首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have analyzed the fine structure of DNA repair in Chinese hamster ovary (CHO) cells within the G1 and G2 phases of the cell cycle. Repair of inactive regions of the genome has been suggested to increase in the G2 phase of the cell cycle compared with other phases. However, detailed studies of DNA repair in the G2 phase of the cell cycle have been hampered by technical limitations. We have used a novel synchronization protocol (D. K. Orren, L. N. Petersen, and V. A. Bohr, Mol. Cell. Biol. 15:3722-3730, 1995) which permitted detailed studies of the fine structure of DNA repair in G2. CHO cells were synchronized and UV irradiated in G1 or early G2. The rate and extent of removal of cyclobutane pyrimidine dimers from an inactive region of the genome and from both strands of the actively transcribed dihydrofolate reductase (DHFR) gene were examined within each phase. The repair of the transcribed strand of the DHFR gene was efficient in both G1 and G2, with no major differences between the two cell cycle phases. Neither the nontranscribed strand of the DHFR gene nor an inactive region of the genome was repaired in G1 or G2. CHO cells irradiated early in G2 were more resistant to UV irradiation than cells irradiated in late G1. Since we found no major difference in repair rates in G1 and G2, we suggest that G2 resistance can be attributed to the increased time (G2 and G1) available for repair before cells commit to DNA synthesis.  相似文献   

2.
Although cytostasis and cytotoxicity induced by cancer chemotherapy drugs targeting topoisomerase II (topoII) arise in specific cell cycle phases, it is unknown whether the drug-initiated DNA damage triggering these responses, or the repair (reversal) of this damage, differs between cell cycle phases or between drug classes. Accordingly, we used a flow cytometric alkaline unwinding assay to measure DNA damage (strand breakage (SB)) and SB repair in each cell cycle compartment of human cancer cell lines treated with clinically relevant concentrations of doxorubicin, daunomycin, etoposide, and mitoxantrone. We found that treated HeLa and A549 cells exhibited the greatest SB in G2/M phase, the least in G1 phase, and generally an intermediate amount in S phase. The cell cycle phase specificity of the DNA damage appeared to be predictive of the cell cycle phase of growth arrest. Furthermore, it appeared to be dependent on topoIIalpha expression as the extent of SB did not differ between cell cycle compartments in topoIIalpha-diminished A549(VP)28 cells. HeLa cells were apparently unable to repair doxorubicin-initiated SB. The rate of repair of etoposide-initiated SB in HeLa cells and of mitoxantrone-initiated SB in HeLa and A549 cells was similar in each cell cycle compartment. In A549 cells, the rate of repair of doxorubicin and etoposide-initiated SB differed between cell cycle phases. Overall, these results indicate that the cell cycle phase specificity of cytostasis and cytotoxicity induced in tumor cells by topoII-targeting drugs may be directly related to the cell cycle phase specificity of the drug-initiated DNA damage. Analysis by cell cycle compartment appears to clarify some of the intercellular heterogeneity in the extent of drug-initiated DNA damage and cytotoxicity previously observed in cancer cells analyzed as a single population; this approach might be useful in resolving inconsistent results reported in investigations of tumor cell topoII content versus response to topoII-targeting drugs.  相似文献   

3.
Effect of Methyl Methanesulphonate on Synchronized Cultures of HEp-2 Cells   总被引:1,自引:0,他引:1  
ASYNCHRONOUS cultures of human cells treated with the mono-functional alkylating agent methyl methanesulphonate (MMS) seem to undergo a DNA repair process1 although the rate of cell proliferation is greatly reduced2. To learn more about the relation between DNA synthesis and cellular division in cells with damaged template DNA we have examined the effects of MMS on synchronized cultures of HEp-2 cells treated approximately half way through the G1 phase of the cell cycle. The use of synchronized cultures makes it possible to determine whether the observed reduction in cell proliferation results from inability of the cells to go through an S phase or from their inability to divide and enter a second S phase.  相似文献   

