首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of methamphetamine on morphine analgesia (tail-flick assay) was studied in non-tolerant mice and in mice made acutely tolerant to morphine following a single injection of 100 mg/kg morphine. The analgesic potency of morphine was increased in non-tolerant and tolerant mice to the same extent by 3.2 mg/kg methamphetamine (3.3 and 4.4 fold increases, respectively). In contrast, the ED50's for morphine analgesia and naloxone-precipitated jumping in mice pretreated with either 100 mg/kg morphine or both morphine and 3.2 mg/kg methamphetamine were not significantly different, indicating that methamphetamine had no effect on the development of acute morphine tolerance and dependence. Although methamphetamine had no effect on the development of acute tolerance to morphine, 4-day pretreatment with methamphetamine produced cross-tolerance to morphine analgesia. However, cross-tolerance to morphine was not accompanied by enchanced sensitivity to naloxone.  相似文献   

2.
Gupta K  Vats ID  Gupta YK  Saleem K  Pasha S 《Peptides》2008,29(12):2266-2275
Chimeric peptide of Met-enkephalin and FMRFa (YGGFMKKKFMRFa-YFa), a κ-opioid receptor specific peptide, did not induce tolerance and cross-tolerance effects to its analgesic action on day 5 after pretreatment with either YFa or morphine for 4 days. However, pretreatment with YFa for 4 days led to the development of cross-tolerance to the analgesic effects of morphine and also 4 days of pretreatment of morphine resulted in the expression of tolerance to its own analgesic effects. Similar expression of tolerance and cross-tolerance were also observed when YFa was compared with the κ receptor agonist peptide dynorphin A(1–13) [DynA(1–13)]. Cross-tolerance effects between YFa and DynA(1–13) analgesia were also not observed on day 5. Interestingly, when YFa and DynA(1–13) were tested for their analgesic effects for 5 days, reduction in analgesia on day 3 was observed in case of DynA(1–13) whereas YFa maintained its analgesia for 5 days. Thus, chimeric peptide YFa may serve as a useful probe to understand pain modulation and expression of tolerance and cross-tolerance behavior with other opioids.  相似文献   

3.
Experiments were designed to test for short-term tolerance to morphine and ethyl-ketocyclazocine (EKC), mu and kappa agonists, respectively, and cross-tolerance between the two drugs. Mice were primed with one of the drugs, using doses that did not affect the tail-flick response when tested at a time 1 or 3 hours later, when the same or alternate test drug was administered. All animals were injected with the priming drug IP. In one series of experiments, the test drugs were given SC, and in the other, the test drugs were injected ICV under brief halothane anesthesia. Priming with morphine (30 or 100 mg/kg) significantly raised the ED50 for ICV morphine. Priming with EKC (2 or 6 mg/kg) similarly elevated the ED50's for SC and ICV EKC. Symmetrical cross-tolerance was produced in experiments where the test drugs were administered SC when tested at 3 hrs. The effects of priming with EKC on morphine analgesia was evident when the interval between priming and test drugs was 1 hour. When the test drugs were given ICV, cross-tolerance was also symmetrical: priming with EKC significantly raised the ED50 for morphine and priming with morphine raised the ED50 for EKC when tested at 3 hrs. These data suggest that both agonists act on a common site to produce analgesia as similar pA2 values for naloxone antagonism were determined. The occurrence of short-term tolerance and cross-tolerance to the opiates was unaltered by chronic pretreatment with diazepam, phenobarbital, or amphetamine.  相似文献   

4.

Background

Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs) are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal. Thus, CB1Rs mediate the effects of smoked cannabis and are also implicated in emotional behaviors. We have analyzed the production of supraspinal analgesia and the development of tolerance at CB1Rs by the direct injection of a series of cannabinoids into the brain. The influence of the activation of CB1Rs on supraspinal analgesia evoked by morphine was also evaluated.

Results

Intracerebroventricular (icv) administration of cannabinoid receptor agonists, WIN55,212-2, ACEA or methanandamide, generated a dose-dependent analgesia. Notably, a single administration of these compounds brought about profound analgesic tolerance that lasted for more than 14 days. This decrease in the effect of cannabinoid receptor agonists was not mediated by depletion of CB1Rs or the loss of regulated G proteins, but, nevertheless, it was accompanied by reduced morphine analgesia. On the other hand, acute morphine administration produced tolerance that lasted only 3 days and did not affect the CB1R. We found that both neural mu-opioid receptors (MORs) and CB1Rs interact with the HINT1-RGSZ module, thereby regulating pertussis toxin-insensitive Gz proteins. In mice with reduced levels of these Gz proteins, the CB1R agonists produced no such desensitization or morphine cross-tolerance. On the other hand, experimental enhancement of Gz signaling enabled an acute icv administration of morphine to produce a long-lasting tolerance at MORs that persisted for more than 2 weeks, and it also impaired the analgesic effects of cannabinoids.

