首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
郑晓鹰  李秀清   《广西植物》2007,27(3):503-507,456
利用单粒种子凝胶扩散法研究了β-半乳甘露聚糖酶在西瓜种子萌发过程中的分布以及与西瓜种子萌发速率的关系。结果发现,在胚根尖突破种皮前吸胀的西瓜种子中,内源β-半乳甘露聚糖酶主要分布于种子的胚膜套中,并起到减弱外种皮和胚膜套细胞壁对胚根伸出的机械阻力的作用。对具有不同萌发速率的品种以及引发处理和未处理的西瓜种子中酶活性的检测证明,β-半乳甘露聚糖酶活性与西瓜种子萌发速度相关。固体基质引发三倍体西瓜种子过程中β-半乳甘露聚糖酶的活化和种皮阻力的减弱,是引发种子提高了萌发速度和萌发能力的原因之一。  相似文献   

3.
4.
Development of galactomannan hydrolyzing activity was followed in seeds of tomato [ Lycopersicon esculentum (L.) Mill. cv. Toyonishiki] during priming and germination. The activity developed in seeds that were being primed in polyethylene glycol (-0.8 MPa). The activity was detected exclusively in the endosperm portion just adjacent to the radicle tip. Part of the activity remained active after desiccation of the primed seeds. After transfer to water, the activity in the primed seeds immediately began to increase, while in unprimed seeds the beginning of the increase in activity was delayed by about 1 day. In scanning electron microscopy, the inner surface of the cell walls of the micropylar endosperm portion appeared eroded in primed seeds that had been imbibed in water for 16 h (before germination), but not in unprimed seeds imbibed for the same period. These results support the hypothesis that galactomannan hydrolyzing enzyme, which is believed to be responsible for breakdown of tomato endosperm cell walls and hence for the weakening of mechanical restraint against radicle growth, may be involved in the improved germination of primed tomato seeds.  相似文献   

5.
Aquaporins (AQPs) are proteinaceous channels known to regulate transmembrane water transport, and therefore may be important component of imbibition during osmopriming and germination. To explore the association between AQPs and osmopriming-led enhanced germination performance, we studied the expression patterns of four spinach (Spinacia oleracea) AQP coding genes (SoPIP1;1, SoPIP1;2, SoPIP2;1, and SoδTIP) during osmopriming and subsequent germination under optimal conditions, chilling and drought. All these genes were up-regulated within 2–4 d of priming (phase II-imbibition). We hypothesize such up-regulation to facilitate the pressure potential-driven cell expansion and increase germination potential of primed seeds. Our data during post-priming germination suggest that SoPIP1;1 and SoδTIP were more closely associated with enhanced germination performance. In general, all AQPs were downregulated under chilling and drought. However, under chilling, SoPIP2;1 was expressed at relatively higher level in primed seeds that also exhibited greater chilling tolerance, while SoPIP1;2 and SoδTIP exhibited opposite pattern. Similarly, SoPIP1;1, SoPIP2;1, and SoδTIP exhibited higher expression in primed seeds that also had greater drought tolerance.  相似文献   

6.
The activation of the cell cycle in embryo root tips of imbibing tomato (Lycopersicon esculentum Mill. cv Lerica) seeds was studied by flow cytometric analyses of the nuclear DNA content and by immunodelection of [beta]-tubulin. With dry seeds, flow cytometric profiles indicated that the majority of the cells were arrested at the G1 phase of the cell cycle. In addition, [beta]-tubulin was not detectable on western blots. Upon imbibition of water, the number of cells in G2 started to increase after 24 h, and a 55-kD [beta]-tubulin signal was detected between 24 and 48 h. Two-dimensional immunoblots revealed at least three different [beta]-tubulin isotypes. Thus, [beta]-tubulin accumulation and DNA replication were induced during osmotic priming. These processes, as well as seed germination rate, were enhanced upon subsequent imbibition of water, compared with control seeds that imbibed but were not primed. By contrast, when aged seeds imbibed, DNA replication, [beta]-tubulin accumulation, and germination were delayed. In all cases studied, both DNA replication and [beta]-tubulin accumulation preceded visible germination. We suggest that activation of these cell-cycle-related processes is a prerequisite for tomato seed germination. Furthermore, [beta]-tubulin expression can be used as a parameter for following the initial processes that are activated during seed imbibition.  相似文献   

