首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The viral membrane proteins M and E are the minimal requirements for the budding of coronavirus particles. Since the E protein occurs in particles only in trace amounts, the lateral interactions between the M proteins apparently generate the major driving force for envelope formation. By using coimmunoprecipitation and envelope incorporation assays, we provide extensive evidence for the existence of such M-M interactions. In addition, we determined which domains of the M protein are involved in this homotypic association, using a mutagenetic approach. Mutant M proteins which were not able to assemble into viruslike particles (VLPs) by themselves (C. A. M. de Haan, L. Kuo, P. S. Masters, H. Vennema, and P. J. M. Rottier, J. Virol. 72:6838-6850, 1998) were tested for the ability to associate with other M proteins and to be rescued into VLPs formed by assembly-competent M proteins. We found that M proteins lacking parts of the transmembrane cluster, of the amphipathic domain, or of the hydrophilic carboxy-terminal tail, or M proteins that had their luminal domain replaced by heterologous ectodomains, were still able to associate with assembly-competent M proteins, resulting in their coincorporation into VLPs. Only a mutant M protein in which all three transmembrane domains had been replaced lost this ability. The results indicate that M protein molecules interact with each other through multiple contact sites, particularly at the transmembrane level. Finally, we tested the stringency with which membrane proteins are selected for incorporation into the coronavirus envelope by probing the coassembly of some foreign proteins. The observed efficient exclusion from budding of the vesicular stomatitis virus G protein and the equine arteritis virus M protein indicates that envelope assembly is indeed a highly selective sorting process. The low but detectable incorporation of CD8 molecules, however, demonstrated that this process is not perfect.  相似文献   

2.
Coronavirus envelope (E) proteins play an important, not fully understood role(s) in the virus life cycle. All E proteins have conserved cysteine residues located on the carboxy side of the long hydrophobic domain, suggesting functional significance. In this study, we confirmed that mouse hepatitis coronavirus A59 E protein is palmitoylated. To understand the role of the conserved residues and the necessity of palmitoylation, three cysteines at positions 40, 44, and 47 were changed singly and in various combinations to alanine. Double- and triple-mutant E proteins resulted in decreased virus-like particle output when coexpressed with the membrane (M) protein. Mutant E proteins were also studied in the context of a full-length infectious clone. Single-substitution viruses exhibited growth characteristics virtually identical to those of the wild-type virus, while the double-substitution mutations gave rise to viruses with less robust growth phenotypes indicated by smaller plaques and decreased virus yields. In contrast, replacement of all three cysteines resulted in crippled virus with significantly reduced yields. Triple-mutant viruses did not exhibit impairment in entry. Mutant E proteins localized properly in infected cells. A comparison of intracellular and extracellular virus yields suggested that release is only slightly impaired. E protein lacking all three cysteines exhibited an increased rate of degradation compared to that of the wild-type protein, suggesting that palmitoylation is important for the stability of the protein. Altogether, the results indicate that the conserved cysteines and presumably palmitoylation are functionally important for virus production.  相似文献   

3.
The small envelope protein (E) plays a role of central importance in the assembly of coronaviruses. This was initially established by studies demonstrating that cellular expression of only E protein and the membrane protein (M) was necessary and sufficient for the generation and release of virus-like particles. To investigate the role of E protein in the whole virus, we previously generated E gene mutants of mouse hepatitis virus (MHV) that were defective in viral growth and produced aberrantly assembled virions. Surprisingly, however, we were also able to isolate a viable MHV mutant (DeltaE) in which the entire E gene, as well as the nonessential upstream genes 4 and 5a, were deleted. We have now constructed an E knockout mutant that confirms that the highly defective phenotype of the DeltaE mutant is due to loss of the E gene. Additionally, we have created substitution mutants in which the MHV E gene was replaced by heterologous E genes from viruses spanning all three groups of the coronavirus family. Group 2 and 3 E proteins were readily exchangeable for that of MHV. However, the E protein of a group 1 coronavirus, transmissible gastroenteritis virus, became functional in MHV only after acquisition of particular mutations. Our results show that proteins encompassing a remarkably diverse range of primary amino acid sequences can provide E protein function in MHV. These findings suggest that E protein facilitates viral assembly in a manner that does not require E protein to make sequence-specific contacts with M protein.  相似文献   

