首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 684 毫秒
1.
2.
3.
Tryptophan was found to be degraded in Saccharomyces cerevisiae mainly to tryptophol. Upon chromatography on DEAE-cellulose two aminotransferases were identified: Aromatic aminotransferase I was constitutively synthesized and was active in vitro with tryptophan, phenylalanine or tyrosine as amino donors and pyruvate, phenylpyruvate or 2-oxoglutarate as amino acceptors. The enzyme was six times less active with and had a twenty times lower affinity for tryptophan (K m=6 mM) than phenylalanine or tyrosine. It was postulated thus that aromatic aminotransferase I is involved in vivo in the last step of tyrosine and phenylalanine biosynthesis. Aromatic aminotransferase II was inducible with tryptophan but also with the other two aromatic amino acids either alone or in combinations. With tryptophan as amino donor the enzyme was most active with phenylpyruvate and not active with 2-oxoglutarate as amino acceptor; its affinity for tryptophan was similar as for the other aromatic amino acids (K m=0.2–0.4 mM). Aromatic aminotransferase II was postulated to be involved in vivo mainly in the degradation of tryptophan, but may play also a role in the degradation of the other aromatic amino acids.A mutant strain defective in the aromatic aminotransferase II (aat2) was isolated and its influence on tryptophan accumulation and pool was studied. In combination with mutations trp2 fbr, aro7 and cdr1-1, mutation aat2 led to a threefold increase of the tryptophan pool as compared to a strain with an intact aromatic aminotransferase II.  相似文献   

4.
The ability of yeasts to grow in the presence of weak organic acid preservatives is an important cause of food spoilage. Many of the determinants of acetate resistance in Saccharomyces cerevisiae differ from the determinants of resistance to the more lipophilic sorbate and benzoate. Interestingly, we show in this study that hypersensitivity to both acetate and sorbate results when the cells have auxotrophic requirements for aromatic amino acids. In tryptophan biosynthetic pathway mutants, this weak acid hypersensitivity is suppressed by supplementing the medium with high levels of tryptophan or, in the case of sorbate sensitivity, by overexpressing the Tat2p high affinity tryptophan permease. Weak acid stress therefore inhibits uptake of aromatic amino acids from the medium. This allows auxotrophic requirements for these amino acids to strongly influence the resistance phenotypes of mutant strains. This property must be taken into consideration when using these phenotypes to attribute functional assignments to genes. We show that the acetate sensitivity phenotype previously ascribed to yeast mutants lacking the Pdr12p and Azr1p plasma membrane transporters is an artefact arising from the use of trp1 mutant strains. These transporters do not confer resistance to high acetate levels and, in prototrophs, their presence is actually detrimental for this resistance.  相似文献   

5.
The ARO8 and ARO9 genes of Saccharomyces cerevisiae were isolated by complementation of the phenylalanine/tyrosine auxotrophy of an aro8 aro9 double-mutant strain that is defective in aromatic aminotransferases I (aro8) and II (aro9). The genes were sequenced, and deletion mutants were constructed and analysed. The expression of ARO8 and ARO9 was studied. The deduced amino acid sequences of Aro8p and Aro9p suggest that the former is a 500-residue, 56168-Da polypeptide and the latter a 513-residue, 58516-Da polypeptide. They correspond, respectively, to Ygl202p and Yhr137p, two putative proteins of unknown function revealed by systematic sequencing of the yeast genome. We show that aromatic aminotransferases I and II are homologous proteins, members of aminotransferase subgroup I, and, together with three other proteins, they constitute within the subgroup a new subfamily of enzymes specialised for aromatic amino acid and α-aminoadipate transamination. ARO8 expression is subject to the general control of amino acid biosynthesis. ARO9 expression is induced when aromatic amino acids are present in the growth medium and also in aro8 mutants grown on minimal ammonia medium. An autonomously replicating sequence (ARS) element is located between the ARO8 gene and YGL201c which encodes a protein of the minichromosome maintenance family. Received: 18 June 1997 / Accepted: 23 September 1997  相似文献   