4.
The effect of tumour promoter TPA (12-O-tetradecanoylphorbol-13-acetate) on the cell cycle of human peripheral blood lymphocytes stimulated by phytohaemagglutinin (PHA) in vitro was studied and it was found that TPA caused cells to accumulate in all the cell cycle phases. This accumulation took place preferentially at later culture passages, when lymphocytes stimulated by PHA alone stopped mainly in G0/G1 phases. Other effects of TPA were cell induction to enter higher DNA ploidy and to survive and even synthesize DNA under colchicine block of mitosis or under cytochalasin block of cytokinesis. In addition, in experiments in which a transitory block through the G1 phase of cell cycle was applied with use of aminopterin, we could show that a fraction of TPA-treated cells still entered the active phase of DNA synthesis. These findings suggest that TPA causes cell cycle controls to become loose, thereby enhancing adaptability of human lymphocytes to various hindrances in the course of cell cycle and eventually causing them to acquire characteristics known to be common for tumour cells.  相似文献   

5.
The proliferating cells of mouse epidermis (basal cells) can be separated from the non-proliferating cells (differentiating cells) Laerum, 1969) and brought into a monodisperse suspension. This makes it possible to determine the cell cycle distributions (e.g. the relative number of cells in the G1, S and (G1 + M) phases of the cell cycle) of the basal cell population by means of micro-flow fluorometry. To study the regenerative cell proliferation in epidermis in more detail, changes in cell cycle distributions were observed by means of micro-flow fluorometry during the first 48 hr following adhesive tape stripping. 3H-TdR uptake (LI and grain count distribution) and mitotic rate (colcemid method) were also observed. An initial accumulation of G2 cells was observed 2 hr after stripping, followed by a subsequent decrease to less than half the control level. This was followed by an increase of cells entering mitosis from an initial depression to a first peak between 5 and 9 hr which could be satisfactorily explained by the changes in the G2 pool. After an initial depression of the S phase parameters, three peaks with intervals of about 12 hr followed. The cells in these peaks could be followed as cohorts through the G2 phase and mitosis, indicating a partial synchrony of cell cycle passage, with a shortening of the mean generation time of basal cells from 83-3 hr to about 12 hr. The oscillations of the proportion of cells in G2 phase indicated a rapid passage through this cell cycle phase. The S phase duration was within the normal range but showed a moderate decrease and the G1 phase duration was decreased to a minimum. In rapidly proliferating epidermis there was a good correlation between change in the number of labelled cells and cells with S phase DNA content. This shows that micro-flow fluorometry is a rapid method for the study of cell kinetics in a perturbed cell system in vivo.  相似文献   

6.
Recent work has shown that macrophage-mediated cytostatic activity inhibits cell cycle traverse in G1 and/or S phase of the cell cycle without affecting late S, G2, or M phases. The present report is directed at distinguishing between such cytostatic effects on G1 phase or S phase using the accumulation of DNA polymerase alpha as a marker of G1 to S phase transition. Quiescent lymphocytes stimulated with concanavalin A undergo a semisynchronous progression from G0 to G1 to S phase with a dramatic increase in DNA polymerase alpha activity between 20 and 30 hr after stimulation. This increase in enzyme activity was inhibited, as was the accumulation of DNA, when such cells were cocultured with activated murine peritoneal macrophages during this time interval. However, if mitogen-stimulated lymphocytes were enriched for S-phase cells by centrifugal elutriation and cocultured with activated macrophages for 4-6 hr, DNA synthesis was inhibited but the already elevated DNA-polymerase activity was unaffected. Similar results were obtained when a virally transformed lymphoma cell line was substituted as the target cell in this assay. These results show that both G1 and S phase of the cycle are inhibited and suggest that inhibition of progression through the different phases may be accomplished by at least two distinct mechanisms.  相似文献   

7.
The time dependent development of lymphocytes in organ cultures of the thymus obtained from 10-day-old chick embryos was characterized by an initial phase of exponential increase of the number of lymphocytes per thymus followed by a plateau phase with no further increase in cell number. The proportion of cells in DNA synthesis dropped rapidly during the first 10 days of culture. Simultaneously the lymphocytes turned progressively smaller, as evidenced by both cell diameter and dry mass and constituted a homogeneous population of small cells at the end of the culture period. Thymic anlagen partially depleted of lymphoid precursor cells by a short hot pulse with 3H-TdR showed a prolonged exponential phase and reached normal plateau cell numbers 2–4 days later than usual. Furthermore, at least in the first part of the plateau phase, a reduction in the number of lymphoid cells per thymus resulted in a recovery in terms of the cell number which was associated with increased DNA synthesis. These results are compatible with the regulation of thymic lymphopoiesis in organ culture through a mechanism operating via cell density.  相似文献   

