首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian cells coexpress a family of heat shock factors (HSFs) whose activities are regulated by diverse stress conditions to coordinate the inducible expression of heat shock genes. Distinct from HSF1, which is expressed ubiquitously and activated by heat shock and other stresses that result in the appearance of nonnative proteins, the stress signal for HSF2 has not been identified. HSF2 activity has been associated with development and differentiation, and the activation properties of HSF2 have been characterized in hemin-treated human K562 erythroleukemia cells. Here, we demonstrate that a stress signal for HSF2 activation occurs when the ubiquitin-proteasome pathway is inhibited. HSF2 DNA-binding activity is induced upon exposure of mammalian cells to the proteasome inhibitors hemin, MG132, and lactacystin, and in the mouse ts85 cell line, which carries a temperature sensitivity mutation in the ubiquitin-activating enzyme (E1) upon shift to the nonpermissive temperature. HSF2 is labile, and its activation requires both continued protein synthesis and reduced degradation. The downstream effect of HSF2 activation by proteasome inhibitors is the induction of the same set of heat shock genes that are induced during heat shock by HSF1, thus revealing that HSF2 affords the cell with a novel heat shock gene-regulatory mechanism to respond to changes in the protein-degradative machinery.  相似文献   

2.
3.
4.
5.
6.
7.
Recently, we have shown that two proteasome inhibitors, MG132 and lactacystin, induce hyperphosphorylation and trimerization of HSF1, and transactivate heat shock genes at 37 degrees C. Here, we examined the effects of these proteasome inhibitors and, in addition, a phosphatase inhibitor calyculin A (CCA) on the activation of HSF1 upon heat shock and during post-heat-shock recovery, with emphasis on HSF1 hyperphosphorylation and the ability of HSF1 to transactivate heat shock genes. When lactacystin, MG132, or CCA was present after heat shock, HSF1 remained hyperphosphorylated during post-heat-shock recovery at 37 degrees C. Failure of HSF1 to recover to its preheated dephosphorylated state correlated well with the suppression of the heat-induced hsp70 expression. In vitro, HSF1 from heat-shocked cells, when dephosphorylated, showed an increase in HSE-binding affinity. Taken together, these data suggest that phosphorylation of HSF1 plays an important role in the negative regulation of heat-shock response. Specifically, during post-heat-shock recovery phase, prolonged hyperphosphorylation of HSF1 suppresses heat-induced expression of heat shock genes.  相似文献   

8.
9.
The exposure of human fibroblasts (HF) aging in vitro to heat shock resulted in an attenuated expression of the heat shock-inducible HSP70. When late passage cells were cultured in the continuous presence of serum, we observed a reduced accumulation of the cytoplasmic polyadenylated HSP70 mRNA. The levels of HSF1 activation and nuclear HSP70 mRNA were comparable to those of early passage cells (M. A. Bonelli et al., Exp. Cell Res. 252, 20-32, 1999). When late passage cells were serum-starved overnight, we observed a reduced activation of HSF1 and a decreased level of HSP70 mRNA during heat shock. However, at 37 degrees C the levels of HSF1 differed little between late passage HF and early passage cells, irrespective of the presence of serum. Interestingly, during heat shock a marked decrease in the level and, consequently, in the binding activity of HSF1 was noted only in serum-starved, late passage HF. The decrease in the level of HSF1 was counteracted by back addition of serum to the cells during heat shock. Addition of the specific proteasome inhibitor MG132 blocked a decrease in HSF1 during heat shock, maintaining levels observed in late passage cells and HSF1 activity comparable to that of early passage HF. The recovery of the level and activity of HSF1 observed in late passage HF incubated in the presence of MG132 suggests that heat shock unmasks a latent proteasome activity responsible for HSF1 degradation.  相似文献   

10.
11.
In concert with the stress-induced activation of human heat shock factor 1 (HSF1), the factor becomes inducibly phosphorylated and accumulates into nuclear granules. To date, these processes are not fully understood. Here, we show that although stress caused by the proteasome inhibitors MG132 and clasto-lactacystine beta-lactone induces the expression of Hsp70, the formation of HSF1 granules is affected differently in comparison to heat shock. Furthermore, proteasome inhibition increases serine phosphorylation on HSF1, but to a lesser extent than heat stress. Our results suggest that, depending on the type of stress stimulus, the multiple events associated with HSF1 activation might be affected differently.  相似文献   

12.
The heat shock factor family and adaptation to proteotoxic stress   总被引:4,自引:0,他引:4  
Fujimoto M  Nakai A 《The FEBS journal》2010,277(20):4112-4125
  相似文献   