Conclusion

In the brain, cannabinoids can produce analgesic tolerance that is not associated with the loss of surface CB1Rs or their uncoupling from regulated transduction. Neural specific Gz proteins are essential mediators of the analgesic effects of supraspinal CB1R agonists and morphine. These Gz proteins are also responsible for the long-term analgesic tolerance produced by single doses of these agonists, as well as for the cross-tolerance between CB1Rs and MORs.  相似文献   

5.
This study was essentially an in vivo protection experiment designed to test further the hypothesis that stress induces release of endogenous opioids which then act at opioid receptors. Rats that were either subjected to restraint stress for 1 hr or unstressed were injected ICV with either saline or 2.5 micrograms of beta-funaltrexamine (beta-FNA), an irreversible opioid antagonist that alkylates the mu-opioid receptor. Twenty-four hours later, subjects were tested unstressed for morphine analgesia (tail-flick assay) or were sacrificed and opioid binding in brain was determined. [3H]D-Ala2NMePhe4-Gly5(ol)enkephalin (DAGO) served as a specific ligand for mu- opioid receptors, and [3H]-bremazocine as a general ligand for all opioid receptors. Rats injected with saline while stressed were significantly less sensitive to the analgesic action of morphine 24 hr later than were their unstressed counterparts. Beta-FNA pretreatment attenuated morphine analgesia in an insurmountable manner. Animals pretreated with beta-FNA while stressed were significantly more sensitive to the analgesic effect of morphine than were animals that received beta-FNA while unstressed, consistent with the hypothesis that stress induces release of endogenous opioids that would protect opioid receptors from alkylation by beta-FNA. beta-FNA caused small and similar decreases in [3H]-DAGO binding in brain of both stressed and unstressed animals. Stressed rats injected with saline tended to have increased levels of [3H]DAGO and [3H]-bremazocine binding compared to the other groups. This outcome may be relevant to the tolerance to morphine analgesia caused by stress.  相似文献   

6.
Ozek M  Uresin Y  Güngör M 《Life sciences》2003,72(17):1943-1951
The effects of L-Canavanine, a selective inducible nitric oxide synthase (NOS) inhibitor and N(G)-nitro-L-arginine methyl ester (L-NAME), a nonselective NOS inhibitor, on pain threshold and morphine induced analgesia, tolerance and dependence in mice were investigated and compared. Morphine was administered by subcutaneous implantation of a pellet containing 40 mg free base and withdrawal was precipitated by intraperitoneal (i.p.) injection of naloxone (2 mg/kg). L-Canavanine (200 mg/kg, i.p.) did not affect the pain threshold, morphine-induced analgesia and the induction and expression phases of morphine tolerance and dependence. L-NAME (20 mg/kg, i.p.) significantly (p < 0.05) enhanced the pain threshold, potentiated morphine-induced analgesia and attenuated the expression phase of morphine dependence which has been characterized by withdrawal signs and body weight loss, but did not modify the induction phase of morphine tolerance and dependence. It is concluded that constitutive NOS isoforms which were inhibited by L-NAME may be involved specifically in the mechanisms of morphine induced analgesia, tolerance and dependence.  相似文献   

7.
Mice were rendered tolerant to morphine by the subcutaneous implantation of one 75 mg morphine pellet. Seventy-two hours post-pellet implantation, the animals were evaluated in the tail-flick assay for analgestic tolerance and cross-tolerance to subcutaneously administered morphine, normorphine, methadone, etorphine and intracerebroventricularly administered morphine. With the pellet remaining in situ during testing, there was the expected analgestic tolerance to peripherally administered morphine and analgesic cross-tolerance to normorphine. However, with the pellet in situ during testing, there was a surprising lack of analgesic tolerance to intracerebroventricularly administered etorphine or methadone. In contrast, removal of the morphine pellet 3 hours prior to the analgesic evaluation apparently unmasked the expression of tolerance and cross-tolerance as evidenced by a three fold, parallel shift to the right of the analgesic dose-response curve for subcutaneously administered etorphine and methadone and a seven fold shift for intracerebroventricularly administered morphine. These data emphasize that a more rigorous evaluation of tolerance development methodologies need be explored and support the suggestion that removal of the morphine-inducing pellet prior to analgesic determinations results in a distinct state of “tolerance” quite different from that observed with the pellet remaining in situ during testing.  相似文献   

