首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of preexisting immunity to viral vectors is a major issue for the development of viral-vectored vaccines. In this study, we investigate the effect of preexisting vaccinia virus immunity on the immunogenicity and efficacy of a DNA/modified vaccinia Ankara (MVA) SIV vaccine in rhesus macaques using a pathogenic intrarectal SIV251 challenge. Preexisting immunity decreased SIV-specific CD8 and CD4 T cell responses but preserved the SIV-specific humoral immunity. In addition, preexisting immunity did not diminish the control of an SIV challenge mediated by the DNA/MVA vaccine. The peak and set point viremia was 150- and 17-fold lower, respectively, in preimmune animals compared with those of control animals. The peak and set point viremia correlated directly with colorectal virus at 2 wk postchallenge suggesting that early control of virus replication at the site of viral challenge was critical for viral control. Factors that correlated with early colorectal viral control included 1) the presence of anti-SIV IgA in rectal secretions, 2) high-avidity binding Ab for the native form of Env, and 3) low magnitude of vaccine-elicited SIV-specific CD4 T cells displaying the CCR5 viral coreceptor. The frequency of SIV-specific CD8 T cells in blood and colorectal tissue at 2 wk postchallenge did not correlate with early colorectal viral control. These results suggest that preexisting vaccinia virus immunity may not limit the potential of recombinant MVA vaccines to elicit humoral immunity and highlight the importance of immunodeficiency virus vaccines achieving early control at the mucosal sites of challenge.  相似文献   

2.
To evaluate immunity induced by a novel DNA prime-boost regimen, we constructed a DNA plasmid encoding the gag and pol genes from simian immunodeficiency virus (SIV) (SIVgag/pol DNA), in addition to a replication-deficient vaccinia virus strain DIs recombinant expressing SIV gag and pol genes (rDIsSIVgag/pol). In mice, priming with SIVgag/pol DNA, followed by rDIsSIVgag/pol induced an SIV-specific lymphoproliferative response that was mediated by a CD4+-T-lymphocyte subset. Immunization with either vaccine alone was insufficient to induce high levels of proliferation or Th1 responses in the animals. The prime-boost regimen also induced SIV Gag-specific cellular responses based on gamma interferon secretion, as well as cytotoxic-T-lymphocyte responses. Thus, the regimen of DNA priming and recombinant DIs boosting induced Th1-type cell-mediated immunity, which was associated with resistance to viral challenge with wild-type vaccinia virus expressing SIVgag/pol, suggesting that this new regimen may hold promise as a safe and effective vaccine against human immunodeficiency virus type 1.  相似文献   

3.
Virus-specific cytotoxic T lymphocytes (CTL) are critical for control of human immunodeficiency virus type 1 replication. However, viral escape from CTL recognition can undermine this immune control. Here we demonstrate the high frequency and pattern of viral escape from dominant epitope-specific CTL in SIV gag DNA-vaccinated rhesus monkeys following a heterologous simian immunodeficiency virus (SIV) challenge. DNA-vaccinated monkeys exhibited initial effective control of the SIV challenge, but this early control was lost by serial breakthroughs of viral replication over a 3-year follow-up period. Increases in plasma viral RNA correlated temporally with declines of dominant SIV epitope-specific CD8(+) T-lymphocyte responses and the emergence of viral mutations that escaped recognition by dominant epitope-specific CTL. Viral escape from CTL occurred in a total of seven of nine vaccinated and control monkeys, including three animals that initially controlled viral replication to undetectable levels of plasma viral RNA. These data suggest that CTL exert selective pressure on viral replication and that viral escape from CTL may be a limitation of CTL-based AIDS vaccine strategies.  相似文献   