4.
5.
Rubella virus is a small enveloped positive-strand RNA virus that assembles on intracellular membranes in a variety of cell types. The virus structural proteins contain all of the information necessary to mediate the assembly of virus-like particles in the Golgi complex. We have recently identified intracellular retention signals within the two viral envelope glycoproteins. E2 contains a Golgi retention signal in its transmembrane domain, whereas a signal for retention in the endoplasmic reticulum has been localized to the transmembrane and cytoplasmic domains of E1 (T. C. Hobman, L. Woodward, and M. G. Farquhar, Mol. Biol. Cell 6:7-20, 1995; T. C. Hobman, H. F. Lemon, and K. Jewell, J. Virol. 71:7670-7680, 1997). In the present study, we have analyzed the role of these retention signals in the assembly of rubella virus-like particles. Deletion or replacement of these domains with analogous regions from other type I membrane glycoproteins resulted in failure of rubella virus-like particles to be secreted from transfected cells. The E1 transmembrane and cytoplasmic domains were not required for targeting of the structural proteins to the Golgi complex and, surprisingly, assembly and budding of virus particles into the lumen of this organelle; however, the resultant particles were not secreted. In contrast, replacement or alteration of the E2 transmembrane or cytoplasmic domain, respectively, abrogated the targeting of the structural proteins to the budding site, and consequently, no virion formation was observed. These results indicate that the transmembrane and cytoplasmic domains of E2 and E1 are required for early and late steps respectively in the viral assembly pathway and that rubella virus morphogenesis is very different from that of the structurally similar alphaviruses.  相似文献   

6.
The E1 glycoprotein from an avian coronavirus is a model protein for studying retention in the Golgi complex. In animal cells expressing the protein from cDNA, the E1 protein is targeted to cis Golgi cisternae (Machamer, C. E., S. A. Mentone, J. K. Rose, and M. G. Farquhar. 1990. Proc. Natl. Acad. Sci. USA. 87:6944-6948). We show that the first of the three membrane-spanning domains of the E1 protein can retain two different plasma membrane proteins in the Golgi region of transfected cells. Both the vesicular stomatitis virus G protein and the alpha-subunit of human chorionic gonadotropin (anchored to the membrane by fusion with the G protein membrane-spanning domain and cytoplasmic tail) were retained in the Golgi region of transfected cells when their single membrane-spanning domains were replaced with the first membrane-spanning domain from E1. Single amino acid substitutions in this sequence released retention of the chimeric G protein, as well as a mutant E1 protein which lacks the second and third membrane-spanning domains. The important feature of the retention sequence appears to be the uncharged polar residues which line one face of a predicted alpha helix. This is the first retention signal to be defined for a resident Golgi protein. The fact that it is present in a membrane-spanning domain suggests a novel mechanism of retention in which the membrane composition of the Golgi complex plays an instrumental role in retaining its resident proteins.  相似文献   

7.
The severe acute respiratory syndrome coronavirus (SARS-CoV) open reading frame 3a protein has recently been shown to be a structural protein. The protein is encoded by one of the so-called group-specific genes and has no sequence homology with any of the known structural or group-specific proteins of coronaviruses. It does, however, have several similarities to the coronavirus M proteins; (i) they are triple membrane spanning with the same topology, (ii) they have similar intracellular localizations (predominantly Golgi), (iii) both are viral structural proteins, and (iv) they appear to interact with the E and S proteins, as well as with each other. The M protein plays a crucial role in coronavirus assembly and is glycosylated in all coronaviruses, either by N-linked or by O-linked oligosaccharides. The conserved glycosylation of the coronavirus M proteins and the resemblance of the 3a protein to them led us to investigate the glycosylation of these two SARS-CoV membrane proteins. The proteins were expressed separately using the vaccinia virus T7 expression system, followed by metabolic labeling. Pulse-chase analysis showed that both proteins were modified, although in different ways. While the M protein acquired cotranslationally oligosaccharides that could be removed by PNGaseF, the 3a protein acquired its modifications posttranslationally, and they were not sensitive to the N-glycosidase enzyme. The SARS-CoV 3a protein, however, was demonstrated to contain sialic acids, indicating the presence of oligosaccharides. O-glycosylation of the 3a protein was indeed confirmed using an in situ O-glycosylation assay of endoplasmic reticulum-retained mutants. In addition, we showed that substitution of serine and threonine residues in the ectodomain of the 3a protein abolished the addition of the O-linked sugars. Thus, the SARS-CoV 3a protein is an O-glycosylated glycoprotein, like the group 2 coronavirus M proteins but unlike the SARS-CoV M protein, which is N glycosylated.  相似文献   

