Ringer phosphate medium. Adding 4 atm helium to 1 atm oxygen did not interfere with the ability of potassium ions to activate pyruvate dehydrogenase, lower ATP, or increase glucose oxidation. The results show that toxic effects of hyperbaric oxygen, not manifest in "resting" tissue, may be revealed during stress such as potassium depolarization. The site of the toxic effects of oxygen is probably the cell membrane where excess oxygen appears to interfere with the action of the sodium pump, calcium transport or other processes stimulated by increased concentrations of extracellular potassium.  相似文献   

12.
Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have a variety of roles in the developing and adult central nervous system that require direct cell–cell interactions; including regulating axon path finding, cell proliferation, migration and synaptic plasticity. Recently, we identified a novel pro-survival role for ephrins in the adult subventricular zone, where ephrinB3 blocks Eph-mediated cell death during adult neurogenesis. Here, we examined whether EphB3 mediates cell death in the adult forebrain following traumatic brain injury and whether ephrinB3 infusion could limit this effect. We show that EphB3 co-labels with microtubule-associated protein 2-positive neurons in the adult cortex and is closely associated with ephrinB3 ligand, which is reduced following controlled cortical impact (CCI) injury. In the complete absence of EphB3 (EphB3−/−), we observed reduced terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL), and functional improvements in motor deficits after CCI injury as compared with wild-type and ephrinB3−/− mice. We also demonstrated that EphB3 exhibits dependence receptor characteristics as it is cleaved by caspases and induces cell death, which is not observed in the presence of ephrinB3. Following trauma, infusion of pre-clustered ephrinB3-Fc molecules (eB3-Fc) into the contralateral ventricle reduced cortical infarct volume and TUNEL staining in the cortex, dentate gyrus and CA3 hippocampus of wild-type and ephrinB3−/− mice, but not EphB3−/− mice. Similarly, application of eB3-Fc improved motor functions after CCI injury. We conclude that EphB3 mediates cell death in the adult cortex through a novel dependence receptor-mediated cell death mechanism in the injured adult cortex and is attenuated following ephrinB3 stimulation.  相似文献   

13.
The cerebal metabolic effects of 60 min exposure to 0.5, 1.0, 1.5, and 2.0% carbon monoxide (CO) and 60 min exposure to 1.0% CO were studied in lightly anesthetized rats by measurement of brain tissue contents of glycolytic and citric acid cycle intermediates, as well as tissue energy phosphates. The results indicate that cerebral energy homeostasis is maintained until advanced levels of CO intoxication (2.0%) are reached. Animals exposed to 2.0% CO developed significant decreases in systemic blood pressure, with attendent decreases in cerebral ATP, increases in ADP and AMP, plus early depletions of tissue citrate and alpha-oxyglutarate. The similarity of this pattern to that previously documented for various cerebral oligemic states suggests a possible modifying role for altered cerebral production in its production. A correlation between conscious behavior and cerebral energy state was suggested by the observation that unanesthetized animals exposed to 1.0% CO for 30 and 60 min retained consciousness, whereas animals exposed to 2.0% CO for 30 min became unresponsive late on in the exposure. A comparison of CO induced changes in intermediary metabolites, energy phosphates, intracellular pH, and cytoplasmic redox state with those seen in hypoxemia indicate no basic qualitative or quantiative differences in the metabolic response of brain tissue to the two conditions.  相似文献   

14.
Liu S  Xu C  Li G  Liu H  Xie J  Tu G  Peng H  Qiu S  Liang S 《Neurochemistry international》2012,60(6):565-572
Neuropathic pain can arise from a lesion affecting the peripheral nervous system. Selective P2X(3) and P2X(2/3) receptors' antagonists effectively reduce neuropathic pain. VEGF inhibitors are effective for pain relief. The present study investigated the effects of Vatalanib (VEGF receptor-2 (VEGFR-2) inhibitor) on the neuropathic pain to address the interaction of VEGFR-2 and P2X(2/3) receptor in dorsal root ganglia of chronic constriction injury (CCI) rats. Neuropathic pain symptoms following CCI are similar to most peripheral lesions as assessed by the Neuropathic Pain Symptom Inventory. Sprague-Dawley rats were randomly divided into sham group, CCI group and CCI rats treated with Vatalanib group. Mechanical withdrawal threshold and thermal withdrawal latency were measured. Co-expression of VEGFR-2 and P2X(2) or P2X(3) in L4-6 dorsal root ganglia (DRG) was detected by double-label immunofluorescence. The modulation effect of VEGF on P2X(2/3) receptor agonist-activated currents in freshly isolated DRG neurons of rats both of sham and CCI rats was recorded by whole-cell patch-clamp technique. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in CCI group were lower than those in sham group (p<0.05). MWT and TWL in CCI rats treated with Vatalanib group were increased compared with those in CCI group (p<0.05). VEGFR-2 and P2X(2) or P2X(3) receptors were co-expressed in the cytoplasm and surface membranes of DRG. The co-expression of VEGFR-2 and P2X(2) or P2X(3) receptor in CCI group exhibited more intense staining than those in sham group and CCI rats treated with Vatalanib group, respectively. VEGF enhanced the amplitude of ATP and α,β-meATP -activated currents of both sham and CCI rats. Increment effects of VEGF on ATP and α,β-meATP -activated currents in CCI rats were higher than those in sham rats. Both ATP (100 μM) and α,β-meATP (10 μM)- activated currents enhanced by VEGF ( 1nM) were significantly blocked by Vatalanib (1 μM, an inhibitor of VEGF receptors). The stain values of VEGFR-2, P2X(2) and P2X(3) protein expression in L4/5 DRG of CCI treated with Vatalanib group were significantly decreased compared with those in CCI group (p<0.01). Vatalanib can alleviate chronic neuropathic pain by decreasing the activation of VEGF on VEGFR-2 and the positive interaction between the up-regulated VEGFR-2 and P2X(2/3) receptors in the neuropathic pain signaling.  相似文献   

