共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Four (groups of) phosphorylation sites exist in the large T antigen of simian virus 40, and they involve at least two serine and two threonine residues (Van Roy et al. J. Virol. 45:315-331, 1983). All the phosphorylation sites were found to be modified and again dephosphorylated at discrete rates, with phosphoserine residues having the highest turnover rate. The measured half-lives ranged between 3 h (for the carboxy-terminal phosphoserine site) and 5.5 h (for the amino-terminal phosphothreonine site). The influence of four temperature-sensitive A mutations on phosphorylation of large T antigen was also examined. At restrictive temperature, phosphorylation of the carboxy-terminal phosphoserine in mutated large T antigen was found to be particularly impaired. These data emphasize the physiological importance of the latter phosphorylation site. 相似文献
4.
Improved localization of phosphorylation sites in simian virus 40 large T antigen. 总被引:20,自引:12,他引:8 下载免费PDF全文
The location of phosphorylation sites in the large T antigen of simian virus 40 has been studied both by partial chemical cleavage and by partial proteolysis of various forms of large T. These included the full-size wild-type molecule with an apparent molecular weight of 88,000, deleted molecules coded for by the mutants dl1265 and dl1263, and several shortened derivatives generated by the action of a cellular protease. These molecules differed from each other by variations in the carboxy-terminal end. In contrast, a ubiquitous but minor large T form with a molecular weight of 91,000 was found to be modified in the amino-terminal half of the molecule. In addition to the phosphorylation of threonine at position 701 (K.-H. Scheidtmann et al., J. Virol. 38:59-69, 1981), two other discrete domains of phosphorylation were recognized, one at either side of the molecule. The amino-terminal region was located between positions 81 and 124 and contained both phosphothreonine and phosphoserine residues. The carboxy-terminal region was located between approximate positions 500 and 640 and contained at least one phosphoserine residue but no phosphothreonine. The presence in the phosphorylated domains of large T of known recognition sequences for different types of protein kinases is discussed, together with possible functions of large T associated with these domains. 相似文献
5.
Polyomavirus large T antigen is phosphorylated on both serine and threonine residues at a ratio of approximately 6 to 1. This phosphorylation could be resolved into a series of nine Staphylococcus aureus V8 phosphopeptides. All of these were found in an N-terminal chymotryptic fragment with a molecular weight of 57,000. A C-terminal formic acid fragment of 50,000-molecular-weight lacked phosphate. Therefore, unlike simian virus 40 large T antigen, polyomavirus large T antigen has no significant C-terminal phosphorylation. Limited V8 and hydroxylamine cleavage showed that the phosphorylations can be localized to two different portions of the molecule. A significant fraction of the phosphate was localized in the N-terminal portion of the molecule before residue 183. Within this region V8 peptides 4, 8, and 9 represented phosphorylations that were more proximal, while peptides 1, 2, and 3 included more distal phosphorylations. None of these phosphorylations appeared analogous to those of simian virus 40 large T antigen. V8 phosphopeptides 5 and 7 were more distal and could be distinguished in biological experiments from the N-terminal phosphorylations. Formic acid mapping suggested that much, if not all, of this phosphorylation is located between residues 257 and 285. 相似文献
6.
Amplification mediated by polyomavirus large T antigen defective in replication. 总被引:3,自引:1,他引:3 下载免费PDF全文
The polyomavirus large T antigen promotes homologous recombination at high rates when expressed in rat cells carrying the viral replication origin and two repeats of viral DNA sequences stably integrated into the cellular genome. Recombination consists of both reciprocal and nonreciprocal events and is promoted by mutants defective in the initiation of viral DNA synthesis (L. St-Onge, L. Bouchard, and M. Bastin, J. Virol. 67:1788-1795, 1993). We have extended our studies to a rat cell line undergoing amplification of the viral insert. We show that large T antigen promotes amplification independently of its replicative function but that its origin-specific DNA binding activity is not sufficient to promote homologous recombination. 相似文献
7.
