首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The role of temperature in the regulation of seasonal changes in dormancy and germination was studied in seeds of Polygonum persicaria. Seeds were buried in the field and under controlled conditions. Portions of seeds were exhumed at regular intervals and germination was tested over a range of conditions. Seeds of P. persicaria exhibited a seasonal dormancy pattern that clearly showed the typical features of summer annuals, i.e. dormancy was relieved at low winter temperatures, the germination peak occurred in spring and dormancy was re-induced in summer. The expression of the dormancy pattern was influenced by the temperature at which germination was tested. At 30°C exhumed seeds germinated over a much longer period of the year than at 20° or 10°C. Nitrate added during the germination test occasionally stimulated germination. The seasonal changes in dormancy of buried seeds were regulated by the field temperature. Soil moisture and nitrate content did not influence the changes in dormancy. The fact that, on the one hand, field temperature determined the changes in dormancy and, on the other hand, germination itself was influenced by temperature, was used to describe the seasonal germination pattern of P. persicaria with a model. Germination of exhumed seeds in Petri dishes at field temperature was accurately described with this model. Germination in the field was restricted to the period where the range of temperatures over which germination could proceed (computed with the model) and field temperature overlapped.  相似文献   

2.
The effect of environmental conditions during storage and imbibition on germination was investigated in field pennycress (Thlaspi arvense L.), a weed species that can behave as a winter or a summer annual. Freshly harvested seeds of an inbred line with a cold requirement for flowering exhibited primary dormancy that was rapidly lost following 1 month of afterripening in a dry state. Nondormant seeds were positively photoblastic. The light effect was mediated through phytochrome since germination was promoted by red light and inhibited by far red light. Seedling emergence was also inhibited by light filtered through a canopy of wheat leaves. Germination of field pennycress seeds was considerably more sensitive to moisture stress than two sympatric species, wild oat (Avena fatua L.) and wheat (Triticum aestivum L., cv. ERA). Seeds of the latter two species were chosen in order to compare the effect of water potential on germination in field pennycress with that in sympatric species. It was concluded that the major environmental factor limiting nondormant field pennycress seeds on the soil surface was water availability. Imbibition of fully afterripened seeds at low temperatures (6 C) induced a deep secondary dormancy. In contrast to primary dormancy, cold-induced dormancy was not alleviated by red light, alternating temperatures (21/5 C), or 2 months of dry storage at 6, 15, or 35 C. However, exogenous gibberellin A3 or 24 weeks of dry storage resulted in germination in cold-induced dormant seeds. Secondary dormancy was not observed in fully afterripened seeds that were preincubated at 21 C for 1 or 2 days prior to the cold treatment. These results may explain the failure in field experiments to observe the cold-induced secondary dormancy that limits spring emergence in other winter annuals (J. Baskin, C. Baskin, Weed Res. 1979 19: 285–292).  相似文献   

3.
Anderson S 《Oecologia》1990,83(2):277-280
Summary I examined the germination characteristics of weed and outcrop populations of Crepis tectorum to test the hypothesis that the presumably more ephemeral weed habitat favors the highest levels of seed dormancy. The winter annual habit characterizing most plants of this species was reflected in a rapid germination of seeds sown in late summer. A slightly higher fraction of surface-sown seeds of weed plants delayed germination. Buried seeds of weed plants also survived better than seeds produced by plants in most outcrop populations, supporting the idea that weediness favors seed dormancy and a persistent seed bank. However, the differences in seed dormancy between the two ecotypes were small and not entirely consistent. Furthermore, high levels of seed dormancy were induced during burial in the outcrop group, suggesting that there is a potential for a dormant seed population in this habitat as well. Demographic data from one of the outcrop populations verified the presence of a large between-year seed bank. Possible environmental factors favoring seed dormancy in outcrop populations are discussed. The unusually large seeds of weedy Crepis contrasts with the relatively small difference in seed dormancy between the two ecotypes.  相似文献   