4.
Since cytotoxic T lymphocytes (CTLs) are critical for controlling human immunodeficiency virus type 1 (HIV-1) replication in infected individuals, candidate HIV-1 vaccines should elicit virus-specific CTL responses. In this report, we study the immune responses elicited in rhesus monkeys by a recombinant poxvirus vaccine and the degree of protection afforded against a pathogenic simian-human immunodeficiency virus SHIV-89.6P challenge. Immunization with recombinant modified vaccinia virus Ankara (MVA) vectors expressing SIVmac239 gag-pol and HIV-1 89.6 env elicited potent Gag-specific CTL responses but no detectable SHIV-specific neutralizing antibody (NAb) responses. Following intravenous SHIV-89.6P challenge, sham-vaccinated monkeys developed low-frequency CTL responses, low-titer NAb responses, rapid loss of CD4+ T lymphocytes, high-setpoint viral RNA levels, and significant clinical disease progression and death in half of the animals by day 168 postchallenge. In contrast, the recombinant MVA-vaccinated monkeys demonstrated high-frequency secondary CTL responses, high-titer secondary SHIV-89.6-specific NAb responses, rapid emergence of SHIV-89.6P-specific NAb responses, partial preservation of CD4+ T lymphocytes, reduced setpoint viral RNA levels, and no evidence of clinical disease or mortality by day 168 postchallenge. There was a statistically significant correlation between levels of vaccine-elicited CTL responses prior to challenge and the control of viremia following challenge. These results demonstrate that immune responses elicited by live recombinant vectors, although unable to provide sterilizing immunity, can control viremia and prevent disease progression following a highly pathogenic AIDS virus challenge.  相似文献   

5.
Therapeutic dendritic-cell vaccine for simian AIDS   总被引:27,自引:0,他引:27  
Lu W  Wu X  Lu Y  Guo W  Andrieu JM 《Nature medicine》2003,9(1):27-32
An effective immune response against human immunodeficiency virus or simian immunodeficiency virus (SIV) is critical in achieving control of viral replication. Here, we show in SIV-infected rhesus monkeys that an effective and durable SIV-specific cellular and humoral immunity is elicited by a vaccination with chemically inactivated SIV-pulsed dendritic cells. After three immunizations made at two-week intervals, the animals exhibited a 50-fold decrease of SIV DNA and a 1,000-fold decrease of SIV RNA in peripheral blood. Such reduced viral load levels were maintained over the remaining 34 weeks of the study. Molecular and cellular analyses of axillary and inguinal node lymphocytes of vaccinated monkeys revealed a correlation between decreased SIV DNA and RNA levels and increased SIV-specific T-cell responses. Neutralizing antibody responses were augmented and remained elevated. Inactivated whole virus-pulsed dendritic cell vaccines are promising means to control diseases caused by immuno- deficiency viruses.  相似文献   

6.
In an effort to develop an AIDS vaccine that elicits high-frequency cytotoxic-T-lymphocyte (CTL) responses with specificity for a diversity of viral epitopes, we explored two prototype multiepitope plasmid DNA vaccines in the simian-human immunodeficiency virus/rhesus monkey model to determine their efficiency in priming for such immune responses. While a simple multiepitope vaccine construct demonstrated limited immunogenicity in monkeys, this same multiepitope genetic sequence inserted into an immunogenic simian immunodeficiency virus gag DNA vaccine elicited high-frequency CTL responses specific for all of the epitopes included in the vaccine. Both multiepitope vaccine prototypes primed for robust epitope-specific CTL responses that developed following boosting with recombinant modified vaccinia virus Ankara vaccines expressing complete viral proteins. The natural hierarchy of immunodominance for these epitopes was clearly evident in the boosted monkeys. These studies suggest that multiepitope plasmid DNA vaccine-based prime-boost regimens can efficiently prime for CTL responses of increased breadth and magnitude, although they do not overcome predicted hierarchies of immunodominance.  相似文献   