6.
The ARO8 and ARO9 genes of Saccharomyces cerevisiae were isolated by complementation of the phenylalanine/tyrosine auxotrophy of an aro8 aro9 double-mutant strain that is defective in aromatic aminotransferases I (aro8) and II (aro9). The genes were sequenced, and deletion mutants were constructed and analysed. The expression of ARO8 and ARO9 was studied. The deduced amino acid sequences of Aro8p and Aro9p suggest that the former is a 500-residue, 56168-Da polypeptide and the latter a 513-residue, 58516-Da polypeptide. They correspond, respectively, to Ygl202p and Yhr137p, two putative proteins of unknown function revealed by systematic sequencing of the yeast genome. We show that aromatic aminotransferases I and II are homologous proteins, members of aminotransferase subgroup I, and, together with three other proteins, they constitute within the subgroup a new subfamily of enzymes specialised for aromatic amino acid and α-aminoadipate transamination. ARO8 expression is subject to the general control of amino acid biosynthesis. ARO9 expression is induced when aromatic amino acids are present in the growth medium and also in aro8 mutants grown on minimal ammonia medium. An autonomously replicating sequence (ARS) element is located between the ARO8 gene and YGL201c which encodes a protein of the minichromosome maintenance family.  相似文献   

7.
Transport of Aromatic Amino Acids by Pseudomonas aeruginosa   总被引:9,自引:5,他引:4       下载免费PDF全文
Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan.  相似文献   

8.
9.
A quantitative analysis of the impact of feedback inhibition on aromatic amino acid biosynthesis was performed in chemostat cultures of Saccharomyces cerevisiae. Introduction of a tyrosine-insensitive allele of ARO4 (encoding 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase) caused a three-fold increase of intracellular phenylalanine and tyrosine concentrations. These amino acids were not detected extracellularly. However, an over 100-fold increase of the extracellular levels of phenylacetate, phenylethanol and their para-hydroxyl analogues was observed. The total increase of the flux through the aromatic pathway was estimated to be over four-fold. Individual overexpression of either the wild-type or feedback insensitive allele of ARO7 (encoding chorismate mutase had no significant impact. However when they were combined with the Tyr-insensitive ARO4 allele in combination with the Tyr-insensitive ARO4 allele, extracellular concentrations of aromatic compounds were increased by over 200-fold relative to the reference strain, corresponding to a 4.5-fold increase of the flux through the aromatic amino acid biosynthesis pathway. Elimination of allosteric control on these two key reactions in aromatic amino acid metabolism significantly affected intracellular concentrations of several non-aromatic amino acids. This broader impact of amino acid biosynthesis presents a challenge in rational optimization of the production of specific amino acids and derived flavour compounds.  相似文献   

10.
Strains of Salmonella typhimurium that contain the aroC321 allele require phenylalanine, tyrosine, and tryptophan for growth but revert to tryptophan-prototrophy at high frequencies (about 10(-4) per cell plated). The Trp+ derivatives remain auxotrophic for phenylalanine and tyrosine and are genetically unstable, in that they readily give rise to cells that require all three aromatic amino acids. On the basis of growth characteristics and genetic instability, it has been proposed that reversion to tryptophan-prototrophy in aroC321 strains occurs by genetic duplication. This paper provides genetic evidence in support of that hypothesis. The data indicate, moreover, that the tryptophan prototrophs contain a duplication that extends at least from glpT to xyl, a region of greater than 30% of the Salmonella chromosome. The aroC locus is found within the duplicated region, and aroC321/aroC321 merodiploids apparently grow as tryptophan prototrophs because of a gene-dosage effect.  相似文献   

