首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Influences on coenzyme preference are explored. Lysine 137 (192 in class 1/2 ALDH) lies close to the adenine ribose, directly interacting with the adenine ribose in NAD-specific ALDHs and the 2'-phosphate of NADP in NADP-specific ALDHs. Lys-137 in class 3 ALDH interacts with the adenine ribose indirectly through an intervening water molecule. However, this residue is present in all ALDHs and, as a result, is unlikely to directly influence coenzyme specificity. Glutamate 140 (195) coordinates the 2'- and 3'-hydroxyls of the adenine ribose of NAD in the class 3 tertiary structure. Thus, it appeared that this residue would influence coenzyme specificity. Mutation to aspartate, asparagine, glutamine or threonine shifts the coenzyme specificity towards NADP, but did not completely change the specificity. Still, the mutants show the 2'-phosphate of NADP is repelled by Glu-140 (195). Although Glu-140 (195) has a major influence on coenzyme specificity, it is not the only influence since class 3 ALDHs, can use both coenzymes, and class 2 ALDHs, which are NAD-specific, have a glutamate at this position. One explanation may be that the larger space between Lys-137 (192) and the adenine ribose hydroxyls in the class 3 ALDH:NAD binary structure may provide space to accommodate the 2'-phosphate of NADP. Also, a structural shift upon binding NADP may also occur in class 3 ALDHs to help accommodate the 2'-phosphate of NADP.  相似文献   

2.
Influences on coenzyme preference are explored. Lysine 137 (192 in class 1/2 ALDH) lies close to the adenine ribose, directly interacting with the adenine ribose in NAD-specific ALDHs and the 2′-phosphate of NADP in NADP-specific ALDHs. Lys-137 in class 3 ALDH interacts with the adenine ribose indirectly through an intervening water molecule. However, this residue is present in all ALDHs and, as a result, is unlikely to directly influence coenzyme specificity. Glutamate 140 (195) coordinates the 2′- and 3′-hydroxyls of the adenine ribose of NAD in the class 3 tertiary structure. Thus, it appeared that this residue would influence coenzyme specificity. Mutation to aspartate, asparagine, glutamine or threonine shifts the coenzyme specificity towards NADP, but did not completely change the specificity. Still, the mutants show the 2′-phosphate of NADP is repelled by Glu-140 (195). Although Glu-140 (195) has a major influence on coenzyme specificity, it is not the only influence since class 3 ALDHs, can use both coenzymes, and class 2 ALDHs, which are NAD-specific, have a glutamate at this position. One explanation may be that the larger space between Lys-137 (192) and the adenine ribose hydroxyls in the class 3 ALDH:NAD binary structure may provide space to accommodate the 2′-phosphate of NADP. Also, a structural shift upon binding NADP may also occur in class 3 ALDHs to help accommodate the 2′-phosphate of NADP.  相似文献   

3.
4.
5.
6.
7.
Bovine liver D-glycerate dehydrogenase (D-glycerate:NAD (NADP) oxidoreductase, EC 1.1.1.29) adapts its kinetic behaviour to a sequential mechanism. The presence of NaCl causes an appreciable variation in the Km and V values. relative to the both substrates in the hydroxypyruvate/D-glycerate dehydrogenase/NADH system, which does not happen in the D-glycerate/D-glycerate dehydrogenase/NAD system. The former system is inhibited by high concentrations of NaCl and activated by low salt concentrations. The hydroxypyruvate concentration causing substrate inhibition increases as the concentration of NaCl increases; excess NADH inhibition is independent of the salt concentration. The variation of the initial rates of both systems, in the presence of chlorides having monovalent and divalent cations, or sodium halides, Na2SO4 and NaNO3 (at constant ionic strength) suggests that the anions have a specific action on the enzyme. An increase in the NaCl concentration causes a displacement of the optimum D-glycerate dehydrogenase pH (with hydroxypyruvate and NADH as substrates) towards the acid area. The enzyme stability, at varying pH, varies with the salt concentration.  相似文献   

8.
Substrate specificity of bovine liver formaldehyde dehydrogenase   总被引:1,自引:0,他引:1  
Formaldehyde dehydrogenases isolated from several different biological sources have been reported to catalyze the NAD+-dependent oxidative acylation of glutathione by methylglyoxal to form S-pyruvylglutathione, suggesting the involvement of this enzyme in the metabolism of methylglyoxal. However, formaldehyde dehydrogenase from bovine liver is found not to use methylglyoxal or related alpha-ketoaldehydes as substrates. Using methylglyoxal with the enzyme under conditions favoring the forward reaction did not result in the formation of S-pyruvylglutathione. Using independently synthesized S-pyruvylglutathione with the enzyme under conditions favoring the reverse reaction did not result in the production of methylglyoxal. In addition, methylglyoxal and several related alpha-ketoaldehydes did not exhibit detectable activity with formaldehyde dehydrogenase partially purified from human liver, contrary to a previous report. Some, if not all, past reports that methylglyoxal serves as a substrate for the dehydrogenase may be due to the demonstrated presence of contaminating formaldehyde in some commercially available preparations of methylglyoxal. In a related study, S-hydroxymethylglutathione, formed by pre-equilibrium addition of formaldehyde to glutathione, is concluded to be direct substrate for the dehydrogenase. This follows from the observation that the catalytic turnover number of the enzyme in the forward direction exceeds by a factor of approximately 20 the first order rate constant for decomposition of S-hydroxymethylglutathione to glutathione and formaldehyde (k = 5.03 +/- 0.30 min-1, pH 8, 25 degrees C).  相似文献   