8.
Summary The interphase grain counts of adrenocortical cells labelled with tritiated thymidine (3H) Tdr,do not conform to a Poisson distribution, and therefore are not the result of a random disintegration process. The rate of (3H) Tdr incorporation during interphase DNA synthesis (the S phase) was studied by metaphase grain count analysis. Maximum rates of incorporation were found towards the middle of the S phase. The interphase grain count of adrenocortical cells is considered to be largely dependent on the position of the cell in the S phase.  相似文献   

9.
A cut was made on the ear conch of mouse and an extract containing epidermal chalone was injected subcutaneously 2 days later. The time changes after the chalone administration in the number of cells labeled with 3H-thymidine, in the number of grains on labeled cells and in the number of mitoses within the regenerating epidermis surrounding the wound were investigated by means of autoradiography (ARG). Grain counts decreased temporarily in early phase (0–2 h) after chalone injection. This decrease in grain count resulted in a decrease in the number of labeled cells on the ARG of a short exposure but not in that on the ARG of a long exposure. A decrease in the number of labeled cells on the ARG of a long exposure was evident at 6 h when the grain counts reverted to a level similar to the control without chalone. The number of mitoses reached a minimum at 2 h and then recovered quickly, indicating a rapid disappearance of the inhibition of cells in G 2 from entering M phase. Mitoses decreased again thereafter, presumably as a result caused by inhibition of cells in the preceding S phase from completing DNA synthesis. The extract made similarly from liver or kidney affected neither the mitotic nor the DNA synthetic activities.These results indicate that the epidermal chalone or chalones inhibit the epidermal cell proliferation in, at least, 3 different processes of the cell cycle; the DNA synthesis in S phase, the transition from G 1 to S phase and the transition from G 2 to M phase.  相似文献   

10.
Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity.  相似文献   

11.
The proliferating cells of mouse epidermis (basal cells) can be separated from the non-proliferating cells (differentiating cells) (Laerum, 1969) and brought into a mono-disperse suspension. This makes it possible to determine the cell cycle distributions (e.g. the relative number of cells in the G^ S and (G2+ M) phases of the cell cycle) of the basal cell population by means of micro-flow fluorometry. To study the regenerative cell proliferation in epidermis in more detail, changes in cell cycle distributions were observed by means of micro-flow fluorometry during the first 48 hr following adhesive tape stripping. 3H-TdR uptake (LI and grain count distribution) and mitotic rate (colcemid method) were also observed. An initial accumulation of G2 cells was observed 2 hr after stripping, followed by a subsequent decrease to less than half the control level. This was followed by an increase of cells entering mitosis from an initial depression to a first peak between 5 and 9 hr which could be satisfactorily explained by the changes in the G2 pool. After an initial depression of the S phase parameters, three peaks with intervals of about 12 hr followed. The cells in these peaks could be followed as cohorts through the G2 phase and mitosis, indicating a partial synchrony of cell cycle passage, with a shortening of the mean generation time of basal cells from 83-3 hr to about 12 hr. The oscillations of the proportion of cells in G2 phase indicated a rapid passage through this cell cycle phase. The S phase duration was within the normal range but showed a moderate decrease and the Gj phase duration was decreased to a minimum. In rapidly proliferating epidermis there was a good correlation between change in the number of labelled cells and cells with S phase DNA content. This shows that micro-flow fluorometry is a rapid method for the study of cell kinetics in a perturbed cell system in vivo.  相似文献   