4.
Temperate forest herbs with seeds exhibiting both a physical and a physiological dormancy mechanism are rare, and knowledge on the factors regulating germination of these species is fragmentary. The biennial Geranium robertianum L. grows mainly in temperate woodlands, but can also be found in exposed habitats. Seedlings of G. robertianum are known to emerge from spring until autumn, but little is known about the environmental factors regulating germination. In this study, phenology of seedling emergence and of physical dormancy loss was examined for seeds buried at shaded or sunny exposed locations. The role of temperature in regulating dormancy and germination was analysed by incubating seeds in temperature sequences simulating temperatures that seeds experience in nature. The results indicate that most seeds of G. robertianum buried in sunny conditions germinate immediately after physical dormancy loss in summer. Seeds buried in shaded conditions also lose physical dormancy mainly during summer, but remain physiologically dormant and do not germinate until late winter or early spring. Besides physical dormancy, seeds of G. robertianum also initially have a high level of physiological dormancy, which is reduced during dry storage. Physiological dormancy is reduced through chilling in winter, thus enabling the seeds to germinate at low temperatures. We conclude that a complex combination of physical and physiological dormancy ensures that G. robertianum seeds germinate in summer at exposed sites and in early spring at shaded sites.  相似文献   

5.
Mesic deciduous forest herbs often disperse seed with morphophysiological dormancy (MPD) that prevents germination during unfavorable periods for seedling survival. However, for seeds of some species with MPD, seasonal separation of root and shoot emergence and variation in dormancy levels can complicate interpretation of seedling emergence timing in the field. We tested whether dormancy-break and germination requirements differed among co-occurring perennial forest herbs, Actaea racemosa, Hydrastis canadensis, and Sanguinaria canadensis, which are wild-harvested for their medicinal properties and known to have MPD. Seeds of all species exhibited a summer → autumn → winter requirement for seedling emergence in spring. However, species differed in seed-bank persistence due to variation in primary dormancy levels and stratification requirement of seeds. A. racemosa and H. canadensis can form short-term persistent seed bank, whereas S. canadensis can form a long-term persistent seed-bank, regardless of whether elaiosomes were removed from seeds prior to burial. A. racemosa seeds are dispersed in autumn with weak physiological dormancy, as seeds germinated to high rates at 15/6°C after 8 weeks. In contrast, most seeds of the summer dispersed species, H. canadensis and S. canadensis, require summer temperatures to overcome physiological dormancy. Consequently, seedling emergence is reduced and delayed by 1 year if seeds are not sown immediately following the period of natural dispersal. Seedling emergence was much lower in the field than in controlled conditions for all species, especially in the small-seeded A. racemosa. Interspecific variation in dormancy levels and germination traits must be considered when establishing populations for conservation purposes and in understanding recruitment limitation in perennial forest herbs.  相似文献   

6.
Summary Ambrosia artemisiifolia L., Chenopodium album L., and Amaranthus retroflexus L. are three summer annual weeds that occur in disturbed habitats. In nature, the peak germination season for A. artemisiifolia and C. album is in early to mid-spring, while in A. retroflexus the peak germination season is late spring to early summer. Furthermore, seeds of A. artemisiifolia germinate only in spring, while seeds of C. album and A. retroflexus germinate throughout the summer. In an attempt to explain the differential germination behavior of these three species in nature, changes in their germination responses to temperature during burial in a non-heated greenhouse from October 1974 to October 1975 were monitored. A high percentage of the seeds of all three species after-ripened during winter. Seeds of A. artemisiifolia and C. album germinated at temperatures characteristic of those in the field in early and mid-spring, but seeds of A. retroflexus required the higher temperatures of late spring and early summer for germination. Seeds of all three species germinated to higher percentages in light than in darkness. Non-dormant seeds of A. artemisiifolia that did not germinate in spring entered secondary dormancy. On the other hand, seeds of C. album and A. retroflexus that did not germinate when temperatures first became favorable for germination, did not enter secondary dormancy and, thus, retained the ability to germinate at summer field temperatures during summer. Thus, temporal differences in the germination behavior of these three species are caused by the differential reaction of the seeds to temperature during the annual temperature cycle.  相似文献   