The replication functions of polyomavirus large tumor antigen are regulated by phosphorylation. 总被引:1,自引:7,他引:1 下载免费PDF全文
Polyomavirus (Py) large T antigen (T Ag) contains two clusters of phosphorylation sites within the amino-terminal half of the protein. To characterize possible regulatory effects of phosphorylation on viral DNA replication, Py T Ag was treated with calf intestinal alkaline phosphatase (CIAP). Incubation of the protein with a range of phosphatase concentrations caused progressive loss of phosphate without affecting its stability. Treatment with smaller quantities of CIAP stimulated the ability of the viral protein to mediate replication of constructs containing the viral replication origin, while higher concentrations of CIAP caused a marked diminution of this replication function. Several biochemical activities of Py T Ag were examined after CIAP treatment. Py T Ag DNA unwinding and nonspecific DNA binding were only slightly affected by dephosphorylation. However, as determined by DNase I footprinting experiments, treatment with smaller amounts of CIAP stimulated specific binding to the Py replication origin by Py T Ag, while treatment with larger amounts of CIAP caused marked inhibition of origin-specific binding by the viral protein. Phosphotryptic maps of Py T Ag before or after treatment with CIAP revealed changes in individual phosphopeptides that were uniquely associated with either the stimulation or the inhibition of replication. Our data therefore suggest that Py T Ag is regulated by both repressing and activating phosphates. 相似文献
8.
High-frequency recombination mediated by polyomavirus large T antigen defective in replication. 总被引:2,自引:6,他引:2 下载免费PDF全文
We investigated the mechanism by which the large T antigen (T-Ag) of both polyomavirus and simian virus 40 (SV40) promotes homologous recombination in mammalian cells. To this end, we constructed a rat cell line, designated Hy5, that carries two mutated copies of the polyomavirus middle-T-Ag (pmt) oncogene lying as direct repeats on the same chromosome. The structure of the viral insert was devised so that intrachromosomal recombination between the pmt repeats reconstitutes wild-type pmt and yields cell populations amenable to selection for the transformed phenotype. Correction of pmt by gene conversion occurred spontaneously at a rate of ca. 1.7 x 10(-7) per cell generation and was masked by another recombination event that also led to the transformation of the Hy5 cell line. This event was identified as chromosomal inversion and overexpression of the upstream pmt copy as a result of homologous recombination between adjacent pBR322 sequences. Both events were promoted by the polyomavirus large T-Ag by several orders of magnitude, as well as by mutants defective in the initiation of viral DNA synthesis. Large T-Ag also promoted reconstitution of wild-type pmt by unequal exchange between sister chromatids, yielding structures compatible with some of the chromosomal aberrations commonly observed in transformed cells. Our data indicate that large T-Ag has a recombination-promoting activity that can be dissociated from its replicative function. 相似文献
9.
Konstantin Knoblich Sara Whittaker Christian Ludwig Paul Michiels Tao Jiang Brian Schaffhausen Ulrich Günther 《Biomolecular NMR assignments》2009,3(1):119-123
Polyoma Large T antigen (PyLT) is a viral oncoprotein that targets cell proteins important for growth regulation. PyLT has
two functional domains. Here we report 1H, 15N, 13C backbone and 13C beta assignments of 76% of the residues of the polyomavirus large T antigen N-terminal domain (PyLTNT) that is sufficient
to regulate cell phenotype. PyLTNT is substantially unfolded even in regions known to be critical for its biological function.
The protein also includes a previously characterised J domain that although conformationally influenced by the residue extension,
retains its folded state unlike the majority of the protein sequence. 相似文献
10.
Optimal replication of plasmids carrying polyomavirus origin regions requires two high-affinity binding sites for large T antigen. 总被引:3,自引:5,他引:3 下载免费PDF全文
The efficiency of replication of plasmids containing the control region of polyomavirus DNA including one, two, or all three of the strong binding sites for large T antigen was measured in COP 8 cells which provide polyomavirus T antigen in trans. It was found that plasmids carrying only binding site A (the one closest to the origin core region) exhibited only 10% of the replication competence of plasmids with binding sites A and B or A and C. Plasmids containing all three binding sites, A, B, and C, did not replicate more efficiently than those with only two strong T-antigen-binding sites. We conclude, therefore, that optimal T-antigen-dependent replication of polyomavirus DNA requires two high-affinity T-antigen-binding sites. 相似文献
11.