7.
An effective vaccine against human immunodeficiency virus (HIV) should protect against mucosal transmission of genetically divergent isolates. As a safe alternative to live attenuated vaccines, the immunogenicity and protective efficacy of a DNA vaccine containing simian immunodeficiency virus (SIV) strain 17E-Fr (SIV/17E-Fr) gag-pol-env was analyzed in rhesus macaques. Significant levels of cytotoxic T lymphocytes (CTL), but low to undetectable serum antibody responses, were observed following multiple immunizations. SIV-specific mucosal antibodies and CTL were also detected in rectal washes and gut-associated lymphoid tissues, respectively. Vaccinated and naive control monkeys were challenged intrarectally with SIV strain DeltaB670 (SIV/DeltaB670), a primary isolate whose env is 15% dissimilar to that of the vaccine strain. Four of seven vaccinees were protected from infection as determined by the inability to identify viral RNA or DNA sequences in the peripheral blood and the absence of anamnestic antibody responses postchallenge. This is the first report of mucosal protection against a primary pathogenic, heterologous isolate of SIV by using a commercially viable vaccine approach. These results support further development of a DNA vaccine for protection against HIV.  相似文献   

8.
DNA priming has previously been shown to elicit augmented immune responses when administered by electroporation (EP) or codelivered with a plasmid encoding interleukin-12 (pIL-12). We hypothesized that the efficacy of a DNA prime and recombinant adenovirus 5 boost vaccination regimen (DNA/rAd5) would be improved when incorporating these vaccination strategies into the DNA priming phase, as determined by pathogenic simian immunodeficiency virus SIVmac239 challenge outcome. The whole SIVmac239 proteome was delivered in 5 separate DNA plasmids (pDNA-SIV) by EP with or without pIL-12, followed by boosting 4 months later with corresponding rAd5-SIV vaccine vectors. Remarkably, after repeated low-dose SIVmac239 mucosal challenge, we demonstrate 2.6 and 4.4 log reductions of the median SIV peak and set point viral loads in rhesus macaques (RMs) that received pDNA-SIV by EP with pIL-12 compared to the median peak and set point viral loads in mock-immunized controls (P < 0.01). In 5 out of 6 infected RMs, strong suppression of viremia was observed, with intermittent "blips" in virus replication. In 2 RMs, we could not detect the presence of SIV RNA in tissue and lymph nodes, even after 13 viral challenges. RMs immunized without pIL-12 demonstrated a typical maximum of 1.5 log reduction in virus load. There was no significant difference in the overall magnitude of SIV-specific antibodies or CD8 T-cell responses between groups; however, pDNA delivery by EP with pIL-12 induced a greater magnitude of SIV-specific CD4 T cells that produced multiple cytokines. This vaccine strategy is relevant for existing vaccine candidates entering clinical evaluation, and this model may provide insights into control of retrovirus replication.  相似文献   

9.
ABSTRACT: BACKGROUND: An effective AIDS vaccine remains one of the highest priorities in HIV-research. Our recent study showed that vaccination of rhesus macaques with recombinant simian varicella virus (rSVV) vector -- simian immunodeficiency virus (SIV) envelope and gag genes, induced neutralizing antibodies and cellular immune responses to SIV and also significantly reduced plasma viral loads following intravenous pathogenic challenge with SIVMAC251/CX1. FINDINGS: The purpose of this study was to define cellular immunological correlates of protection in rSVV-SIV vaccinated and SIV challenged animals. Immunofluorescent staining and multifunctional assessment of SIV-specific T-cell responses were evaluated in both Experimental and Control vaccinated animal groups. Significant increases in the proliferating CD4+ T-cell population and polyfunctional T-cell responses were observed in all Experimental-vaccinated animals compared with the Control-vaccinated animals. CONCLUSIONS: Increased CD4+ T-cell proliferation was significantly and inversely correlated with plasma viral load. Increased SIV-specific polyfunctional cytokine responses and increased proliferation of CD4+ T-cell may be crucial to control plasma viral loads in vaccinated and SIVMAC251/CX1 challenged macaques.  相似文献   

10.
Although recent evidence has confirmed the importance of cytotoxic T-lymphocyte (CTL) responses in controlling human immunodeficiency virus type 1 and simian immunodeficiency virus replication, the relevance of the epitopic breadth of those CTL responses remains unexplored. In the present study, we sought to determine whether vaccination can expand CTL populations which recognize a repertoire of viral epitopes that is greater than is typically generated in the course of a viral infection. We demonstrate that potent secondary CTL responses to subdominant epitopes are rapidly generated following a pathogenic simian-human immunodeficiency virus challenge of rhesus monkeys vaccinated with plasmid DNA or recombinant modified vaccinia virus Ankara vaccines. These data indicate that prior vaccination can increase the breadth of the CTL response that evolves after an AIDS virus infection.  相似文献   