12.
Rapidly proliferating, polyclonally stimulated mouse spleen lymphocytes were separated by density-gradient unit-gravity sedimentation. The following measurements were made on each fraction: the average intracellular water volume, the distribution of DNA content by flow microfluorometry, the rate of 3H-thymidine incorporation, and the intracellular pH. Fractions of cells with a small average intracellular volume were predominately in G0 or G1 phase of the cell cycle, while fractions of larger cells had higher proportions of cells in S or G2. Multiple regression analysis of the data for both T and B lymphocytes indicated that the intracellular pH of cells in G0, G1, or G2 is around pH 7.2, and that the intracellular pH of cells in S phase of the cell cycle is around pH 7.4.  相似文献   

13.
Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3?/? cells. Notably, Ada3?/? cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G? or G? phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3?/? cells confirmed higher residual DNA damage in Ada3?/? cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability.  相似文献   

14.
Chinese hamster ovary cells were synchronized by mitotic selection and used to study the relation of poly(adenosine diphosphate ribose) synthesis to DNA synthesis and the different phases of the cell cycle. DNA synthesis was measured in cells rendered permeable to exogenously supplied nucleotides. Poly(ADPR) synthesis was also measured in permeable cells in the presence of both minimum and maximum DNA damage. The maximum DNA damage was produced by treating the cells with saturating concentrations of DNase. As anticipated, the DNA synthesis complex showed its maximum activity during S phase and showed 4–5-fold less activity during the other phases of the cell cycle. The basal level of poly(ADPR) synthesis was elevated during G1, fell to its lowest level during S phase, then increased during G2 and rose to its highest level during G1. The DNase responsive activity of poly(ADPR) synthesis was relatively constant thru the cell cycle but showed a peak at the end of S phase; then the activity decreased during the subsequent G2-M period.  相似文献   

15.
The DNA mismatch repair (MMR) pathway contributes to the fidelity of DNA synthesis and recombination by correcting mispaired nucleotides and insertion/deletion loops (IDLs). We have investigated whether MMR protein expression, activity, and subcellular location are altered during discrete phases of the cell cycle in mammalian cells. Two distinct methods have been used to demonstrate that although physiological MMR protein expression, mismatch binding, and nick-directed MMR activity within the nucleus are at highest levels during S phase, MMR is active throughout the cell cycle. Despite equal MMR nuclear protein concentrations in S and G(2) phases, mismatch binding and repair activities within G(2) are significantly lower, indicating a post-translational decrease in MMR activity specific to G(2). We further demonstrate that typical co-localization of MutSalpha to late S phase replication foci can be disrupted by 2 microM N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This concentration of MNNG does not decrease ongoing DNA synthesis nor induce cell cycle arrest until the second cell cycle, with long-term colony survival decreased by only 24%. These results suggest that low level alkylation damage can selectively disrupt MMR proofreading activity during DNA synthesis and potentially increase mutation frequency within surviving cells.  相似文献   

16.

Background

Major genomic surveillance mechanisms regulated in response to DNA damage exist at the G1/S and G2/M checkpoints. It is presumed that these delays provide time for the repair of damaged DNA. Cells have developed multiple DNA repair pathways to protect themselves from different types of DNA damage. Oxidative DNA damage is processed by the base excision repair (BER) pathway. Little is known about the BER of ionizing radiation-induced DNA damage and putative heterogeneity of BER in the cell cycle context. We measured the activities of three BER enzymes throughout the cell cycle to investigate the cell cycle-specific repair of ionizing radiation-induced DNA damage. We further examined BER activities in G2 arrested human cells after exposure to ionizing radiation.

Results

Using an in vitro incision assay involving radiolabeled oligonucleotides with specific DNA lesions, we examined the activities of several BER enzymes in the whole cell extracts prepared from synchronized human HeLa cells irradiated in G1 and G2 phase of the cell cycle. The activities of human endonuclease III (hNTH1), a glycosylase/lyase that removes several damaged bases from DNA including dihydrouracil (DHU), 8-oxoguanine-DNA glycosylase (hOGG1) that recognizes 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) lesion and apurinic/apyrimidinic endonuclease (hAPE1) that acts on abasic sites including synthetic analog furan were examined.