8.
Protein interactions during coronavirus assembly.   总被引:14,自引:9,他引:5       下载免费PDF全文
Coronaviruses assemble and obtain their envelope at membranes of the intermediate compartment between the endoplasmic reticulum and Golgi complex. Like other enveloped viruses, coronavirus assembly is presumably dependent on protein localization and protein-protein as well as protein-RNA interactions. We have used the bovine coronavirus (BCV) as a model to study interactions between the viral proteins in virus-infected cells that are important for coronavirus assembly. BCV is a prototype for the coronaviruses that express an additional major structural protein, the hemagglutinin esterase (HE), in addition to the spike (S) glycoprotein, membrane (M) glycoprotein, and nucleocapsid (N) protein. Complexes consisting of the M, S, and HE proteins were detected in virus-infected cells by coimmunoprecipitations. Kinetic analyses demonstrated that S protein and HE each quickly formed a complex with M protein after synthesis, whereas heterocomplexes consisting of all three proteins formed more slowly. The kinetics of HE biosynthesis revealed that the half-life of oligomerization was approximately 30 min, which correlated with the appearance of complexes consisting of M, HE, and S proteins, suggesting that oligomerization and/or conformational changes may be important for the S-M-HE protein complexes to form. Only HE dimers were found associated with the heterocomplexes consisting of all three proteins. S-M-HE protein complexes were detected prior to processing of the oligosaccharide chains on HE, indicating that these protein complexes formed in a premedial Golgi compartment before trimming of sugar chains. Transient coexpressions and double-labeling immunofluorescence demonstrated that HE and S proteins colocalized with M protein. This was further supported by coimmunoprecipitation of specific HE-M and S-M protein complexes from transfected cells, indicating that these proteins can form complexes in the absence of other viral proteins.  相似文献   

9.
Coronavirus-like particles morphologically similar to normal virions are assembled when genes encoding the viral membrane proteins M and E are coexpressed in eukaryotic cells. Using this envelope assembly assay, we have studied the primary sequence requirements for particle formation of the mouse hepatitis virus (MHV) M protein, the major protein of the coronavirion membrane. Our results show that each of the different domains of the protein is important. Mutations (deletions, insertions, point mutations) in the luminal domain, the transmembrane domains, the amphiphilic domain, or the carboxy-terminal domain had effects on the assembly of M into enveloped particles. Strikingly, the extreme carboxy-terminal residue is crucial. Deletion of this single residue abolished particle assembly almost completely; most substitutions were strongly inhibitory. Site-directed mutations in the carboxy terminus of M were also incorporated into the MHV genome by targeted recombination. The results supported a critical role for this domain of M in viral assembly, although the M carboxy terminus was more tolerant of alteration in the complete virion than in virus-like particles, likely because of the stabilization of virions by additional intermolecular interactions. Interestingly, glycosylation of M appeared not essential for assembly. Mutations in the luminal domain that abolished the normal O glycosylation of the protein or created an N-glycosylated form had no effect. Mutant M proteins unable to form virus-like particles were found to inhibit the budding of assembly-competent M in a concentration-dependent manner. However, assembly-competent M was able to rescue assembly-incompetent M when the latter was present in low amounts. These observations support the existence of interactions between M molecules that are thought to be the driving force in coronavirus envelope assembly.  相似文献   

10.
The 2003 global outbreak of progressive respiratory failure was caused by a newly emerged virus, severe acute respiratory syndrome coronavirus (SARS-CoV). In contrast to many well-studied enveloped viruses that assemble and bud at the plasma membrane, coronaviruses assemble by budding into the lumen of the endoplasmic reticulum-Golgi intermediate compartment and are released from the cell by exocytosis. For this to occur, the viral envelope proteins must be efficiently targeted to the Golgi region of the secretory pathway. Although the envelope protein (E) makes up only a small percentage of the viral envelope, it plays an important, as-yet-undefined role in virus production. To dissect the targeting of the SARS-CoV E protein to the Golgi region, we exogenously expressed the protein and various mutants from cDNA and determined their localization using immunofluorescence microscopy and biochemical assays. We show that the cytoplasmic tail of the SARS-CoV E protein is sufficient to redirect a plasma membrane protein to the Golgi region. Through site-directed mutagenesis, we demonstrate that a predicted beta-hairpin structural motif in the tail is sufficient for Golgi complex localization of a reporter protein. This motif is conserved in E proteins of beta and gamma coronaviruses (formerly referred to as group 2 and 3 coronaviruses), where it also functions as a Golgi complex-targeting signal. Dissecting the mechanism of targeting of the SARS-CoV E protein will lead to a better understanding of its role in the assembly and release of virions.  相似文献   