7.
Karyogamy, or nuclear fusion, is essential for sexual reproduction. In angiosperms, karyogamy occurs three times: twice during double fertilization of the egg cell and the central cell and once during female gametophyte development when the two polar nuclei fuse to form the diploid central cell nucleus. The molecular mechanisms controlling karyogamy are poorly understood. We have identified nine female gametophyte mutants in Arabidopsis (Arabidopsis thaliana), nuclear fusion defective1 (nfd1) to nfd9, that are defective in fusion of the polar nuclei. In the nfd1 to nfd6 mutants, failure of fusion of the polar nuclei is the only defect detected during megagametogenesis. nfd1 is also affected in karyogamy during double fertilization. Using transmission electron microscopy, we showed that nfd1 nuclei fail to undergo fusion of the outer nuclear membranes. nfd1 contains a T-DNA insertion in RPL21M that is predicted to encode the mitochondrial 50S ribosomal subunit L21, and a wild-type copy of this gene rescues the mutant phenotype. Consistent with the predicted function of this gene, an NFD1-green fluorescent protein fusion protein localizes to mitochondria and the NFD1/RPL21M gene is expressed throughout the plant. The nfd3, nfd4, nfd5, and nfd6 mutants also contain T-DNA insertions in genes predicted to encode proteins that localize to mitochondria, suggesting a role for this organelle in nuclear fusion.  相似文献   

8.
Yin T  Pan G  Liu H  Wu J  Li Y  Zhao Z  Fu T  Zhou Y 《Planta》2012,235(5):907-921
Embryogenesis in higher plants is controlled by a complex gene network. Identification and characterization of genes essential for embryogenesis will provide insights into the early events in embryo development. In this study, a novel mutant with aborted seed development (asd) was identified in Arabidopsis. The asd mutant produced about 25% of albino seeds at the early stage of silique development. The segregation of normal and albino seeds was inherited as a single recessive embryo-lethal trait. The gene disrupted in the asd mutant was isolated through map-based cloning. The mutated gene contains a single base change (A to C) in the coding region of RPL21C (At1g35680) that is predicted to encode the chloroplast 50S ribosomal protein L21. Allele test with other two T-DNA insertion lines in RPL21C and a complementation test demonstrated that the mutation in RPL21C was responsible for the asd phenotype. RPL21C exhibits higher expression in leaves and flowers compared with expression levels in roots and developing seeds. The RPL21C–GFP fusion protein was localized in chloroplasts. Cytological observations showed that the asd embryo development was arrested at the globular stage. There were no plastids with normal thylakoids and as a result no normal chloroplasts formed in mutant cells, indicating an indispensable role of the ASD gene in chloroplasts biogenesis. Our studies suggest that the chloroplast ribosomal protein L21 gene is required for chloroplast development and embryogenesis in Arabidopsis.  相似文献   

9.
Using seed priming and accelerated ageing techniques, a singlelot of leek (Allium porrum) seeds was manipulated to producefour lots of seeds with different germination performance. Changesin content of the major nucleic acid species in whole seedsand embryos of two of these lots (primed and unprimed), weredetermined over the early stages of germination. The major effectof priming was an increased level of RNA species in the seedsand embryos, and this difference was maintained during germination.Comparison of nucleic acid levels in the dry seeds of thesetwo lots and two others (aged and aged then primed) indicatedthat there was no correlation with germination performance.Similar comparisons of the nucleic acid levels in the embryosof seeds imbibed for 1 d showed only a limited correlation betweenrRNA levels and germination performance. Analysis of these datasuggests that accelerated ageing has an adverse effect uponendosperm cells, which results in the degradation of their nucleicacids during priming. Furthermore, the viability of these agedseeds also falls during priming. The data also indicate thatratios of rRNA to DNA correlate with germination performanceof the four lots of seeds studied. It is proposed that sucha relationship is indicative of the efficiency of a primingtreatment, and may be useful in comparisons of naturally varyingseed lots. Key words: Leek, seed, germination, priming, nucleic acids  相似文献   

