首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Equol (7-hydroxy-3[4'hydroxyphenyl]-chroman) is the major metabolite of the phytoestrogen daidzein, one of the main isoflavones found abundantly in soybeans and soy foods. Equol may be an important biologically active molecule based on recent studies demonstrating that equol can modulate reproductive function. In this study, we examined the effects of equol on prostate growth and LH secretion and determined some of the mechanisms by which it might act. Administration of equol to intact male rats for 4-7 days reduced ventral prostate and epididymal weight and increased circulating LH levels. Using binding assays, we determined that equol specifically binds 5alpha-dihydrotestosterone (DHT), but not testosterone, dehydroepiandrosterone, or estrogen with high affinity. Equol does not bind the prostatic androgen receptor, and has a modest affinity for recombinant estrogen receptor (ER) beta, and no affinity for ERalpha. In castrated male rats treated with DHT, concomitant treatment with equol blocked DHT's trophic effects on the ventral prostate gland growth and inhibitory feedback effects on plasma LH levels without changes in circulating DHT. Therefore, equol can bind circulating DHT and sequester it from the androgen receptor, thus altering growth and physiological hormone responses that are regulated by androgens. These data suggest a novel model to explain equol's biological properties. The significance of equol's ability to specifically bind and sequester DHT from the androgen receptor have important ramifications in health and disease and may indicate a broad and important usage for equol in the treatment of androgen-mediated pathologies.  相似文献   

3.
Red clover extracts contain a variety of isoflavones, which have affinity toward estrogen receptor alpha (ERalpha), estrogen receptor beta (ERbeta), androgen receptor (AR), and progesterone receptor (PR). Upon ingestion, they undergo various metabolic transformations. For a complete evaluation of red clover extracts and possible health benefits, the resulting metabolites should also be investigated. Biochanin A, formononetin, genistein, daidzein, dihydrobiochanin A, dihydroformononetin, dihydrogenistein, dihydrodaidzein, 3'-hydroxygenistein, 6-hydroxydaidzein, 6-hydroxydesmethylangolensin, equol, O-desmethylangolensin, angolensin, and p-ethylphenol were tested for their transactivation potential toward ERalpha, AR, and PR in yeast. Competitive binding assays with radiolabeled 17beta-estradiol, 17alpha-methyltrienolone or progesterone assessed binding to the respective ERalpha and ERbeta, AR, and PR. The compounds showed only weak binding affinity to AR and PR, with IC(50) values being greater (i.e., lesser affinity) than 10(-5)M for the respective receptor. So far, beneficial health effects have been attributed to the production of equol. We propose that other metabolites can also contribute to these effects. However, more detailed information for the formation of these metabolites in humans and for bioavailability data are required to confirm our assumptions.  相似文献   

4.
The isoflavones genistein and daidzein and the daidzein metabolite equol have been reported to interact with estrogen receptors (ERs). Some studies indicate that they behave clinically like estrogen in some estrogen-deficiency diseases. However, the detailed molecular mechanism used by these compounds to create beneficial effects in patients with estrogen-related diseases has not been clarified. Using histone acetyltransferase (HAT) assay, we found that equol, genistein, and AglyMax had significant effects on ERalpha-mediated histone acetylation. Although 17beta-estradiol (E2)-dependent HAT activity of steroid receptor coactivators 2 (SRC2) and p300 mediated by ERbeta could be detected, it was weaker than that mediated by ERalpha. Equol, genistein, AglyMax, and daidzein all markedly stimulated ERbeta-mediated histone acetylation. On the other hand, anti-estrogenic compounds ICI 182,780 (ICI) and tamoxifen (TA) did not have an effect on HAT activity mediated by either ERalpha or ERbeta. Our data indicate that estrogenic ligands exert their effects by elevating histone acetylation and coactivator activity of ER, and suggest that the risk of estrogen-related diseases might be reduced by a sufficient amount of genistein or AglyMax supplements.  相似文献   