15.
The rates of conversion of D-(-)-3-hydroxy[3-14C]butyrate, [3-14C]acetoacetate, [6-14C]glucose and [U-14C]glutamine into 14CO2 were measured in the presence and absence of alternative oxidizable substrates in intact dissociated cells from the brains of young and adult rats. When unlabelled glutamine was added to [6-14C]glucose or unlabelled glucose was added to [U-14C]glutamine, the rate of 14CO2 production was decreased in both young and adult rats. The rate of oxidation of 3-hydroxy[3-14C]butyrate was also decreased by the addition of unlabelled glutamine in both age groups, but in the reverse situation, i.e. unlabelled 3-hydroxybutyrate added to [U-14C]glutamine, only the brain cells from young rats were affected. No significant effects were seen when glutamine and acetoacetate were combined. The addition of either of the two ketone bodies to [6-14C]glucose markedly lowered the rate of 14CO2 production in young rats, but in the adult only 3-hydroxybutyrate was effective and the magnitude of decrease in the rate of [6-14C]glucose oxidation was much lower than in young animals. Unlabelled glucose decreased the rate of [3-14C]acetoacetate oxidation to a minor extent in brain cells from both age groups; when added to 3-hydroxy[3-14C]butyrate, glucose had no effect in young rats and greatly enhanced 14CO2 production in adult brain cells. Many of these patterns of substrate interaction in dissociated brain cells differ from those in whole homogenates; they may be a function of the plasma membranes and the role of a carrier-mediated transport system or a reflection of a difference in the population of cell types or subcellular organelles in these two preparations.  相似文献   

16.
Traumatic brain injury (TBI) in its various forms has emerged as a major problem for modern society. Acute TBI can transform into a chronic condition and be a risk factor for neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases, probably through induction of oxidative stress and neuroinflammation. Here, we examined the ability of the antioxidant molecular hydrogen given in drinking water (molecular hydrogen water; mHW) to alter the acute changes induced by controlled cortical impact (CCI), a commonly used experimental model of TBI. We found that mHW reversed CCI-induced edema by about half, completely blocked pathological tau expression, accentuated an early increase seen in several cytokines but attenuated that increase by day 7, reversed changes seen in the protein levels of aquaporin-4, HIF-1, MMP-2, and MMP-9, but not for amyloid beta peptide 1–40 or 1–42. Treatment with mHW also reversed the increase seen 4 h after CCI in gene expression related to oxidation/carbohydrate metabolism, cytokine release, leukocyte or cell migration, cytokine transport, ATP and nucleotide binding. Finally, we found that mHW preserved or increased ATP levels and propose a new mechanism for mHW, that of ATP production through the Jagendorf reaction. These results show that molecular hydrogen given in drinking water reverses many of the sequelae of CCI and suggests that it could be an easily administered, highly effective treatment for TBI.  相似文献   

17.
In this study the influence of 6-hydroxydopamine (6-OHDA), in vitro and in vivo, on the oxygen consumption in the rat brain cortical slices was examined. The treatment with 6-OHDA increased the oxygen uptake of brain cortical tissue of young rats. The maximum increase was observed 7 and 14 days after treatment with 6-OHDA. On the contrary, 6-OHDA added in vitro produced very marked depression of oxygen uptake in slices of brain cortical tissue of the tested animals. The addition of isoprenaline in vitro stimulated the respiratory activity in the cerebral tissue of control young rats in all the periods of examination. Thus, 18 days after the birth, the isoprenaline-stimulation of oxygen uptake in brain tissue was 44.3% as compared to the control values. The same degree of stimulation was noted in the cerebral tissue of older animals (25, 32 and 45 days after birth). However, addition of isoprenaline did not influence the respiration of cerebral tissue stimulated by 6-OHDA.  相似文献   