7.
Van Assche  Jozef  Van Nerum  Diane  Darius  Paul 《Plant Ecology》2002,159(2):131-142
The germination requirements, dormancy cycle and longevity of nine Rumexspecies were studied in field conditions and laboratory experiments to show theadaptations of the related species to their specific habitat. Within one genus,rather striking differences were observed in germination ecology. However, theclosely related species, R. acetosa and R.scutatus, are very similar: they fruit in early summer; theirseeds can germinate immediately after dispersal, and they are nondormant andshort-lived. R. acetosella also has fruits insummer, but the seeds do not germinate the first season after dispersal. Theyare long-lived, but buried seeds do not show a dormancy cycle; they mightgerminate in different seasons after exposure to light. Seeds of four species (R. conglomeratus,R. maritimus, R. sanguineus andR. crispus) are long-lived and undergo aseasonal dormancy cycle, with a low level of dormancy in winter and early springand a deep dormancy in summer as was already known for R.obtusifolius. These seeds are shed in the autumn, and they germinatemainly in the spring in consecutive years. R. maritimusalso germinates in summer and autumn on drying muddy soils. The seeds of R. hydrolapathum only germinate onwaterlogged soils, which explains its growth at the edge of streams and ponds.Its seeds are rather short-lived. The seeds of the species on very wetplaces require a higher temperature for germination.  相似文献   

8.
Knowledge on seed dormancy is crucial for the understanding of plant population dynamics, as it controls seed germination and seed bank formation. Dormant seeds have high potential to establish in soil seed banks, but such information within Cactaceae is scarce, although it is essential for conservation programs. The aim of this study was to determine if seeds of Ferocactus peninsulae showed any kind of dormancy and to test their germination capacity after storage. This was assessed with 15 seed sowing experiments done over 4 years with seeds stored under room conditions (20 ± 2°C). We demonstrated the existence of physiological dormancy in F. peninsulae seeds that is broken with an after-ripening period. Germination was low during the first 3 months of storage (d = 0.206) but increased after 10 months of storage (d = 0.654), and seeds maintained their viability at 48 months (d = 0.707). Also, their speed of germination increased with storage time. Ferocactus peninsulae seeds are positively photoblastic, and the requirement for light for germination persisted over all experiments. The results provide crucial information for propagation and conservation research and may allow us to infer that F. peninsulae seeds are able to form a persistent soil seed bank, as they maintained their viability after dormancy is released.  相似文献   

9.
Seeds use environmental cues to sense the seasons and their surroundings to initiate the life cycle of the plant. The dormancy cycling underlying this process is extensively described, but the molecular mechanism is largely unknown. To address this we selected a range of representative genes from published array experiments in the laboratory, and investigated their expression patterns in seeds of Arabidopsis ecotypes with contrasting life cycles over an annual dormancy cycle in the field. We show how mechanisms identified in the laboratory are coordinated in response to the soil environment to determine the dormancy cycles that result in winter and summer annual phenotypes. Our results are consistent with a seed‐specific response to seasonal temperature patterns (temporal sensing) involving the gene DELAY OF GERMINATION 1 (DOG1) that indicates the correct season, and concurrent temporally driven co‐opted mechanisms that sense spatial signals, i.e. nitrate, via CBL‐INTERACTING PROTEIN KINASE 23 (CIPK23) phosphorylation of the NITRATE TRANSPORTER 1 (NRT1.1), and light, via PHYTOCHROME A (PHYA). In both ecotypes studied, when all three genes have low expression there is enhanced GIBBERELLIN 3 BETA‐HYDROXYLASE 1 (GA3ox1) expression, exhumed seeds have the potential to germinate in the laboratory, and the initiation of seedling emergence occurs following soil disturbance (exposure to light) in the field. Unlike DOG1, the expression of MOTHER of FLOWERING TIME (MFT) has an opposite thermal response in seeds of the two ecotypes, indicating a role in determining their different dormancy cycling phenotypes.  相似文献   

10.

Background and Aims

Suaeda aralocaspica is a C4 summer annual halophyte without Kranz anatomy that is restricted to the deserts of central Asia. It produces two distinct types of seeds that differ in colour, shape and size. The primary aims of the present study were to compare the dormancy and germination characteristics of dimorphic seeds of S. aralocaspica and to develop a conceptual model of their dynamics.

Methods

Temperatures simulating those in the natural habitat of S. aralocaspica were used to test for primary dormancy and germination behaviour of fresh brown and black seeds. The effects of cold stratification, gibberellic acid, seed coat scarification, seed coat removal and dry storage on dormancy breaking were tested in black seeds. Germination percentage and recovery responses of brown seeds, non-treated black seeds and 8-week cold-stratified black seeds to salt stress were tested.

Key Results

Brown seeds were non-dormant, whereas black seeds had non-deep Type 2 physiological dormancy (PD). Germination percentage and rate of germination of brown seeds and of variously pretreated black seeds were significantly higher than those of non-pretreated black seeds. Exposure of seeds to various salinities had significant effects on germination, germination recovery and induction into secondary dormancy. A conceptual model is presented that ties these results together and puts them into an ecological context.