5.
The aim of our study was to evaluate the effects of dietary equol, metabolite of a phytoestrogen daidzein, on the secretion of prolactin (PRL) and lutenizing hormone (LH), as well as the expression of estrogen receptors (ERalpha, ERbeta and truncated estrogen receptor-1 (TERP-1) in the pituitary gland of ovariectomized (ovx) female Sprague-Dawley rats. Two doses of equol (50 mg/kg of chow and 400 mg/kg of chow) were used and the results were compared with the effects of estradiol 3-benzoate (E2B), also given at two doses (4.3 mg/kg of chow and 17.3 mg/kg of chow). Treatment period was 3 months. Dietary equol administration at the high dose increased significantly serum PRL levels. This effect was also observed in the E2B group but this difference did not reach statistical significance. Surprisingly, high dose dietary equol treatment also significantly increased serum LH levels, which was in contrast to E2B treatment where serum LH levels were significantly decreased at both doses. Serum LH levels in the equol low group were unaffected. Equol treatment had no effects on pituitary ERalpha or ERbeta gene expression. In contrast, high dose E2B treatment increased significantly pituitary ERalpha mRNA levels but decreased those of ERbeta. Both doses of E2B also increased significantly pituitary TERP-1 mRNA levels. This effect was also observed in the equol high group but at a much smaller magnitude. In conclusion, high dose dietary equol administration to ovx rats exerts estrogenic like effects on the lactotropes and anti-estrogenic on the gonadotropes.  相似文献   

6.
We have prepared a novel series of 2-amino-4,6-diarylpyridines that function as ligands of estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta). These compounds bind to both ERalpha and ERbeta with a modest selectivity for the alpha subtype. The most potent of these analogues, compound 19, has a K(i)=20nM at ERalpha. These molecules represent a novel template for designing potentially useful ligands for the estrogen receptor.  相似文献   

7.
A newly isolated rod-shaped, gram-negative anaerobic bacterium from human feces, named Julong 732, was found to be capable of metabolizing the isoflavone dihydrodaidzein to S-equol under anaerobic conditions. The metabolite, equol, was identified by using electron impact ionization mass spectrometry, (1)H and (13)C nuclear magnetic resonance spectroscopy, and UV spectral analyses. However, strain Julong 732 was not able to produce equol from daidzein, and tetrahydrodaidzein and dehydroequol, which are most likely intermediates in the anaerobic metabolism of dihydrodaidzein, were not detected in bacterial culture medium containing dihydrodaidzein. Chiral stationary-phase high-performance liquid chromatography eluted only one metabolite, S-equol, which was produced from a bacterial culture containing a racemic mixture of dihydrodaidzein. Strain Julong 732 did not show racemase activity to transform R-equol to S-equol and vice versa. Its full 16S rRNA gene sequence (1,429 bp) had 92.8% similarity to that of Eggerthella hongkongenis HKU10. This is the first report of a single bacterium capable of converting a racemic mixture of dihydrodaidzein to enantiomeric pure S-equol.  相似文献   

8.
9.
雌马酚是大豆异黄酮(SI)的主要组分之一——大豆素(Dai)的代谢产物。雌马酚较其原型具有更为有效的生物学作用,虽其作用及机制还存在争议,但很多研究表明雌马酚的生物学作用以及在适用人群显然都优于SI,并受到普遍关注。研究和开发雌马酚的生物活性,在多种常见慢性病的预防与控制中有重要的理论和实际意义。  相似文献   

10.
Daidzein and genistein are the main aglycones of soy isoflavonoid, and have many useful activities in vitro and in vivo. However, equol, a metabolite of daidzein in vivo, has attracted attention due to its stronger activity than that of the naturally occurring isoflavonoids. We subjected the soy isoflavonoids, including the naturally occurring (S)-equol, to mouse adipocytes, and compared the inhibitory activity on the leptin secretion. Equol, daidzein and genistein inhibited the leptin secretion, whereas O-desmethylangolensin had a lower activity. The inhibitory activity of the isoflavones was not affected by the addition of an iNOS inhibitor and an estrogen.  相似文献   