8.
Intracerebroventricular administration of 20, 40 and 60 nmol of dynorphin (1-13) produced analgesia, as assessed by flinch/jump response to footshock, and hypothermia in the rat. Rats developed tolerance to both the analgesic and thermic effects of the 20 nmol dose of dynorphin. Dynorphin and beta-endorphin showed cross-tolerance with respect to their analgesic but not their thermic effects. Dynorphin and morphine also produced cross-tolerant analgesic effects. Naloxone (10 mg/kg, IP) completely blocked the barrel rolling produced by 20 nmol dynorphin but did not alter its analgesic or thermic effects.  相似文献   

9.
R M Eisenberg 《Life sciences》1982,30(19):1615-1623
Short-term tolerance to morphine, which can be demonstrated in as little as 3 hours after a single administration of the opiate, was examined in animals chronically pretreated with diazepam, phenobarbital, or amphetamine. Tail-flick latency in mice and changes in plasma corticosterone in rats were the parameters tested in these experiments. Rats primed with either saline or morphine, 10 mg/kg, were injected 3 hours subsequently with morphine, 5 mg/kg. Those primed with saline showed the characteristic plasma corticosterone elevation following morphine, when serial blood samples were examined, whereas those previously treated with morphine did not. Mice were primed with saline or either of two doses of morphine, 30 or 100 mg/kg, 3.5 hours prior to estimation of tail-flick latency and ED50 determinations. Mice primed with either dose of morphine had significantly higher ED50's than those primed with saline. Chronic treatment with diazepam or amphetamine in either species did not significantly alter short-term tolerance development by either parameter. However, with phenobarbital pretreatment, the plasma corticosterone response was attenuated and short-term tolerance to morphine's analgesic effects did not occur. Further studies in morphine-pelleted mice showed that analgesic tolerance occurred similarly in all groups. This suggests that barbiturates may delay the process.  相似文献   

10.
Y F Jacquet  A Lajtha 《Life sciences》1975,17(8):1321-1324
Two-way analgesic cross tolerance was obtained between systematic and intracerebral morphine injections in the periaqueductal gray. When rats were pretreated with intraperitoneal morphine and tested with intracerebral morphine in the periaqueductal gray, a dose-dependent reduction in analgesia as a function of morphine pretreatment level was obtained. Conversely, when rats were pretreated with intracerebral morphine, significant reductions in analgesia were obtained. These results are further confirmation that the periaqueductal gray matter is an important site for morphine analgesia.  相似文献   

11.
The findings from our laboratory indicated that pharmacological manipulations of GABA system modified morphine analgesia, tolerance and physical dependence. Elevating brain levels of GABA by slowing its destruction with aminooxyacetic acid not only antagonized the analgesic action of morphine in both non-tolerant and tolerant mice, but also enhanced the development of tolerance and physical dependence. On the other hand, blockade of postsynaptic sites of GABA receptors by bicuculline resulted in an inhibition of tolerance and dependence development. Administration of 2,4-diaminobutyric acid, an inhibitor of GABA uptake in the neurons, antagonized morphine analgesia in both non-tolerant and tolerant mice. However, it did not modify naloxone precipitated withdrawal jumping. On the contrary, β-alanine, an inhibitor of the GABA uptake process in glial cells, potentiated naloxone precipitated withdrawal jumping in morphine dependent mice, but it had no effect on morphine antinociception in both non-tolerant and tolerant mice.  相似文献   

12.
Z Ben-Zvi  C E Graham  A Hurwitz 《Life sciences》1987,40(16):1617-1623
Chronic treatment of mice with clonidine or morphine caused tolerance to the analgesic and thermoregulatory effects of these drugs. After chronic morphine, mice also became tolerant to the analgesic and thermoregulatory effects of clonidine. Cross tolerance to the hypothermic effect of morphine was demonstrated after chronic clonidine administration, but no diminution of morphine-induced analgesia could be shown. Morphine and clonidine acutely increased the retention of sulfobromophthalein (BSP) in plasma and liver. Chronic dosing with morphine or clonidine caused partial tolerance and cross-tolerance to the rise in hepatic BSP caused by an acute challenge with either agonist. However, both drugs elevated plasma BSP levels similarly in tolerant and non-tolerant mice. Thus, regimens which readily induced tolerance to the analgesic and hypothermic effects of morphine or clonidine were only partially effective in modifying the acute hepatobiliary effects of these drugs.  相似文献   