13.
Previous studies have shown that inhibiting the activity of the proteasome leads to the accumulation of damaged or unfolded proteins within the cell. In this study, we report that proteasome inhibitors, lactacystin and carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132), induced the accumulation of ubiquitinated proteins as well as a dose- and time-dependent increase in the relative levels of heat shock protein (HSP)30 and HSP70 and their respective mRNAs in Xenopus laevis A6 kidney epithelial cells. In A6 cells recovering from MG132 exposure, HSP30 and HSP70 levels were still elevated after 24 h but decreased substantially after 48 h. The activation of heat shock factor 1 (HSF1) may be involved in MG132-induced hsp gene expression in A6 cells since KNK437, a HSF1 inhibitor, repressed the accumulation of HSP30 and HSP70. Exposing A6 cells to simultaneous MG132 and mild heat shock enhanced the accumulation of HSP30 and HSP70 to a much greater extent than with each stressor alone. Immunocytochemical studies determined that HSP30 was localized primarily in the cytoplasm of lactacystin- or MG132-treated cells. In some cells treated with higher concentrations of MG132 or lactacystin, we observed in the cortical cytoplasm (1) relatively large HSP30 staining structures, (2) colocalization of actin and HSP30, and (3) cytoplasmic areas that were devoid of HSP30. Lastly, MG132 treatment of A6 cells conferred a state of thermotolerance such that they were able to survive a subsequent thermal challenge.  相似文献   

14.
15.
Kim HJ  Joo HJ  Kim YH  Ahn S  Chang J  Hwang KB  Lee DH  Lee KJ 《PloS one》2011,6(6):e20252
The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF-1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins.  相似文献   

16.
17.
18.
19.
It has been established that reactive oxygen species (ROS) such as H2O2 or superoxide anion is involved in bone loss-related diseases by stimulating osteoclast differentiation and bone resorption and that receptor activator of NF-kappaB ligand (RANKL) is a critical osteoclastogenic factor expressed on stromal/osteoblastic cells. However, the roles of ROS in RANKL expression and signaling mechanisms through which ROS regulates RANKL genes are not known. Here we report that increased intracellular ROS levels by H2O2 or xanthine/xanthine oxidase-generated superoxide anion stimulated RANKL mRNA and protein expression in human osteoblast-like MG63 cell line and primary mouse bone marrow stromal cells and calvarial osteoblasts. Further analysis revealed that ROS promoted phosphorylation of cAMP response element-binding protein (CREB)/ATF2 and its binding to CRE-domain in the murine RANKL promoter region. Moreover, the results of protein kinase A (PKA) inhibitor KT5720 and CREB1 RNA interference transfection clearly showed that PKA-CREB signaling pathway was necessary for ROS stimulation of RANKL in mouse osteoblasts. In human MG63 cells, however, we found that ROS promoted heat shock factor 2 (HSF2) binding to heat shock element in human RANKL promoter region and that HSF2, but not PKA, was required for ROS up-regulation of RANKL as revealed by KT5720 and HSF2 RNA interference transfection. We also found that ROS stimulated phosphorylation of extracellular signal-regulated kinases (ERKs) and that PD98059, the inhibitor for ERKs suppressed ROS-induced RANKL expression either in mouse osteoblasts or in MG63 cells. These results demonstrate that ROS stimulates RANKL expression via ERKs and PKA-CREB pathway in mouse osteoblasts and via ERKs and HSF2 in human MG63 cells.  相似文献   

20.
In the HT22 mouse hippocampal cell line and primary immature embryonic rat cortical neurons, glutamate-induced oxidative toxicity is associated with a delayed but chronic activation of extracellular signal-regulated kinase-1/2 (ERK-1/2). ERK-1/2 is also activated in HT22 cells that undergo caspase-dependent cell death upon inhibition of proteasome-dependent protein degradation brought about by MG132 treatment. As in glutamate-treated HT22 cells and primary neurons, inhibition of MEK-1, an upstream activator of ERK-1/2 protects against MG132-induced toxicity. Furthermore, activated ERK-1/2 is retained within the nucleus in glutamate- and MG132-treated HT22 cells. Although previous studies suggested that ERK-1/2 activation was downstream of many cell death-inducing signals in HT22 cells, we show here that cycloheximide, the Z-vad caspase inhibitor, and a nonlethal heat shock protect against glutamate- and MG132-induced toxicity without diminishing ERK-1/2 activation. In these cases, ERK-1/2, although chronically activated, is not retained within the nucleus but accumulates within the cytoplasm. Thus, persistent nuclear retention of activated ERK-1/2 may be a critical factor in eliciting proapoptotic effects in neuronal cells subjected to oxidative stress or proteasome inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号