11.
12.
13.
Bacterial indoleacetic acid (IAA) production, which has been proposed to play a role in the Rhizobium-legume symbiosis, is a poorly understood process. Previous data have suggested that IAA biosynthesis in Rhizobium meliloti can occur through an indolepyruvate intermediate derived from tryptophan by an aminotransferase activity. To further examine this biosynthetic pathway, the aromatic aminotransferase (AAT) activity of Rhizobium meliloti 102F34 (F34) was characterized. At least four proteins were detected on nondenaturing gels of F34 protein extracts that exhibited AAT activity. All four of these AATs were constitutively produced and utilized the aromatic amino acids tryptophan, phenylalanine, and tyrosine as amino substrates. Two AATs were also capable of using aspartate. Plasmids from an F34 gene bank were identified that coded for the synthesis of at least three of these proteins, and the respective gene sequences were localized by transposon mutagenesis. Selected transposon insertions were recombined into the F34 genome to produce strains defective in two of these proteins (AAT1 and AAT2). Characterization of the mutants revealed that neither was essential for the biosynthesis of IAA in the absence of exogenous tryptophan, but that both contributed to IAA biosynthesis when high levels of exogenous tryptophan were present. AAT1 and AAT2 were also not required for the production of a minimal level of aromatic amino acids, but both were able to scavenge nitrogen from the aromatic amino acids during nitrogen deprivation. Neither AAT1 nor AAT2 was essential for symbiosis with alfalfa.  相似文献   

14.
Lysenin is a sphingomyelin (SM)-specific toxin isolated from the coelomic fluid of the earthworm Eisenia foetida. Lysenin comprises a family of proteins together with lysenin-related protein 1 (LRP-1, lysenin 2) and LRP-2 (lysenin 3). In the present study, we characterized LRP-1 and LRP-2 together with lysenin using maltose-binding-protein-tagged recombinant proteins. LRP-2 specifically bound SM and induced hemolysis like lysenin. In contrast the binding and hemolytic activities of LRP-1 were 10 times less than those of lysenin and LRP-2. Lysenin and LRP-2 share 30 common sites of aromatic amino acids. Among them, only one position, phenylalanine 210, is substituted for isoleucine in LRP-1. The activity of LRP-1 was dramatically increased by introducing a single amino acid substitution of isoleucine 210 to phenylalanine, suggesting the importance of this aromatic amino acid in biological activities of lysenin and LRPs. The importance of aromatic amino acids was further indicated by a systematic tryptophan to alanine mutation of lysenin. Lysenin contains six tryptophan residues of which five are conserved in LRP-1 and -2. We showed that the conserved tryptophans but not the nonconserved one were required both in the recognition of SM and in the hemolytic activity of lysenin. Our results suggest the importance of tryptophan in the toxin function likely due to a direct recognition of SM or in maintaining the protein structure.  相似文献   

15.
Interpretation of the 1H-NMR spectra of Escherichia coli dihydrofolate reductase is complicated by the large number of overlapping resonances due to protonated aromatic amino acids. Deuteration of the aromatic protons of aromatic amino acid residues is one technique useful for simplifying the 1H-NMR spectra. Previous attempts to label the dihydrofolate reductase from over-producing strains of Escherichia coli were not completely successful. This labeling problem was solved by transducing via P1 phage a genetic block into the de novo biosynthetic pathway of aromatic amino acids in a trimethoprim resistant strain of E. coli, MB 3746. A new strain, MB 4065, is a very high level producer of dihydrofolate reductase and requires exogenous aromatic amino acids for growth, therefore allowing efficient labeling of its dihydrofolate reductase with exogenous deuterated aromatic amino acid.  相似文献   