13.
The development of tolerance to ethanol-induced hypothermia and hypnosis, and cross-tolerance with morphine was studied in mice and rats. Ethanol significantly decreased the body temperature in rats (3.0 and 3.2 g/kg) and in mice (3.5 and 4.0 g/kg). Chronic administration of ethanol resulted in the tolerance not only to ethanol hypothermia but also to hypothermic effects of morphine in examined animals. Implantation of morphine pellets caused the development of cross tolerance to ethanol-induced hypothermia in rats but not in mice. The hypnotic effect of ethanol was significantly shorter in chronic alcoholized rats but not in morphine-implanted rats. Neither chronic ethanol administration nor implantation of morphine pellets changed the duration of ethanol-induced hypnosis in mice. These results seem to support the hypothesis on the opiate-like mechanism of ethanol action.  相似文献   

14.
S M Crain  B Crain  T Finnigan  E J Simon 《Life sciences》1979,25(21):1797-1802
Following chronic exposure of organotypic explants of mouse spinal cord with attached dorsal root ganglia (DRG) to low levels of morphine (1 μM) for 2–3 days (at 35°C), the initial opiate-depressant effects on sensory-evoked dorsal-horn network responses disappeared and characteristic dorsal cord responses could then be evoked by DRG stimuli in the presence of morphine — even after acute increases in concentration (up to 100-fold). Similar tolerance developed after chronic exposure of cord-DRG explants to low concentrations (10 nM) of an enkephalin analog (Sandoz FK 33-824). The latter cultures showed cross-tolerance to met-enkephalin and opiates; dorsal cord responses could still be evoked even after acute exposure to high levels of morphine. Morphine-tolerant cultures also showed cross-tolerance to met-enkephalin and to the Sandoz opioid peptide (FK 33-824). The tolerant state did not develop if the cultures were incubated at lower temperature, ca. 20°C, during exposure to 1 μM morphine for as long as 7 days. The data indicate that a temperature-dependent metabolic change occurs in these neurons after chronic exposure to morphine at 35°C leading to a sustained decrease in sensitivity to opiate-depressant effects. Enhanced dorsal-horn responses in tolerant cultures suggested development of “dependence” as well as tolerance to opiates in these isolated cord-DRG tissues.  相似文献   

15.
Short-term tolerance to opiates has been demonstrated in as little as three hours after priming with a single dose of morphine in naive animals. Tail-flick latency in mice and changes in plasma corticosterone in rats were the indicators tested in these experiments. Rats primed with either saline or morphine, 10 mg/kg, were injected 3 hrs. subsequently with morphine, 5 mg/kg. Those primed with saline showed the characteristic plasma corticosterone elevation following morphine, when serial blood samples were examined, whereas those previously treated with morphine did not. Mice were primed with saline or either of two doses of morphine, 30 or 100 mg/kg, 3.5 hrs. prior to estimation of tail-flick latency and ED 50 determinations. Mice primed with either dose of morphine had significantly higher ED50's than those primed with saline. The effects of indomethacin, 5 or 10 mg/kg, were examined on both systems. Rats and mice were pretreated with indomethacin at 2.25 or 3 hrs., respectively, before morphine-priming. In all cases, indomethacin did not produce alterations in responses previously observed in correspondently treated controls.  相似文献   

16.
The effect of intrathecal pertussis toxin on morphine dependence was studied in rats suffering from chronic pain (Freund's adjuvant-induced arthritis). Animals were rendered tolerant-dependent by subcutaneous implantation of 3 pellets of 75 mg morphine base each. In both, normal and arthritic animals, 1 microgram pertussis toxin reduced the analgesia induced by morphine in the tail-flick test. Naloxone (1 mg/kg, s.c.) precipitated a withdrawal syndrome in arthritic animals that was milder in respect to the one produced in normal rats. Pretreatment with pertussis toxin significantly diminished the incidence of withdrawal signs such as jumps, squeak on touch, chattering, ptosis, body shakes and diarrhoea in tolerant-dependent normal rats, while this effect could not be observed in animals suffering from chronic pain. This differential activity of the toxin could be due to the altered tonus of certain neurotransmitter systems that accompanies the chronic situation of pain.  相似文献   