10.
Wang J  Li Y  Lo SW  Hillmer S  Sun SS  Robinson DG  Jiang L 《Plant physiology》2007,143(4):1628-1639
Plants accumulate and store proteins in protein storage vacuoles (PSVs) during seed development and maturation. Upon seed germination, these storage proteins are mobilized to provide nutrients for seedling growth. However, little is known about the molecular mechanisms of protein degradation during seed germination. Here we test the hypothesis that vacuolar sorting receptor (VSR) proteins play a role in mediating protein degradation in germinating seeds. We demonstrate that both VSR proteins and hydrolytic enzymes are synthesized de novo during mung bean (Vigna radiata) seed germination. Immunogold electron microscopy with VSR antibodies demonstrate that VSRs mainly locate to the peripheral membrane of multivesicular bodies (MVBs), presumably as recycling receptors in day 1 germinating seeds, but become internalized to the MVB lumen, presumably for degradation at day 3 germination. Chemical cross-linking and immunoprecipitation with VSR antibodies have identified the cysteine protease aleurain as a specific VSR-interacting protein in germinating seeds. Further confocal immunofluorescence and immunogold electron microscopy studies demonstrate that VSR and aleurain colocalize to MVBs as well as PSVs in germinating seeds. Thus, MVBs in germinating seeds exercise dual functions: as a storage compartment for proteases that are physically separated from PSVs in the mature seed and as an intermediate compartment for VSR-mediated delivery of proteases from the Golgi apparatus to the PSV for protein degradation during seed germination.  相似文献   

11.
12.
We describe the Arabidopsis gene DAG2 encoding a Dof zinc finger protein and show that it is involved in the control of seed germination. An Arabidopsis mutant line with a T-DNA insertion in DAG2 isolated by reverse genetics produces seeds that are substantially more dependent than the wild type on the physical stimuli-light and cold treatment-that promote germination. Mutant dag2 seeds also are less sensitive to the germination-promotive effect of gibberellins, because a 10-fold higher amount of gibberellins is needed to restore germination when endogenous gibberellin biosynthesis is blocked. The seed germination characteristics of the dag2 mutant are opposite to those of dag1, a knockout mutant of another Dof gene (DAG1) that we showed previously to be involved in the control of seed germination, and are similar to those of plants that overexpress DAG1. The promoter of the DAG2 gene is active specifically in the vascular system of the mother plant but not in the embryo, and segregation analysis indicates that the effect of the dag2 mutation is maternal. Both characteristics are in common with DAG1; additionally, the DAG1 and DAG2 proteins share high sequence homology and an identical zinc finger domain. These data suggest, and the germination phenotype of the double mutant is compatible with, a model whereby the zinc finger proteins DAG1 and DAG2 act on a maternal switch that controls seed germination, possibly by regulating the same gene(s).  相似文献   

13.
Onion seeds were primed in polyethylene glycol solutions (PEG) (-1.5 MPa) for 14 days at 15°C on filter paper and in bubble columns containing 50 g seed litre-1 PEG using air or enriched air (75% O2/25% N2) to aerate and suspend the seeds. Compared with untreated seeds, priming seeds in bubble columns using enriched air increased the percentage seed germination but it did not when air was used, or when seeds were primed on filter paper. Mean germination times (tm) were significantly reduced in all cases but the reduction was greatest using enriched air and least using air. The spread of germination times was significantly reduced only for seeds primed in enriched air. Drying seeds following priming reduced the percentage germination compared with untreated seeds, but only significantly for those primed in bubble columns using air. Drying also increased the mean germination times by 1.5 to 1.8 days (relative to primed seed which had not been dried). Seeds primed in enriched air were least affected. This increased time is that typically required for water re-imbibition after drying. Priming with enriched air followed by drying gave the same number of normal seedlings as untreated seeds.  相似文献   

14.
Differential display analysis using dormant and non-dormant Arabidopsis thaliana (L.) Heynh seeds resulted in a set of genes that were associated with either dormancy or germination. Expression of the germination-associated genes AtRPL36B and AtRPL27B, encoding two ribosomal proteins, was undetectable in the dry seed, low in dormant seed, and high under conditions that allowed completion of germination. Expression of these genes was also found to be light-regulated and to correlate with germination speed. Expression of the dormancy-associated genes ATS2 and ATS4, encoding a caleosin-like protein and a protein similar to a low-temperature-induced protein respectively, was high in the dry seed and decreased during germination. Expression of ATS2 and ATS4 was high in primary and secondary dormant seed but low in after-ripened or chilled seed. The expression of both genes was also light-regulated, but no relationship with temperature-dependent germination speed was found.  相似文献   