18.
Ethanol production by anoxic, excised, 7-10 mm tips of rice coleoptiles was manipulated using a range of exogenous glucose concentrations. Such a dose-response curve enabled good estimates at which level of ethanol production (and hence by inference ATP production), injury commenced and also allowed assessments of energy requirements for maintenance in anoxia. Rates of net uptake or loss of K+ and P by these excised coleoptile tips were related to rates of ethanol production (r2 of 0.59 and 0.68, respectively). At 72 h anoxia, ATP levels in excised tips were similar at 0, 2.5, and 50 mol m(-3) exogenous glucose, despite large differences in the inferred rates of ATP production. At 96 h anoxia, tips without exogenous glucose had low ATP concentrations; these may be the cause or the consequence of cell injury. In tips without glucose, injury was indicated by losses of K+ and Cl- between 72-96 h anoxia, and during the first hour after re-aeration, while later than 1 h after re-aeration, rates of net uptake were substantially lower than for re-aerated tips previously in anoxia with exogenous glucose. Between 96 h and 124 h anoxia, ion losses from tips without exogenous glucose increased while recovery of net uptake after re-aeration was very sluggish and incomplete. The energy requirement for maintenance of health and survival of anoxic coleoptile tips, expressed on a fresh weight basis, was lower than for three other anoxia-tolerant plant tissues/cells, studied previously. However, the energy requirement on a protein basis was assessed at 1.4 micromol ATP mg(-1) protein h(-1) and this value is 2.6-5.4-fold higher than for the other plant tissues/cells. Yet, this requirement was still only 58-88% of the published values for aerated tissues. The reason for this relatively high ATP requirement per unit protein in anoxic rice coleoptiles remains to be elucidated.  相似文献   

19.
Abstract: Excitatory amino acid (EAA) neurotransmitters may play a role in the pathophysiology of traumatic injury to the CNS. Although NMDA receptor antagonists have been reported to have therapeutic efficacy in animal models of brain injury, these compounds may have unacceptable toxicity for clinical use. One alternative approach is to inhibit the release of EAAs following traumatic injury. The present study examined the effects of administration of a novel sodium channel blocker and EAA release inhibitor, BW1003C87, or the NMDA receptor-associated ion channel blocker magnesium chloride on cerebral edema formation following experimental brain injury in the rat. Animals (n = 33) were subjected to fluid percussion brain injury of moderate severity (2.3 atm) over the left parietal cortex. Fifteen minutes after injury, the animals received a constant infusion of BW1003C87 (10 mg/kg, i.v.), magnesium chloride (300 µmol/kg, i.v.), or saline over 15 min (2.75 ml/kg/15 min). In all animals, regional tissue water content in brain was assessed at 48 h after injury, using the wet weight/dry weight technique. In saline-treated control animals, fluid percussion brain injury produced significant regional brain edema in injured left parietal cortex ( p < 0.001), the cortical area adjacent to the site of maximal injury ( p < 0.001), left hippocampus ( p < 0.001), and left thalamus ( p = 0.02) at 48 h after brain injury. Administration of BW1003C87 15 min postinjury significantly reduced focal brain edema in the cortical area adjacent to the site of maximal injury ( p < 0.02) and left hippocampus ( p < 0.01), whereas magnesium chloride attenuated edema in left hippocampus ( p = 0.02). These results suggest that excitatory neurotransmission may play an important role in the pathogenesis of posttraumatic brain edema and that pre- or post-synaptic blockade of glutamate receptor systems may attenuate part of the deleterious sequelae of traumatic brain injury.  相似文献   

20.
The rate of conversion of [1,3-14C]glycerol into 14CO2 was measured in the presence and absence of unlabelled alternative substrates in whole homogenates from the brains of young (4-6 and 18-20 days old) and adult rats. Unlabelled glucose decreased 14CO2 production from [1,3-14C]glycerol by about 40% at all ages studied. Unlabelled 3-hydroxybutyrate significantly decreased the 14CO2 production from both low (0.2 mM) and high (2.0 mM) concentrations of glycerol in 4-6- and 18-20-day-old rat pups. However, the addition of 3-hydroxybutyrate had no effect on the rate of 14CO2 production from 2.0 mM-glycerol in adult rats, suggesting that the interaction of 3-hydroxybutyrate with glycerol in adult rat brain is complex and may be related to the biphasic kinetics previously reported for glycerol oxidation. Unlabelled glutamine decreased the production of 14CO2 by brain homogenates from 18-20-day-old and adult rats, but not in 4-6-day-old rat pups. In the converse situation, the addition of unlabelled glycerol to whole brain homogenates had little effect on the rate of 14CO2 production from [6-14C]glucose, 3-hydroxy[3-14C]butyrate and [U-14C]glutamine, although some significant differences were noted. Collectively these results suggest that glycerol and these other substrates may be metabolized in separate subcellular compartments in brain such that the products of glucose, 3-hydroxybutyrate and glutamine metabolism can dilute the oxidation of glycerol, but the converse cannot occur. The data also demonstrate that there are complex age-related changes in the interaction of glycerol with 3-hydroxybutyrate and glutamine. The fact that glycerol oxidation was only partially suppressed by the addition of 1-5 mM-glucose, -3-hydroxybutyrate or -glutamine could also suggest that glycerol may be selectively utilized as an energy substrate in some discrete brain region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号