11.
Since most human immunodeficiency virus (HIV) infections are initiated following mucosal exposure to the virus, the anatomic containment or abortion of an HIV infection is likely to require vaccine-elicited cellular immune responses in those mucosal sites. Studying vaccine-elicited mucosal immune responses has been problematic because of the difficulties associated with sampling T lymphocytes from those anatomic compartments. In the present study, we demonstrate that mucosal cytotoxic T lymphocytes (CTL) specific for simian immunodeficiency virus (SIV) and simian HIV can be reproducibly sampled from intestinal mucosal tissue of rhesus monkeys obtained under endoscopic guidance. These lymphocytes recognize peptide-major histocompatibility complex class I complexes and express gamma interferon on exposure to peptide antigen. Interestingly, systemic immunization of monkeys with plasmid DNA immunogens followed by live recombinant attenuated poxviruses or adenoviruses with genes deleted elicits high-frequency SIV-specific CTL responses in these mucosal tissues. These studies therefore suggest that systemic delivery of potent HIV immunogens may suffice to elicit substantial mucosal CTL responses.  相似文献   

12.
Since virus-specific CTL play a central role in containing HIV replication, a candidate AIDS vaccine should generate virus-specific CTL responses. In this study, the ability of a recombinant canarypox virus expressing SIV Gag-Pol-Env (ALVAC/SIV gag-pol-env) was assessed for its ability to elicit both dominant and subdominant epitope-specific CTL responses in rhesus monkeys. Following a series of five immunizations, memory CTL responses specific for a dominant Gag epitope could be demonstrated in the peripheral blood of vaccinated monkeys. Memory CTL responses to a subdominant Pol epitope were undetectable in these animals. Following challenge with SIVmac251, the experimentally vaccinated animals developed high frequency CTL responses specific for the dominant Gag epitope that emerged in temporal association with the early containment of viral replication. Interestingly, the experimentally vaccinated, but not the control vaccinated animals, developed CTL responses to the subdominant Pol epitope that were detectable only after containment of early viremia. Thus, recombinant canarypox vaccination elicited low frequency, but durable memory CTL populations. The temporal association of the emergence of the dominant epitope-specific response with early viral containment following challenge suggests that this immune response played a role in the accelerated clearing of early viremia in these animals. The later emerging CTL response specific for the subdominant epitope may contribute to the control of viral replication in the setting of chronic infection.  相似文献   

13.
Sooty mangabeys are a natural host of simian immunodeficiency virus (SIV) that remain asymptomatic and do not exhibit increased immune activation or increased T-lymphocyte turnover despite sustained high levels of SIV viremia. In this study we asked whether an altered immune response to SIV contributes to the lack of immunopathology in sooty mangabeys as opposed to species with pathogenic lentivirus infection. SIV-specific cellular immune responses were investigated in a cohort of 25 sooty mangabeys with natural SIV infection. Gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay responses targeting a median of four SIV proteins were detected in all 25 mangabeys and were comparable in magnitude to those of 13 rhesus macaques infected with SIVmac251 for more than 6 months. As with rhesus macaques, Th2 ELISPOT responses to SIV were absent or >10-fold lower than the IFN-gamma ELISPOT response to the same SIV protein. The SIV-specific ELISPOT response was predominantly mediated by CD8+ T lymphocytes; the frequency of circulating SIV-specific CD8+ T lymphocytes ranged between 0.11% and 3.26% in 13 mangabeys. Functionally, the SIV-specific CD8+ T lymphocytes were cytotoxic; secreted IFN-gamma, tumor necrosis factor alpha, and macrophage inflammatory protein 1beta; and had an activated effector phenotype. Although there was a trend toward higher frequencies of SIV-specific CD8+ T lymphocytes in mangabeys with lower viral loads, a significant inverse correlation between SIV viremia and SIV-specific cellular immunity was not detected. The consistent detection of Th1-type SIV-specific cellular immune responses in naturally infected sooty mangabeys suggests that immune attenuation is neither a feature of nor a requirement for maintenance of nonpathogenic SIV infection in its natural host.  相似文献   