Conclusions

The two seed morphs of S. aralocaspica exhibit distinct differences in dormancy and germination characteristics. Suaeda aralocaspica is the first cold desert halophyte for which non-deep Type 2 PD has been documented.Key words: Borszczowia, cold desert halophyte, physiological seed dormancy, seed germination, Suaeda  相似文献   

11.
To clarify the adaptive significance of seed dormancy, the effects of burial duration were examined for two deciduousRubus species:Rubus palmatus var.coptophyllus andRubus parvifolius, which are found mainly in relatively stable, shaded sites and disturbed sites, respectively. In early summer, newly ripened seeds were buried under litter on the soil surface in a pine forest, and germination tests were carried out for the seeds retrieved from the soil litter after 0 (not buried), 1, 2, 3, 5 and 8 or 9 months of burial. In general, the germination percentages increased and light requirements for germination decreased with increased burial duration. The percentage of seeds germinated with alternating temperatures in darkness also increased with increasing burial duration for both species. After 8 or 9 months of burial (corresponding to the next germination season in the field), the percentage of non-dormant seeds (including germination under alternating temperatures in the dark) was about 80% and 40% forR. palmatus var.coptophyllus andR. parvifolius, respectively. These seed dormancy traits of the twoRubus species may explain the differences in germination strategy in their habitats:R. palmatus var.coptophyllus seems to have adapted to the seasonal occurrence of favorable growing conditions after the dormancy breakage, whileR. parvifolius seems to have adapted to favorable conditions created by temporally unpredictable disturbances.  相似文献   

12.
The probability that a seed will germinate depends on factors associated with genotype, maturation environment, post-maturation history, and germination environment. In this study, we examined the interaction among these sets of factors for 18 inbred lines from six populations of Bromus tectorum L., a winter annual grass that is an important weed in the semi-arid western United States. Seeds of this species are at least conditionally dormant at dispersal and become germinable through dry-afterripening under summer conditions. Populations and inbred lines of B. tectorum possess contrasting dormancy patterns. Seeds of each inbred line were produced in a greenhouse under one of three levels of maturation water stress, then subjected to immediate incubation under five incubation regimes or to dry storage at 20°C for 4 weeks, 12 weeks, or 1 year. Dry-stored seeds were subsequently placed in incubation at 20/30°C. Narrow-sense heritability estimates based on parent-offspring regressions for germination percentage of recently harvested seeds at each incubation temperature were high (0.518–0.993). Germination percentage increased with increasing water stress overall, but there were strong interactions with inbred line and incubation temperature. Inbred lines whose seeds were non-dormant over the full range of incubation temperatures when produced at low maturation water stress showed reaction norms characterized by little or no change as a function of increasing stress. For inbred lines whose dormancy status varied with incubation temperature, incubation treatments where seeds exhibited either very low or very high levels of dormancy showed the least change in response to maturation water stress. Inbred lines also varied in their pattern of dormancy loss during storage at 20°C, but maturation water stress had only a minor effect on this pattern. For fully afterripened seeds (1 year in storage at 20°C), inbred line and maturation water stress effects were no longer evident, indicating that differences in genotype and maturation environment function mainly to regulate dormancy and dormancy loss in B. tectorum, rather than to mediate response patterns of non-dormant seeds.  相似文献   

13.
The germination ecology of Sideritis serrata was investigated in order to improve ex‐situ propagation techniques and management of their habitat. Specifically, we analysed: (i) influence of temperature, light conditions and seed age on germination patterns; (ii) phenology of germination; (iii) germinative response of buried seeds to seasonal temperature changes; (iv) temperature requirements for induction and breaking of secondary dormancy; (v) ability to form persistent soil seed banks; and (vi) seed bank dynamics. Freshly matured seeds showed conditional physiological dormancy, germinating at low and cool temperatures but not at high ones (28/14 and 32/18 °C). Germination ability increased with time of dry storage, suggesting the existence of non‐deep physiological dormancy. Under unheated shade‐house conditions, germination was concentrated in the first autumn. S. serrata seeds buried and exposed to natural seasonal temperature variations in the shade‐house, exhibited an annual conditional dormancy/non‐dormancy cycle, coming out of conditional dormancy in summer and re‐entering it in winter. Non‐dormant seeds were clearly induced into dormancy when stratified at 5 or 15/4 °C for 8 weeks. Dormant seeds, stratified at 28/14 or 32/18 °C for 16 weeks, became non‐dormant if they were subsequently incubated over a temperature range from 15/4 to 32/18 °C. S. serrata is able to form small persistent soil seed banks. The maximum seed life span in the soil was 4 years, decreasing with burial depth. This is the second report of an annual conditional dormancy/non‐dormancy cycle in seeds of shrub species.  相似文献   