11.
We have previously shown that the E protein of the coronavirus infectious bronchitis virus (IBV) is localized to the Golgi complex when expressed exogenously from cDNA. Here, we report that neither the transmembrane domain nor the short lumenal domain of IBV E is required for Golgi targeting. However, an N-terminal truncation containing only the cytoplasmic domain (CTE) was efficiently localized to the Golgi complex, and this domain could retain a reporter protein in the Golgi. Thus, the cytoplasmic tail of the E protein is necessary and sufficient for Golgi targeting. The IBV E protein is palmitoylated on one or two cysteine residues adjacent to its transmembrane domain, but palmitoylation was not required for proper Golgi targeting. Using C-terminal truncations, we determined that the IBV E Golgi targeting information is present between tail amino acids 13 and 63. Upon treatment with brefeldin A, both the E and CTE proteins redistributed to punctate structures that colocalized with the Golgi matrix proteins GM130 and p115 instead of being localized to the endoplasmic reticulum like Golgi glycosylation enzymes. This suggests that IBV E is associated with the Golgi matrix through interactions of its cytoplasmic tail and may have interesting implications for coronavirus assembly in early Golgi compartments.  相似文献   

12.
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) structural proteins (S, E, M, and NC) localize in different subcellular positions when expressed individually. However, SARS-CoV M protein is co-localized almost entirely with S, E, or NC protein when co-expressed in the cells. On the other hand, only partial co-localization was observed when S and E, S and NC, or E and NC were co-expressed in the cells. Interactions between SARS-CoV M and other structural proteins but not interactions between S and E, S and NC, or E and NC were further demonstrated by co-immunoprecipitation assay. These results indicate that SARS-CoV M protein, similar to the M proteins of other coronaviruses, plays a pivotal role in virus assembly. The cytoplasmic C-terminus domain of SARS-CoV M protein was responsible for binding to NC protein. Multiple regions of M protein interacted with E and S proteins. A model for the interactions between SARS-CoV M protein and other structural proteins is proposed. This study helps us better understand protein-protein interactions during viral assembly of SARS-CoV. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The murine coronavirus mouse hepatitis virus gene 1 is expressed as a polyprotein, which is cleaved into multiple proteins posttranslationally. One of the proteins is p28, which represents the amino-terminal portion of the polyprotein and is presumably generated by the activity of an autoproteinase domain of the polyprotein (S. C. Baker, C. K. Shieh, L. H. Soe, M.-F. Chang, D. M. Vannier, and M. M. C. Lai, J. Virol. 63:3693-3699, 1989). In this study, the boundaries and the critical amino acid residues of this putative proteinase domain were characterized by deletion analysis and site-directed mutagenesis. Proteinase activity was monitored by examining the generation of p28 during in vitro translation in rabbit reticulocyte lysates. Deletion analysis defined the proteinase domain to be within the sequences encoded from the 3.6- to 4.4-kb region from the 5' end of the genome. A 0.7-kb region between the substrate (p28) and proteinase domain could be deleted without affecting the proteolytic cleavage. However, a larger deletion (1.6 kb) resulted in the loss of proteinase activity, suggesting the importance of spacing sequences between proteinase and substrate. Computer-assisted analysis of the amino acid sequence of the proteinase domain identified potential catalytic cysteine and histidine residues in a stretch of sequence distantly related to papain-like cysteine proteinases. The role of these putative catalytic residues in the proteinase activity was studied by site-specific mutagenesis. Mutations of Cys-1137 or His-1288 led to a complete loss of proteinase activity, implicating these residues as essential for the catalytic activity. In contrast, most mutations of His-1317 or Cys-1172 had no or only minor effects on proteinase activity. This study establishes that mouse hepatitis virus gene 1 encodes a proteinase domain, in the region from 3.6 to 4.4 kb from the 5' end of the genome, which resembles members of the papain family of cysteine proteinases and that this proteinase domain is responsible for the cleavage of the N-terminal peptide.  相似文献   