The retinoblastoma protein alters the phosphorylation state of polyomavirus large T antigen in murine cell extracts and inhibits polyomavirus origin DNA replication 下载免费PDF全文
The retinoblastoma tumor suppressor protein (pRb) can associate with the transforming proteins of several DNA tumor viruses, including the large T antigen encoded by polyomavirus (Py T Ag). Although pRb function is critical for regulating progression from G1 to S phase, a role for pRb in S phase has not been demonstrated or excluded. To identify a potential effect of pRb on DNA replication, pRb protein was added to reaction mixtures containing Py T Ag, Py origin-containing DNA (Py ori-DNA), and murine FM3A cell extracts. We found that pRb strongly represses Py ori-DNA replication in vitro. Unexpectedly, however, this inhibition only partially depends on the interaction of pRb with Py T Ag, since a mutant Py T Ag (dl141) lacking the pRb interaction region was also significantly inhibited by pRb. This result suggests that pRb interferes with or alters one or more components of the murine cell replication extract. Furthermore, the ability of Py T Ag to be phosphorylated in such extracts is markedly reduced in the presence of pRb. Since cyclin-dependent kinase (CDK) phosphorylation of Py T Ag is required for its replication function, we hypothesize that pRb interferes with this phosphorylation event. Indeed, the S-phase CDK complex (cyclin A-CDK2), which phosphorylates both pRb and Py T Ag, alleviates inhibition caused by pRb. Moreover, hyperphosphorylated pRb is incapable of inhibiting replication of Py ori-DNA in vitro. We propose a new requirement for maintaining pRb phosphorylation in S phase, namely, to prevent deleterious effects on the cellular replication machinery. 相似文献
12.
To map the DNA-binding domain of polyomavirus large T antigen, we constructed a set of plasmids coding for unidirectional carboxy- or amino-terminal deletion mutations in the large T antigen. Analysis of origin-specific DNA binding by mutant proteins expressed in Cos-1 cells revealed that the C-terminal boundary of the DNA-binding domain is at or near Glu-398. Fusion proteins of large T antigen lacking the first 200 N-terminal amino acids bound specifically to polyomavirus origin DNA; however, deletions beyond this site resulted in unstable proteins which could not be tested for DNA binding. Testing of point mutants and internal deletions by others suggested that the N-terminal boundary of the DNA-binding domain lies between amino acids 282 and 286. Taken together, these results locate the DNA-binding domain of polyomavirus large T antigen to the 116-amino-acid region between residues 282 and 398. 相似文献
13.
Characterization of an immortalizing N-terminal domain of polyomavirus large T antigen. 总被引:3,自引:5,他引:3 下载免费PDF全文
Polyomavirus large T antigen has an N-terminal domain of approximately 260 amino acids which can immortalize primary cells but lacks sequences known to be required for DNA binding and replication. Treatment of full-length large T with either V8 protease or chymotrypsin yields an N-terminal fragment of 36 to 40 kDa and a C-terminal fragment of approximately 60 kDa. This finding suggests a division of the protein into two domains. Proteolysis experiments show that the N-terminal domain does not have strong physical association with the rest of the protein. It also does not self-associate. A construct expressing only the N-terminal 259 amino acids is sufficient for immortalization. The independently expressed N-terminal domain is multiply phosphorylated, although at a lower level than the same region in full-length large T. The 259-residue protein binds to both pRb and p107 with somewhat lower efficiency than the full-length protein. 相似文献
14.
A gene encoding the large T antigen of polyomavirus was inserted into the baculovirus Autographa californica nuclear polyhedrosis virus so that gene expression was under the control of the strong, very late polyhedrin gene promoter. Significantly more large T antigen was produced in recombinant virus-infected insect cells than was observed in polyomavirus-transformed mouse cells. The insect-derived T antigen exhibited polyomavirus origin-specific DNA binding. The baculovirus expression system provides a convenient source of T antigen for in vitro studies. 相似文献
15.
Altered sites of tyrosine phosphorylation in pp60c-src associated with polyomavirus middle tumor antigen. 总被引:31,自引:24,他引:31 下载免费PDF全文
C A Cartwright P L Kaplan J A Cooper T Hunter W Eckhart 《Molecular and cellular biology》1986,6(5):1562-1570
We characterized the tyrosine phosphorylation sites of free pp60c-src and of pp60c-src associated with the polyomavirus middle tumor antigen (mT) in transformed avian and rodent cells. The sites of tyrosine phosphorylation in the two populations of pp60c-src were different, both in vitro and in vivo. Free pp60c-src was phosphorylated in vitro at a single site, tyrosine 416. pp60c-src associated with mT was phosphorylated in vitro on tyrosine 416 and on one or more additional tyrosine residues located in the amino-terminal region of the molecule. Free pp60c-src in polyomavirus mT-transformed cells was phosphorylated in vivo on tyrosine 527. In contrast, pp60c-src associated with mT was phosphorylated in vivo on tyrosine 416 and not detectably on tyrosine 527. Thus, the in vivo phosphorylation sites of pp60c-src associated with mT in transformed cells are identical to those of pp60v-src, the Rous sarcoma virus transforming protein. The results suggest that altered phosphorylation of pp60c-src associated with mT may play a role in the enhancement of the pp60c-src protein kinase activity and in cell transformation by polyomavirus. 相似文献
16.