16.
Aro80, a member of the Zn2Cys6 family proteins, activates expression of the ARO9 and ARO10 genes involved in catabolism of aromatic amino acids in response to aromatic amino acids that act as inducers. ARO9 and ARO10 are also under the control of nitrogen catabolite repression, but the direct roles for GATA factors, Gat1 and Gln3, in this regulation have not yet been elucidated. Here, we demonstrate that Aro80 is constitutively bound to its target promoters and activated by inducers at the level of transactivation. Although Aro80 also binds to its own promoter, ARO80 expression is induced only by rapamycin, but not by tryptophan. We show that Aro80 is absolutely required for Gat1 binding to the ARO9, ARO10 and ARO80 promoters upon rapamycin treatment. Gln3 binding to these promoters shows a partial requirement for Aro80. Rapamycin‐dependent Gat1 and Gln3 binding to the Aro80 target promoters is not affected by tryptophan availability, suggesting that transactivation activity of Aro80 is not necessary for the recruitment of GATA factors. Rapamycin‐dependent induction of Aro80 target genes also requires PP2A phosphatase complex, but not Sit4 phosphatase, acting downstream of TORC1.  相似文献   

17.
18.
Yarrowia lipolytica is widely used as a microbial producer of lipids and lipid derivatives. Here, we exploited this yeast’s potential to generate aromatic amino acids by developing chassis strains optimized for the production of phenylalanine, tyrosine and tryptophan. We engineered the shikimate pathway to overexpress a combination of Y. lipolytica and heterologous feedback-insensitive enzyme variants. Our best chassis strain displayed high levels of de novo Ehrlich metabolite production (up to 0.14 g l−1 in minimal growth medium), which represented a 93-fold increase compared to the wild-type strain (0.0015 g l−1). Production was further boosted to 0.48 g l−1 when glycerol, a low-cost carbon source, was used, concomitantly to high secretion of phenylalanine precursor (1 g l−1). Among these metabolites, 2-phenylethanol is of particular interest due to its rose-like flavour. We also established a production pathway for generating protodeoxyviolaceinic acid, a dye derived from tryptophan, in a chassis strain optimized for chorismate, the precursor of tryptophan. We have thus demonstrated that Y. lipolytica can serve as a platform for the sustainable de novo bio-production of high-value aromatic compounds, and we have greatly improved our understanding of the potential feedback-based regulation of the shikimate pathway in this yeast.  相似文献   

19.
The methylotropic yeast Pichia pastoris has been used for more than two decades to successfully produce a large number of recombinant proteins. Currently, a wide variety of auxotrophic and drug based selection markers are employed to screen for clones expressing the protein of interest. For most proteins an increased copy number of the integrated plasmid results in higher levels of expression, but these multi-copy integrants can be unstable due to the propensity of P. pastoris for homologous recombination. Here we describe a multi-copy selection system based on ade1 and ade2 auxotrophic parent strains and the respective attenuated markers with truncated promoter regions. We show that for all four proteins we tested, the use of the attenuated markers leads to increased protein expression when compared with selection based on the full strength markers. The fact that the adenine auxotrophic strains grow more slowly than the complemented counterparts essentially ensures the stability of multi-copy integration. At the same time, the accumulation of a red dye in the auxotrophic strains also provides an easy, color-based selection for transformants with multiple copies.  相似文献   

20.
Mutations in ARO1 and ARO2 genes coding for enzymes involved in the common part of the aromatic amino acid pathway completely block the sporulation of Saccharomyces cerevisiae when in a homozygous state, whereas mutations in all the other genes of the same pathway do not. This effect is not due to the lack of any intermediate metabolite but rather to the accumulation of a metabolite preceding chorismic acid. Shikimic acid or one of its precursors was identified as the possible inhibitor. The presence of the three aromatic amino acids in the sporulation medium restores the ability to undergo meiosis. This seems not to be due to a feedback inhibition of the first enzymes of the pathway but rather to a competition between aromatic amino acids and the inhibitor on a site specific for the meiotic process. The inhibition of sporulation seems to occur at a very early step in meiosis, as indicated by the lack of premeiotic DNA synthesis in aro1 and aro2 mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号