14.
Severe acute respiratory syndrome (SARS) is an emerging infectious disease associated with a novel coronavirus (CoV) that was identified and molecularly characterized in 2003. Previous studies on various coronaviruses indicate that protein-protein interactions amongst various coronavirus proteins are critical for viral assembly and morphogenesis. It is necessary to elucidate the molecular mechanism of SARS-CoV replication and rationalize the anti-SARS therapeutic intervention. In this study, we employed an in vitro GST pull-down assay to investigate the interaction between the membrane (M) and the nucleocapsid (N) proteins. Our results show that the interaction between the M and N proteins does take place in vitro. Moreover, we provide an evidence that 12 amino acids domain (194-205) in the M protein is responsible for binding to N protein. Our work will help shed light on the molecular mechanism of the virus assembly and provide valuable information pertaining to rationalization of future anti-viral strategies.  相似文献   

15.
The E1 glycoprotein of the avian coronavirus infectious bronchitis virus contains a short, glycosylated amino-terminal domain, three membrane-spanning domains, and a long carboxy-terminal cytoplasmic domain. We show that E1 expressed from cDNA is targeted to the Golgi region, as it is in infected cells. E1 proteins with precise deletions of the first and second or the second and third membrane-spanning domains were glycosylated, thus suggesting that either the first or third transmembrane domain can function as an internal signal sequence. The mutant protein with only the first transmembrane domain accumulated intracellularly like the wild-type protein, but the mutant protein with only the third transmembrane domain was transported to the cell surface. This result suggests that information specifying accumulation in the Golgi region resides in the first transmembrane domain, and provides the first example of an intracellular membrane protein that is transported to the plasma membrane after deletion of a specific domain.  相似文献   

16.
The coronavirus E protein is a poorly characterized small envelope protein present in low levels in virions. We are interested in the role of E in the intracellular targeting of infectious bronchitis virus (IBV) membrane proteins. We generated a cDNA clone of IBV E and antibodies to the E protein to study its cell biological properties in the absence of virus infection. We show that IBV E is an integral membrane protein when expressed in cells from cDNA. Epitope-specific antibodies revealed that the C terminus of IBV E is cytoplasmic and the N terminus is translocated. The short luminal N terminus of IBV E contains a consensus site for N-linked glycosylation, but the site is not used. When expressed using recombinant vaccinia virus, the IBV E protein is released from cells at low levels in sedimentable particles that have a density similar to that of coronavirus virions. The IBV M protein is incorporated into these particles when present. Indirect immunofluorescence microscopy showed that E is localized to the Golgi complex in cells transiently expressing IBV E. When coexpressed with IBV M, both from cDNA and in IBV infection, the two proteins are colocalized in Golgi membranes, near the coronavirus budding site. Thus, even though IBV E is present at low levels in virions, it is apparently expressed at high levels in infected cells near the site of virus assembly.  相似文献   

17.
The coronavirus assembly process encloses a ribonucleoprotein genome into vesicles containing the lipid-embedded proteins S (spike), E (envelope), and M (membrane). This process depends on interactions with membranes that may involve palmitoylation, a common posttranslational lipidation of cysteine residues. To determine whether specific palmitoylations influence coronavirus assembly, we introduced plasmid DNAs encoding mouse hepatitis coronavirus (MHV) S, E, M, and N (nucleocapsid) into 293T cells and found that virus-like particles (VLPs) were robustly assembled and secreted into culture medium. Palmitate adducts predicted on cysteines 40, 44, and 47 of the 83-residue E protein were then evaluated by constructing mutant cDNAs with alanine or glycine codon substitutions at one or more of these positions. Triple-substituted proteins (E.Ts) lacked palmitate adducts. Both native E and E.T proteins localized at identical perinuclear locations, and both copurified with M proteins, but E.T was entirely incompetent for VLP production. In the presence of the E.T proteins, the M protein subunits accumulated into detergent-insoluble complexes that failed to secrete from cells, while native E proteins mobilized M into detergent-soluble secreted forms. Many of these observations were corroborated in the context of natural MHV infections, with native E, but not E.T, complementing debilitated recombinant MHVs lacking E. Our findings suggest that palmitoylations are essential for E to act as a vesicle morphogenetic protein and further argue that palmitoylated E proteins operate by allowing the primary coronavirus assembly subunits to assume configurations that can mobilize into secreted lipid vesicles and virions.  相似文献   