Recombinant retroviruses encoding simian virus 40 large T antigen and polyomavirus large and middle T antigens. 总被引:32,自引:8,他引:32 下载免费PDF全文
We used a murine retrovirus shuttle vector system to construct recombinants capable of constitutively expressing the simian virus 40 (SV40) large T antigen and the polyomavirus large and middle T antigens as well as resistance to G418. Subsequently, these recombinants were used to generate cell lines that produced defective helper-free retroviruses carrying each of the viral oncogenes. These recombinant retroviruses were used to analyze the role of the viral genes in transformation of rat F111 cells. Expression of the polyomavirus middle T antigen alone resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were unaltered by the criteria of morphology, anchorage-independent growth, and tumorigenicity. More surprisingly, SV40 large T-expressing cell lines were not tumorigenic despite the fact that they contained elevated levels of cellular p53 and had a high plating efficiency in soft agar. These results suggest that the SV40 large T antigen is not an acute transforming gene like the polyomavirus middle T antigen but is similar to the establishment genes such as myc and adenovirus EIa. 相似文献
17.
Cyclin-dependent kinase regulation of the replication functions of polyomavirus large T antigen. 下载免费PDF全文
The amino-terminal portion of polyomavirus (Py) large T antigen (T Ag) contains two phosphorylation sites, at T187 and T278, which are potential substrates for cyclin-dependent kinases (CDKs). Our experiments were designed to test whether either or both of these sites are involved in the origin DNA (ori DNA) replication function of Py T Ag. Mutations were generated in Py T Ag whereby either or both threonines were replaced with alanine, generating T187A, T278A, and double-mutants (DM [T187A T278A]) mutant T Ags. We found that the Py ori DNA replication functions of T278A and DM, but not T187A, mutant T Ags were abolished both in vivo and in vitro. Consistent with this finding, it was shown that the ori DNA binding and unwinding activities of mutant T278A Py T Ag were greatly impaired. Moreover, whereas wild-type Py T Ag is an efficient substrate for phosphorylation by cyclin A-CDK2 and cyclin B-cdc2 complexes, it is phosphorylated poorly by a cyclin E-CDK2 complex. In contrast to mutant T187A, which behaved similarly to the wild-type protein, T278A was only weakly phosphorylated by cyclin B-cdc2. These data thus suggest that T278 is an important site on Py T Ag for phosphorylation by CDKs and that loss of this site leads to its various defects in mediating ori DNA replication. S- and G2-phase-specific CDKs, but not a G1-specific CDK, can phosphorylate wild-type T Ag, which suggests yet another reason why DNA tumor viruses require actively cycling host cells. 相似文献
18.
19.
Phosphorylation sites in polyomavirus large T antigen that regulate its function in viral, but not cellular, DNA synthesis. 下载免费PDF全文
Polyomavirus large T antigen (large T) is a highly phosphorylated protein that can be separated by proteolysis into two domains that have independent function. A cluster of phosphorylation sites was found in the protease-sensitive region connecting the N-terminal and C-terminal domains. Edman degradation of 32P-labeled protein identified serines 267, 271, and 274 and threonine 278 as sites of phosphorylation. Analysis of site-directed mutants confirmed directly that residues 271, 274, and 278 were phosphorylated. Threonine 278, shown here to be phosphorylated by cyclin/cyclin-dependent kinase activity, is required for viral DNA replication in either the full-length large T or C-terminal domain context. The serine phosphorylations are unimportant in the C-terminal domain context even though their mutations activates viral DNA replication in full-length large T. This finding suggests that these sites may function in relating the two domains to each other. Although the phosphorylation sites were involved in viral DNA replication, none was important for the ability of large T to drive cellular DNA replication as measured by bromodeoxyuridine incorporation, and they did not affect large T interactions with the Rb tumor suppressor family. 相似文献
20.
Asp-286----Asn-286 in polyomavirus large T antigen relaxes the specificity of binding to the polyomavirus origin. 总被引:1,自引:8,他引:1 下载免费PDF全文
We isolated revertants of a polyomavirus whose origin of DNA replication contains a point mutation in the palindrome to which large T antigen binds. Four independent second-site revertants contain an Asp-286----Asn-286 substitution in large T antigen. This mutant large T antigen activates replication of DNAs containing the mutant polyomavirus origin as well as replication of DNAs containing the wild-type origin; however, replication of DNAs with enhancer mutations is not activated by this large T antigen. The Asn-286 mutation occurs in a positively charge region of large T antigen near the location of several mutations which inactivate DNA replication. We suggest that this region of large T antigen is responsible for recognition of specific DNA sequences at the origin and that ionic forces are important for this interaction. 相似文献