Conclusion

Overall the repair activities of hNTH1 and hAPE1 were higher in the G1 compared to G2 phase of the cell cycle. The percent cleavages of oligonucleotide substrate with furan were greater than substrate with DHU in both G1 and G2 phases. The irradiation of cells enhanced the cleavage of substrates with furan and DHU only in G1 phase. The activity of hOGG1 was much lower and did not vary within the cell cycle. These results demonstrate the cell cycle phase dependence on the BER of ionizing radiation-induced DNA damage. Interestingly no evidence of enhanced BER activities was found in irradiated cells arrested in G2 phase.  相似文献   

17.
E S Manuilova 《Genetika》1977,13(1):37-45
Lethal and mutagenic effects of UV light were studied in two synchronized UV-sensitive Chinese hamster cell clones differing in the degree of sensitivity (CHS1, CHS2). It is shown that the phase of mitosis is most resistant to the lethal effect of UV. The sensitivity of both cell clones increases in the pre-synthetic phase and reaches its maximum during the phase of DNA synthesis. Positive correlation of cell sensitivity to mutagenic and lethal action of UV was observed when studying induced mutability in both cell clones during the phase of DNA synthesis. However, the study of the mutagenic effect of UV on different phases of the synthesis. However, the study of the mutagenic effect of UV on different phases of the cell cycle (M, G1, S) in the less UV-sensitive cell clone has revealed that the maximal mutation yield takes place when cells are irradiated at G1 (CHS1). The discrepancy observed may be due to different probability of the phenotypic detection of pre-mutational lesions, arising at different phases of the cell cycle. It is shown that only one cell generation is necessary for the expression of pre-mutational changes. These data allow to conclude that the increased mutation rate observed at G1 (as compared with S) reveals rather a probability of the expression but not of the occurrence of pre-mutational lesions. It is suggested that the fixation of mutations in the cells studied proceeds during the post-replication repair synthesis.  相似文献   

18.
The variation of DNA repair activity during the cell cycle was studied by analysing the UV-stimulated DNA synthesis in cells synchronized in mitosis. This activity was detected both by autoradiography and by directly measuring the incorporation of tritiated thymidine in cells irradiated and incubated in the presence of hydroxyurea. Cells in all phases were found to be able to perform repair. However the activity appeared to be considerably lower in mitotic cells than in cell in other phases. Increasing values of repair capacity were observed in G1 cells, in mixed G2, S and M cells and in asynchronous cells. The relationship between these findings and data on survival rates in the same synchronized cells is discussed.  相似文献   

19.
A mutant of the MPC-11 mouse myeloma cell line which grows as a monolayer has been used to study the synthesis and secretion of IgG in relation to the cell cycle. The mitotic detachment method has been used to obtain a pure population of mitotic cells which were then allowed to progress through the G1, S, and G2 phases of the cell cycle. The synthesis and the rate of secretion of IgG have been studied in each phase of the cycle by incubation of cells with 14C-amino acids, followed by immunoprecipitation and quantitation of synthesized and secreted IgG2b. The data are consistent with the idea that synthesis and secretion of Ig are not a cell cycle dependent event in myeloma cells.  相似文献   

20.
The strong skin irritant cantharidin dissolved in benzene was applied to the back of hairless mice. Single cell suspensions of epidermal basal cells were obtained and flow microfluorometric measurements of cellular DNA content were made. Smears were made for autoradiography, and the [3H]TdR labelling index (LI) and mean grain count (MGC) were assessed up to 3 days after cantharidin application. Three successive peaks of cells with S phase DNA content accompanied by three LI peaks were observed. The first two peaks were follwed by peaks of cells in G2 phase, indicating that after the acute cell injury caused by cantharidin the cells traversed the cell cycle in partial synchrony through two subsequent cell cycles, each of 10–12 hr duration. During this phase of rapid proliferation the LI reached the proportion of cells in S phase, contrary to what is observed in untreated mouse epidermis, where the labelled cells contribute to about half the proportion of cells with S phase DNA content. The first two peaks of cells in S phase and LI coincided with an increased MGC, whereas the third peak was accompanied by a MGC significantly below control values. This indicates that this latter peak is due to a longer DNA synthesis time rather than to a partially synchronized and increased cell proliferation. The duration of the G1, S and G2 phases seems to be reduced initially in rapidly proliferating epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号