11.
12.
(+/-)-Z-bis-Dehydrodoisynolic acid [(+/-)-Z-BDDA] is highly estrogenic in vivo, yet binds to estrogen receptor (ER) poorly. This paradox has raised the possibility of alternative ERs and/or molecular mechanisms. To address the possibility of high activities of Z-BDDA with ERbeta, we determined the activities of (+)-Z-BDDA and (-)-Z-BDDA, in cell culture and in vitro, comparing ERbeta to ERalpha. Transfectional analysis in Hela cells showed (-)-Z-BDDA is an agonist for gene activation with both ERalpha (EC(50) congruent with 0.3nM) and ERbeta (EC(50) congruent with 5nM), while little to no activity was observed with (+)-Z-BDDA. Similarly, in gene repression assays, (-)-Z-BDDA was active (EC(50) congruent with 0.2nM), but again minimal activity was exhibited by (+)-Z-BDDA. Binding to ERalpha and ERbeta in vitro used both competition and a direct binding assay. For ERalpha, the relative affinity of (-)-Z-BDDA was approximately 6% by competition and 1.7% by direct binding versus 17beta-estradiol (E2; 100%), while (+)-Z-BDDA also demonstrated binding, but with relative affinities of only 0.08% by competition and 0.3% by the direct assay. For ERbeta, the affinity of (-)-Z-BDDA was approximately 7% by competition and 1.5% by the direct assay relative to E2 (100%), while (+)-Z-BDDA had lower affinity, approximately 0.2% that of E2 by both assays.The paradox of potent in vivo activity but lower activity in receptor binding and in cell culture reporter gene assays, previously seen with ERalpha is now also associated with ERbeta. The failure of ERbeta to explain the activity-binding paradox indicates the need for additional in vivo metabolic and pharmacokinetic studies and continued consideration of alternative mechanisms.  相似文献   

13.
A new and reliable HPLC method for the quantitation of daidzein, equol, and genistein in human breast tissue has been developed. The method was applied to biopsies from women undergoing breast reductions, who, prior to surgery, had ingested either a soy isoflavone preparation or a placebo tablet. The results were compared with data collected for urine and serum of the same subjects using standard methods. The limits of detection in the breast tissue homogenate were 24.7 nmol/l for daidzein, 148.0 nmol/l for equol, and 28.4 nmol/l for genistein (S/N of 3). The chromatographic limits of quantitation were 62.5 nmol/l for daidzein and genistein, and 125.0 nmol/l for equol, for which the accuracies were 86.0%, 83.6%, and 81.8%, respectively. The coefficients of variation of these measurements were all below 20% (11.1% for daidzein, 16.4% for genistein, and 13.2% for equol). The sample preparation comprised a concentration step and the absolute limits of quantitation were, therefore, 4.7 nmol/l, 18.8 nmol/l, and 0.94 nmol/l for daidzein and genistein, and 9.4 nmol/l, 37.5 nmol/l, and 1.9 nmol/l for equol in urine, serum, and breast tissue homogenate, respectively. Recoveries were between 70% (+/-5.6%) in breast tissue homogenate and 100% (+/-14.1%) in urine and serum for all three compounds. Equol (less than 1 micromol/l homogenate) was found to be the predominant phytoestrogen in breast tissue and its concentrations exceeded those in serum. The concentrations of phytoestrogens were at least 100-fold higher in urine than in serum and breast tissue.  相似文献   

14.
15.
16.
Racemic exo-epiboxidine 3, endo-epiboxidine 6, and the two unsaturated epiboxidine-related derivatives 7 and 8 were efficiently prepared taking advantage of a palladium-catalyzed Stille coupling as the key step in the reaction sequence. The target compounds were assayed for their binding affinity at neuronal alpha4beta2 and alpha7 nicotinic acetylcholine receptors. Epiboxidine 3 behaved as a high affinity alpha4beta2 ligand (K(i)=0.4 nM) and, interestingly, evidenced a relevant affinity also for the alpha7 subtype (K(i)=6 nM). Derivative 7, the closest analogue of 3 in this group, bound with lower affinity at both receptor subtypes (K(i)=50 nM for alpha4beta2 and K(i)=1.6 microM for alpha7) evidenced a gain in the alpha4beta2 versus alpha7 selectivity when compared with the model compound.  相似文献   