14.
Seeds of the winter annual Viola rafinesquii Greene exhibit true dormancy at the time of maturity and dispersal in mid to late spring. During the summer rest period the seeds pass from a state of true dormancy to one of relative dormancy and finally to what may be called a state of complete nondormancy. As the seeds enter relative dormancy they will germinate mostly at relatively low temperatures (10, 15, 15/6, and 20/10 C), but as after-ripening continues they gain the ability also to germinate at higher temperatures (20, 25, and 30/15 C). During June, July, and August seeds will not germinate at field temperatures even if kept continuously moist. But by September and October seeds may germinate to high percentages over a wide range of temperatures, including September and October field temperatures. This pattern of germination responses, involving breaking of true dormancy and widening of the temperature range for germination during relative dormancy, appears to be an adaptation of the species to a hot, dry season. Seeds of V. rafinesquii stored on continuously wet soil (field capacity) or on soil that was alternately wet and dried during the summer did not after-ripen at low temperatures (10, 15, 15/6, and 20/10 C) but did after-ripen fully at high temperatures (20, 25, 30/15, and 35/20 C). Thus, the high temperatures that V. rafinesquii “avoids” by passing the summer in the dormant seed stage actually are required to break seed dormancy and, therefore, are essential for completion of its life cycle.  相似文献   

15.
Seed viability and germination are key factors in the success of restoration efforts, especially when stored seeds are used. However, the effect of seed storage on germination of most of the native Arabian species is not well documented. We investigated the effect of storage time and role of the seed mucilage in regulating germination, dormancy, salinity tolerance and consequential survival strategy of F. aegyptia in an unpredictable arid desert setting. Effect of light and temperature during germination was studied under two photoperiods and two thermoperiods using intact and de-mucilaged seeds. Presence of mucilage and thermoperiod did not affect the germination. However, seed collection year and photoperiod had a highly significant effect on the germination. Increasing salinity levels decreased the germination of F. aegyptia but ungerminated seeds were able to germinate when salinity stress was alleviated. Seed storage at room temperature enhances the germination percentage, indicating that F. aegyptia seeds have physiological dormancy and it can be alleviated by after-ripening at dry storage. In addition, F. aegyptia seeds show ability to germinate at lower salinity concentration and remain viable even at higher saline conditions, indicating their adaptability to cope with such harsh environmental conditions.  相似文献   

16.
In this study we examined the germination ecology with special reference to the temperature requirements for embryo development and germination of Corydalis cava subsp. cava, under both outdoor and laboratory conditions. Corydalis cava is a spring flowering woodland tuberous geophyte widely distributed across Europe. Germination phenology, including embryo development and radicle and cotyledon emergence, was investigated in a population growing in northern Italy. Immediately after harvest, seeds of C. cava were sown both in the laboratory under simulated seasonal temperatures and naturally. Embryos, undifferentiated at the time of seed dispersal, grew during summer and autumn conditions, culminating in radicle emergence in winter, when temperatures fell to ca 5°C. Cotyledon emergence also occurred at ca 5°C, but first emergence was delayed until late winter and early spring. Laboratory experiments showed that high (summer) followed by medium (autumn) and low temperatures (winter) are needed for physiological dormancy loss, embryo development and germination respectively. Unlike seeds of C. cava that germinated in winter, in other Corydalis species radicle emergence occurred in autumn (C. flavula) or did not depend on a period of high summer temperature to break dormancy (C. solida). Our results suggest that subtle differences in dormancy and germination behavior between Corydalis species could be related to differences in their geographical distribution.  相似文献   