9.
10.
11.
12.
Crystallographic investigations of horse liver alcohol dehydrogenase have demonstrated that NAD is not a passive participant in the redox reactions catalysed by the enzyme. On the molecular level NAD acts as an activator which induces an active form of the enzyme. This is mediated by a large conformational change, making the active site dehydrated and by providing one part of the substrate-binding cleft. The catalytic events, substrate binding, inhibitor binding and the role of the catalytic zinc ion are discussed in relation to the role of NAD. Human alcohol dehydrogenase isoenzymes which have very different substrate specificities are discussed in relation to sequence differences.  相似文献   

13.
Coenzyme binding to L-alpha-glycerophosphate dehydrogenase   总被引:2,自引:0,他引:2  
  相似文献   

14.
I Iweibo  H Weiner 《Biochemistry》1972,11(6):1003-1010
  相似文献   

15.
16.
Corticosteroid inducible, rapidly turning-over (t12 = 12 min to 3 hrs) enzymes of rat liver cytosol are complex enzymes with dissociable coenzymes. Enzymatic activity can be used to measure the relative rate of coenzyme dissociation. A comparison of rapidly inducible compared to relatively uninducible complex enzymes shows that the relative rate of coenzyme dissociation aligns with the shortness of the t12 of the enzyme suggesting that coenzyme dissociation may be a limiting step in the degradation process of these enzymes.  相似文献   

17.
Methylenetetrahydrofolate dehydrogenase, which is one of the activities of a trifunctional folate-dependent enzyme isolated from pig liver, displays an ordered bi-bi kinetic mechanism when methylenetetrahydropteroylmonoglutamate is used as the folate substrate [Cohen, L., & MacKenzie, R. E. (1978) Biochim. Biophys. Acta 522, 311-317]. We have studied the inhibition of this activity by a series of pteroylglutamates containing one to seven glutamyl residues. Inhibitors with one to four glutamyl residues exhibit a kinetically determined KD of about 56 microM for binding at the folate site of the enzyme, while inhibitors with five to seven glutamyl residues exhibit a KD of about 16 microM. These results suggest that folylpolyglutamates are bound to the trifunctional enzyme relatively weakly, with the major interaction involving the fifth glutamyl residue of the polyglutamate "tail". A free energy decrease of about 0.74 kcal (3.1 kJ) is associated with this interaction. The possibility of a swinging arm mechanism for the trifunctional enzyme is discussed. We have also measured the kinetic parameters Vmax and the Km values for NADP+ and the folate substrate associated with catalysis using a series of methylenetetrahydropteroylpolyglutamate substrates. The variation in these parameters with the length of the polyglutamate tail is small.  相似文献   

18.
19.
Commercial lyophilized preparations of yeast alcohol dehydrogenase from Boehringer G.m.b.H. (Mannheim, Germany) bind 2 mols of reduced coenzyme/144000 g of enzyme (1). After the purification by a DEAE-Sephadex column chromatography, the coenzyme binding capacity is raised to 4 mols of NADH/mol of enzyme. Commercial preparations and ionexchange-purified preparations are homogeneous on the ionexchange column chromatography and the disc gel electrophoresis, after reduction with thioglycolic acid. Ionexchange chromatography does not increase the -SH titer, zinc content and the specific activity of enzyme. It is suggested that ionexchange chromatography raises the NADH-binding capacity by removing some impurities present in commercial enzyme preparations.  相似文献   

20.
A structure determination in combination with a kinetic study of the steroid converting isozyme of horse liver alcohol dehydrogenase, SS-ADH, is presented. Kinetic parameters for the substrates, 5beta-androstane-3beta,17beta-ol, 5beta-androstane-17beta-ol-3-one, ethanol, and various secondary alcohols and the corresponding ketones are compared for the SS- and EE-isozymes which differ by nine amino acid substitutions and one deletion. Differences in substrate specificity and stereoselectivity are explained on the basis of individual kinetic rate constants for the underlying ordered bi-bi mechanism. SS-ADH was crystallized in complex with 3alpha,7alpha,12alpha-trihydroxy-5beta-cholan -24-acid (cholic acid) and NAD(+), but microspectrophotometric analysis of single crystals proved it to be a mixed complex containing 60-70% NAD(+) and 30-40% NADH. The crystals belong to the space group P2(1) with cell dimensions a = 55.0 A, b = 73.2 A, c = 92.5 A, and beta = 102.5 degrees. A 98% complete data set to 1.54-A resolution was collected at 100 K using synchrotron radiation. The structure was solved by the molecular replacement method utilizing EE-ADH as the search model. The major structural difference between the isozymes is a widening of the substrate channel. The largest shifts in C(alpha) carbon positions (about 5 A) are observed in the loop region, in which a deletion of Asp115 is found in the SS isozyme. SS-ADH easily accommodates cholic acid, whereas steroid substrates of similar bulkiness would not fit into the EE-ADH substrate site. In the ternary complex with NAD(+)/NADH, we find that the carboxyl group of cholic acid ligates to the active site zinc ion, which probably contributes to the strong binding in the ternary NAD(+) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号