14.
Whereas several recent AIDS vaccine strategies have protected rhesus macaques against a pathogenic simian/human immunodeficiency virus (SHIV)(89.6P) challenge, similar approaches have provided only modest, transient reductions in viral burden after challenge with virulent, pathogenic SIV, which is more representative of HIV infection of people. We show here that priming with replicating adenovirus recombinants encoding SIV env/rev, gag, and/or nef genes, followed by boosting with SIV gp120 or an SIV polypeptide mimicking the CD4 binding region of the envelope, protects rhesus macaques from intrarectal infection with the highly pathogenic SIV(mac251). Using trend analysis, significant reductions in acute-phase and set point viremia were correlated with anti-gp120 antibody and cellular immune responses, respectively. Within immunization groups exhibiting significant protection, a subset (39%) of macaques have exhibited either no viremia, cleared viremia, or controlled viremia at the threshold of detection, now more than 40 weeks postchallenge. This combination prime-boost strategy, utilizing replication competent adenovirus, is a promising alternative for HIV vaccine development.  相似文献   

15.
The ability to monitor vaccine-elicited CD8(+) cytotoxic T-lymphocyte (CTL) responses in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys has been limited by our knowledge of viral epitopes predictably presented to those lymphocytes by common rhesus monkey MHC class I alleles. We now define an SIV and SHIV Nef CTL epitope (YTSGPGIRY) that is presented to CD8(+) T lymphocytes by the common rhesus monkey MHC class I molecule Mamu-A*02. All seven infected Mamu-A*02(+) monkeys evaluated demonstrated this response, and peptide-stimulated interferon gamma Elispot assays indicated that the response represents a large proportion of the entire CD8(+) T-lymphocyte SIV- or SHIV-specific immune response of these animals. Knowledge of this epitope and MHC class I allele substantially increases the number of available rhesus monkeys that can be used for testing prototype HIV vaccines in this important animal model.  相似文献   

16.
The presence, at the time of challenge, of antiviral effector T cells in the vaginal mucosa of female rhesus macaques immunized with live-attenuated simian-human immunodeficiency virus 89.6 (SHIV89.6) is associated with consistent and reproducible protection from pathogenic simian immunodeficiency virus (SIV) vaginal challenge (18). Here, we definitively demonstrate the protective role of the SIV-specific CD8(+) T-cell response in SHIV-immunized monkeys by CD8(+) lymphocyte depletion, an intervention that abrogated SHIV-mediated control of challenge virus replication and largely eliminated the SIV-specific T-cell responses in blood, lymph nodes, and genital mucosa. While in the T-cell-intact SHIV-immunized animals, polyfunctional and degranulating SIV-specific CD8(+) T cells were present in the genital tract and lymphoid tissues from the day of challenge until day 14 postchallenge, strikingly, expansion of SIV-specific CD8(+) T cells in the immunized monkeys was minimal and limited to the vagina. Thus, protection from uncontrolled SIV replication in animals immunized with attenuated SHIV89.6 is primarily mediated by CD8(+) T cells that do not undergo dramatic systemic expansion after SIV challenge. These findings demonstrate that despite, and perhaps because of, minimal systemic expansion of T cells at the time of challenge, a stable population of effector-cytotoxic CD8(+) T cells can provide significant protection from vaginal SIV challenge.  相似文献   