17.
Mature seeds of apple (Mallus domestica Borb. cv. Antonówka) are dormant and do not germinate unless their dormancy is removed by several weeks of moist-cold treatment. We investigated the effect of short-term (3 h) nitric oxide (NO) pretreatment on breaking of apple embryonic dormancy expressed as inhibition of germination and morphological abnormalities of young seedlings. Imbibition of embryos isolated from dormant apple seeds with sodium nitroprusside (SNP) or S-nitroso,N-acetyl penicillamine (SNAP) as NO donors resulted in enhanced germination. Moreover, NO treatment removed morphological abnormalities of seedlings developing from dormant embryo. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-teramethylimidazoline-1-oxyl-3 oxide (cPTIO) removed the above effects. NO-mediated breaking of embryonic dormancy correlated well with enhanced ethylene production. Inhibitor of ethylene synthesis (AOA) reversed the stimulatory effect of NO donors on embryo germination. Additionally SNP reduced embryo sensitivity to exogenously applied ABA ensuing dormancy breakage. We can conclude that NO acts as a regulatory factor included in the control of apple embryonic dormancy breakage by stimulation of ethylene biosynthesis.  相似文献   

18.
19.
  • Agricultural burning is used in farm management operations; however, information about the impact of fire cues on the release and/or induction of secondary dormancy in crop seeds is scarce.
  • Seeds from two oilseed rape cultivars were induced for high (HD) or low (LD) secondary dormancy using polyethyleneglycol (PEG) pre‐treatment, and their germination after exposure to various fire cues was compared to control PEG pre‐treated and non‐dormant seeds.
  • Non‐dormant seed germination was unaffected by various fire cues. Low doses of aerosol smoke released secondary dormancy in HD seeds, while higher doses increased dormancy of LD seeds. Dilute smoke water also released HD seed secondary dormancy, but concentrated smke water enhanced dormancy in both LD and HD seeds. The concentrated aqueous extracts from charred oilseed rape straw only promoted germination of HD seeds, while dilution inhibited LD seed germination. Heat shock (80 °C, 5 min) released secondary dormancy in HD seeds; however, higher temperatures and/or increased exposure time was associated with seed death. GC‐MS analyses of smoke water revealed two butenolides and an array of monoaromatic hydroxybenzene compounds with potential germination inhibitor or promoter activity.
  • The extent of secondary dormancy induction in seeds affects their subsequent responses to fire cues. Both aerosol smoke and smoke water have both germination promoter and inhibitor activity. Lacking any butenolides, aqueous extracts of charred straw contain a potential germination stimulating steroid, i.e. ergosterol. The significance of fire‐derived cues on behaviour of oilseed rape seeds in the soil seed bank is discussed.
  相似文献   

20.
In the temperate region temperature is the main factor influencing the germination period of plant species. The purpose of this study was to examine effects of constant and fluctuating temperatures on dormancy and germination under laboratory and field conditions in the three wetland species Lycopus europaeus, Mentha aquatica and Stachys palustris. The results should give indications if the temperature-dependent regulation of dormancy and germination is phylogenetically constrained. Tests for germination requirements showed a minimum temperature for germination of 9 °C in Mentha and 12 °C in Lycopus and Stachys, and a maximum temperature of 33 °C for Lycopus and 36 °C for Mentha and Stachys. Fluctuating temperatures promoted germination in all three species but the amplitude required for high germination (>50%) differed: it was 8 °C in Mentha, 10 °C in Stachys and 14 °C in Lycopus (mean temperature 22 °C). The effect of temperatures on the level of dormancy was examined in the laboratory by imbibing seeds at temperatures between 3 °C and 18 °C for periods between 2 and 28 weeks, as well as by a 30-month burial period, followed by germination tests at various temperatures, in light and darkness. In the laboratory only low temperatures (≤12 °C) relieved primary dormancy in seeds of Lycopus, while in Mentha and Stachys also higher temperatures lead to an increase of germination. Dormancy was only induced in Lycopus seeds after prolonged imbibition at 12 °C in the laboratory. Buried seeds of all species exhibited annual dormancy cycles with lower germination in summer and higher germination from autumn to spring. Exhumed seeds, however, showed considerable differences in periods of germination success. Dormancy was relieved when ambient temperatures were below 12 °C. Ambient temperatures that caused an induction of dormancy varied depending on species and test condition, but even low temperatures (8 °C) were effective. At high test temperatures (25 °C) in light, exhumed seeds of all three species showed high germination throughout the year. The three species showed various differences in the effects of temperatures on dormancy and germination. Similarities in dormancy and germination found among the species are in common with other spring-germinating species occurring in wetlands, so it seems that the temperature dependent regulation of dormancy and germination are related to habitat and not to phylogenetic relatedness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号