17.
Equol, a metabolite of the phytoestrogen daidzein, is present at significant levels in some humans who consume soy and in rodents fed soy-based diets. Equol is estrogenic in vitro, but there have been limited studies of its activity in vivo. We evaluated equol effects on reproductive and non-reproductive endpoints in mice. Ovariectomized age-matched (30-day-old) female C57BL/6 mice were fed phytoestrogen-free diets and given a racemic mixture of equol by daily injections (0, 4, 8, 12, or 20 mg [kg body weight](-1) day(-1)) or in the diet (0, 500, or 1,000 ppm) for 12 days. Mice were killed, and serum concentrations of total and aglycone equol were measured. Total serum equol concentrations ranged from 1.4 to 7.5 microM with increasing doses of injected equol, but uterine weight increased significantly only at 12 and 20 mg (kg body weight)(-1) day(-1). Dietary equol at 500 or 1,000 ppm produced total serum equol concentrations of 5.9 and 8.1 microM, respectively, comparable with those in rodents consuming certain high-soy chows; the proportion of equol present as the free aglycone was much lower with dietary administration than injections, which may be a factor in the greater biological effects induced by injections. Dietary equol did not significantly increase uterine weight. Increasing dietary and injected equol doses caused a dose-dependent increase in vaginal epithelial thickness. Uterine epithelial proliferation was increased by equol injections at 8-20 mg (kg body weight)(-1) day(-1) and 1,000 ppm dietary equol. Neither dietary nor injected equol decreased thymic or adipose weights. In conclusion, equol is a weak estrogen with modest effects on endpoints regulated by estrogen receptor alpha when present at serum levels seen in rodents fed soy-based diets, but quantities present in humans may not be sufficient to induce estrogenic effects, although additive effects of equol with other phytoestrogens may occur.  相似文献   

18.
Equol is metabolized from daidzein, a soy isoflavone, by the gut microflora. In this study, we identified a novel dihydrodaidzein racemase (L-DDRC) that is involved in equol biosynthesis in a lactic acid bacterium, Lactococcus sp. strain 20-92, and confirmed that histidine-tagged recombinant L-DDRC (L-DDRC-His) was able to convert both the (R)- and (S)-enantiomers of dihydrodaidzein to the racemate. Moreover, we showed that recombinant L-DDRC-His was essential for in vitro equol production from daidzein by a recombinant enzyme mixture and that efficient in vitro equol production from daidzein was possible using at least four enzymes, including L-DDRC. We also proposed a model of the metabolic pathway from daidzein to equol in Lactococcus strain 20-92.  相似文献   

19.
Daidzein and genistein are isoflavones found in soybean. Genistein is known to exhibit anticarcinogenic activities and inhibit tyrosine kinase activity. However, the underlying molecular mechanisms of the chemopreventive activities of daidzein and its metabolite, equol, are not understood. Here we report that equol inhibits 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal cells by targeting the MEK/ERK/p90RSK/activator protein-1 signaling pathway. TPA-induced neoplastic cell transformation was inhibited by equol, but not daidzein, at noncytotoxic concentrations in a dose-dependent manner. Equol dose-dependently attenuated TPA-induced activation of activator protein-1 and c-fos, whereas daidzein did not exert any effect when tested at the same concentrations. The TPA-induced phosphorylation of ERK1/2, p90RSK, and Elk, but not MEK or c-Jun N-terminal kinase, was inhibited by equol but not by daidzein. In vitro kinase assays revealed that equol greatly inhibited MEK1, but not Raf1, kinase activity, and an ex vivo kinase assay also demonstrated that equol suppressed TPA-induced MEK1 kinase activity in JB6 P+ cell lysates. Equol dose-dependently inhibited neoplastic transformation of JB6 P+ cells induced by epidermal growth factor or H-Ras. Both in vitro and ex vivo pull-down assays revealed that equol directly bound with glutathione S-transferase-MEK1 to inhibit MEK1 activity without competing with ATP. These results suggested that the antitumor-promoting effect of equol is due to the inhibition of cell transformation mainly by targeting a MEK signaling pathway. These findings are the first to reveal a molecular basis for the anticancer action of equol and may partially account for the reported chemopreventive effects of soybean.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号