17.
The effects of vasopressin and oxytocin on acute morphine antinociception and on tolerance development were examined in mice and rats. The studies failed to demonstrate any alteration of chronic morphine effects using two separate models of tolerance development in the mouse. Adrenalectomy enhanced the antinociceptive, hyperthermic, and cataleptic effects of acute morphine treatment, but vasopressin was without additional effect in either adrenalectomized or sham-control rats. Furthermore, neither vasopressin nor oxytocin pretreatment altered brain concentrations of acutely injected morphine. It is concluded that the role of vasopressin and oxytocin as endogenous mediators of opiate analgesia or tolerance/dependence is minimal at best.  相似文献   

18.
d-Amino acid oxidase (DAAO), a FAD-dependent peroxisomal flavoenzyme that catalyzes oxidation of d-amino acids to hydrogen peroxide, is distributed in the spinal cord almost exclusively expressed within astrocytes. The present study aims to explore potential contributions of spinal DAAO to the development of bone cancer pain and morphine tolerance to analgesia. Tibia inoculation of carcinoma cells produced mechanical allodynia (but not heat hyperalgesia), in synchronous with induction of DAAO expression and DAAO enzymatic activity, as well as activation of spinal astrocytes marked by GFAP. Subcutaneous and intrathecal injection of the specific DAAO inhibitor CBIO (5-chloro-benzo[d]isoxazol-3-ol) blocked mechanical allodynia in a dose- and time-dependent manner in tumor-bearing rats, with maximum inhibition of 40–50?%. Multi-daily intrathecal injections of the DAAO gene silencer siRNA/DAAO also yielded anti-allodynic effects by approximately 40?% and the analgesia remained for at least 6?days. Subcutaneous injection of CBIO suppressed the production of spinal hydrogen peroxide and GFAP expression.?7-Day multiple bi-daily injections of CBIO produced anti-allodynia without inducing self-tolerance to analgesia or cross-tolerance to morphine, and concurrent injections of CBIO with morphine produced apparent additive anti-allodynia and completely prevented morphine tolerance in behaviors and spinal expression of μ-opioid receptors. Our results provide the first evidence that spinal DAAO contributes to the development of morphine tolerance to analgesia and bone cancer pain accounting for 40–50?% pain status, probably via production of hydrogen peroxide leading to activation of astrocytes. The unique characterizations of DAAO inhibitors make them a potential for the treatment of cancer pain when they are administered alone or in combination with morphine.  相似文献   

19.
The aim of this investigation was to study the effect of the doping steroid nandrolone on metamizol and morphine-induced analgesia and tolerance/dependence in rats. Nandrolone per se did not change the basal nociceptive thresholds in both sexes. It diminished the analgesic effect of metamizol in females, revealed by tail flick test, and males, revealed by paw pressure and hot plate tests. In general, the action of nandrolone was to decrease the morphine-induced analgesia in female and male rats. This was strongly manifested by paw pressure and tail flick tests in male, and tail flick tests in female animals. Nandrolone slowed the development of opioid tolerance/dependence. It aggravated the withdrawal syndrome in the females and invigorated aggression in the males. The data provide evidence that anabolic steroid nandrolone might decrease the analgesic action of metamizol or morphine. The doping steroid could modulate opioid tolerance/dependence and the aggressive behavior in a gender dependent manner. The action of nandrolone is most likely due to profound long-term effects on the central nervous system and might be a gateway to addiction of other drugs of abuse.  相似文献   

20.
It is generally thought that the mu receptor actions of metabolites, 6-monoacetylmorphine (6MAM) and morphine, account for the pharmacological actions of heroin. However, upon intracerebroventricular (i.c.v.) administration in Swiss Webster mice, heroin and 6MAM act on delta receptors while morphine acts on mu receptors. Swiss Webster mice made tolerant to subcutaneous (s.c.) morphine by morphine pellet were not cross-tolerant to s.c. heroin (at 20 min in the tail flick test). Now, opioids were given in combination, s.c. (6.5 h) and i.c.v. (3 h) preceding testing the challenging agonist i.c.v. (at 10 min in the tail flick test). The combination (s.c. + i.c.v.) morphine pretreatment induced tolerance to the mu action of morphine but no cross-tolerance to the delta action of heroin, 6MAM and DPDPE and explained why morphine pelleting did not produce cross-tolerance to s.c. heroin above. Heroin plus heroin produced tolerance to delta agonists but not to mu agonists. Surprisingly, all combinations of morphine with the delta agonists produced tolerance to morphine which now acted through delta receptors (inhibited by i.c.v. naltrindole), an unusual change in receptor selectivity for morphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号