18.
In this study, we applied a quantitative proteomic approach, based on SILAC, to investigate the interactions of coronaviruses with the secretory pathway of the host cell, with the aim to identify host factors involved in coronavirus replication. Comparison of the protein profiles of Golgi-enriched fractions of cells that were either mock infected or infected with mouse hepatitis virus revealed the significant depletion or enrichment of 116 proteins. Although ribosomal/nucleic acid binding proteins were enriched in the Golgi-fractions of mouse hepatitis virus-infected cells, proteins annotated to localize to several organelles of the secretory pathway were overrepresented among the proteins that were depleted from these fractions upon infection. We hypothesized that proteins, of which the abundance or distribution is affected by infection, are likely to be involved in the virus life cycle. Indeed, depletion of a small subset of the affected proteins by using small interfering RNAs identified several host factors involved in coronavirus infection. Transfection of small interfering RNAs targeting either C11orf59 or Golgi apparatus glycoprotein 1 resulted in increased virus replication, whereas depletion of vesicle-trafficking protein vesicle-trafficking protein sec22b enhanced the release of infectious progeny virus. Overexpression of these proteins, on the other hand, had a negative effect on virus replication. Overall, our study shows that the SILAC approach is a suitable tool to study host-pathogen interactions and to identify host proteins involved in virus replication.  相似文献   

19.
Tan YJ  Teng E  Shen S  Tan TH  Goh PY  Fielding BC  Ooi EE  Tan HC  Lim SG  Hong W 《Journal of virology》2004,78(13):6723-6734
The severe acute respiratory syndrome coronavirus (SARS-CoV) genome contains open reading frames (ORFs) that encode for several genes that are homologous to proteins found in all known coronaviruses. These are the replicase gene 1a/1b and the four structural proteins, nucleocapsid (N), spike (S), membrane (M), and envelope (E), and these proteins are expected to be essential for the replication of the virus. In addition, this genome also contains nine other potential ORFs varying in length from 39 to 274 amino acids. The largest among these is the first ORF of the second longest subgenomic RNA, and this protein (termed U274 in the present study) consists of 274 amino acids and contains three putative transmembrane domains. Using antibody specific for the C terminus of U274, we show U274 to be expressed in SARS-CoV-infected Vero E6 cells and, in addition to the full-length protein, two other processed forms were also detected. By indirect immunofluorescence, U274 was localized to the perinuclear region, as well as to the plasma membrane, in both transfected and infected cells. Using an N terminus myc-tagged U274, the topology of U274 and its expression on the cell surface were confirmed. Deletion of a cytoplasmic domain of U274, which contains Yxxphi and diacidic motifs, abolished its transport to the cell surface. In addition, U274 expressed on the cell surface can internalize antibodies from the culture medium into the cells. Coimmunoprecipitation experiments also showed that U274 could interact specifically with the M, E, and S structural proteins, as well as with U122, another protein that is unique to SARS-CoV.  相似文献   

20.
The two envelope glycoproteins and the viral nucleocapsid of the coronavirus A59 were isolated by solubilization of the viral membrane with Nonidet P-40 at 4 degrees C followed by sucrose density gradient sedimentation. Isolated E2 consisted of rosettes of peplomers, whereas E1, the membrane glycoprotein, was irregular and amorphous. Under certain conditions significant interactions occurred between components of Nonidet P-40-disrupted virions. Incubation of the Nonidet P-40-disrupted virus at 37 degrees C resulted in formation of a complex between one of the viral glycoproteins, E1, and the viral nucleocapsid. This was caused by a temperature-dependent conformational change in E1, resulting in aggregation of E1 and interaction with the viral RNA in the nucleocapsid. E1 also bound rRNA. The E1-nucleocapsid complexes can be distinguished on sucrose and Renografin density gradients from native viral nucleocapsids. The separation of the membrane glycoprotein E1 from the peplomeric glycoprotein E2 permitted preparation of antisera against these isolated proteins. A model is proposed for the arrangement of the three major structural proteins in the coronavirus A59 virion in relation to the viral envelope and RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号