17.
A comprehensive vaccine for human immunodeficiency virus type 1 (HIV-1) would block HIV-1 acquisition as well as durably control viral replication in breakthrough infections. Recent studies have demonstrated that Env is required for a vaccine to protect against acquisition of simian immunodeficiency virus (SIV) in vaccinated rhesus monkeys, but the antigen requirements for virologic control remain unclear. Here, we investigate whether CD8(+) T lymphocytes from vaccinated rhesus monkeys mediate viral inhibition in vitro and whether these responses predict virologic control following SIV challenge. We observed that CD8(+) lymphocytes from 23 vaccinated rhesus monkeys inhibited replication of SIV in vitro. Moreover, the magnitude of inhibition prior to challenge was inversely correlated with set point SIV plasma viral loads after challenge. In addition, CD8 cell-mediated viral inhibition in vaccinated rhesus monkeys correlated significantly with Gag-specific, but not Pol- or Env-specific, CD4(+) and CD8(+) T lymphocyte responses. These findings demonstrate that in vitro viral inhibition following vaccination largely reflects Gag-specific cellular immune responses and correlates with in vivo virologic control following infection. These data suggest the importance of including Gag in an HIV-1 vaccine in which virologic control is desired.  相似文献   

18.
While a diversity of immunogens that elicit qualitatively different cellular immune responses are being assessed in clinical human immunodeficiency virus vaccine trials, the consequences of those varied responses for viral control remain poorly understood. In the present study, we evaluated the induction of virus-specific T-cell responses in rhesus monkeys using a series of diverse vaccine vectors. We assessed both the magnitude and the functional profile of the virus-specific CD8+ T cells by measuring gamma interferon, interleukin-2, and tumor necrosis factor alpha production. We found that the different vectors generated virus-specific T-cell responses of different magnitudes and with different functional profiles. Heterologous prime-boost vaccine regimens induced particularly high-frequency virus-specific T-cell responses with polyfunctional repertoires. Yet, immediately after a pathogenic simian-human immunodeficiency virus (SHIV) challenge, no significant differences were observed between these cohorts of vaccinated monkeys in the magnitudes or the functional profiles of their virus-specific CD8+ T cells. This finding suggests that the high viral load shapes the functional repertoire of the cellular immune response during primary infection. Nevertheless, in all vaccination regimens, higher frequency and more polyfunctional vaccine-elicited virus-specific CD8+ T-cell responses were associated with better viral control after SHIV challenge. These observations highlight the contributions of both the quality and the magnitude of vaccine-elicited cellular immune responses in the control of immunodeficiency virus replication.  相似文献   

19.
At present it is not known which form of immunity would be most effective against infection with human immunodeficiency virus (HIV). To evaluate the possible role of cellular immunity, we examined whether four HIV type 2-exposed but seronegative macaques developed cellular immune responses and determined whether these exposed macaques were resistant to mucosal transmission of simian immunodeficiency virus (SIV). Following intrarectal challenge with SIV, 2 monkeys were protected against detectable SIV replication and another showed suppressed viral replication compared to 14 persistently infected controls. The two protected monkeys demonstrated SIV-specific cytotoxic T lymphocytes before as well as after SIV challenge. Here we provide evidence that activation of the cell-mediated arm of the immune system only, without antibody formation, can control SIV replication in macaques. The results imply that vaccines that stimulate a strong and broad cellular immune response could prevent mucosal HIV transmission.  相似文献   

20.
The goal of an AIDS vaccine regimen designed to induce cellular immune responses should be to reduce the viral set point and preserve memory CD4 lymphocytes. Here we investigated whether vaccine-induced cellular immunity in the absence of any Env-specific antibodies can control viral replication following multiple low-dose challenges with the highly pathogenic SIVmac239 isolate. Eight Mamu-A*01-positive Indian rhesus macaques were vaccinated with simian immunodeficiency virus (SIV) gag, tat, rev, and nef using a DNA prime-adenovirus boost strategy. Peak viremia (P = 0.007) and the chronic phase set point (P = 0.0192) were significantly decreased in the vaccinated cohort, out to 1 year postinfection. Loss of CD4(+) memory populations was also ameliorated in vaccinated animals. Interestingly, only one of the eight vaccinees developed Env-specific neutralizing antibodies after infection. The control observed was significantly improved over that observed in animals vaccinated with SIV gag only. Vaccine-induced cellular immune responses can, therefore, exert a measure of control over replication of the AIDS virus in the complete absence of neutralizing antibody and give us hope that a vaccine designed to induce cellular immune responses might control viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号