15.
转反义硫氧还蛋白基因小麦萌发种子中蛋白质的变化   总被引:4,自引:0,他引:4  
硫氧还蛋白h(thioredoxin h,Trx h)是一类广泛存在于生物体内的多功能活性蛋白,分子量约为12kD,它通过还原靶蛋白中的二硫键参与酶活性调节、抗胁迫、信号传导等许多重要的生命活动。硫氧还蛋白h能促进谷物类种子萌发过程,主要表现在以下2个方面:(1)在籽粒萌发期间,硫氧还蛋白可通过还原储存蛋白的分子内二硫键使其更易于被降解;(2)硫氧还蛋白也可以直接地通过将酶还原或者间接地通过使酶抑制蛋白失活而激活酶。源于Phalaris coerulescens的trxs基因(thioredoxin s,trxs)与小麦硫氧还蛋白h基因(thioredoxin h,trx h)同属于硫氧还蛋白基因家族,它们的cDNA有94%的同源性,表达产物也有相似的生物功能。我们采用基因枪法将反义trxs基因导入小麦,获得了可稳定遗传的小麦,并检测出转基因种子中硫氧还蛋白h表达量、水溶蛋白和醇溶蛋白的还原状态以及α-淀粉酶活性均低于对照小麦;另外,通过模拟降雨抗穗发芽试验证实转基因株系具有很强的抗穗发芽能力。以转反义trxs基因抗穗发芽小麦为材料,检测反义trxs基因小麦籽粒萌发过程中蛋白质的变化,探讨转反义trxs基因小麦的抗穗发芽机理。研究表明反义trxs基因能够减缓KCl可溶性蛋白中Chloroform-methanol(CM)蛋白向代谢类蛋白的转化进程,在萌发初期降低籽粒代谢类蛋白的含量,使籽粒代谢速度下降,而CM蛋白主要包含一些分子量小于20kD的蛋白质。在籽粒成熟过程中,硫氧还蛋白能够阻止麦谷蛋白亚基形成谷蛋白聚合体的过程,在转基因小麦中麦谷蛋白更易于形成大分子量的谷蛋白大聚合体,使得转基因小麦中的谷蛋白在萌发初期更难于被水解,因此转基因小麦籽粒会因谷蛋白难于降解而萌发较慢。另外,反义trxs基因减慢了麦胚中10kD蛋白的降解过程。  相似文献   

16.
Lettuce (Lactuca sativa L. cv Minetto) seeds were primed in aerated solutions of 1% K3PO4 or water at 15°C in the dark for various periods of time to determine the manner by which seed priming bypasses thermodormancy. Seeds which were not primed did not germinate at 35°C, whereas those which were primed for 20 h in 1% K3PO4 or distilled H2O had up to 86% germination. The rate of water uptake and respiration during priming were similar regardless of soak solution. Cell elongation occurred in both water and 1% K3PO4, 4 to 6 h prior to cell division. Both processes commenced sooner in water than K3PO4. Radicle protrusion (germination) occurred in the priming solution at 21 h in water and 27 h in 1% K3PO4.

Respiration, radicle protrusion and cell division consistently occurred sooner in primed (redried) seeds compared to nonprimed seeds when they were imbibed at 25°C. Cell division and elongation commenced after 10 h imbibition in primed (redried) seeds imbibed at 35°C. Neither process occurred in nonprimed seeds. Respiratory rates were higher in both primed and nonprimed seeds imbibed at 35°C compared to those imbibed at 25°C, although radicle protrusion did not occur in nonprimed seeds which were imbibed at 35°C. It is apparent that cell elongation and division are inhibited during high temperature imbibition in nonprimed lettuce seeds. Seed priming appears to lead to the irreversible initiation of cell elongation, thus overcoming thermodormancy.

  相似文献   

17.
Edqvist J  Farbos I 《Planta》2002,215(1):41-50
The endosperm of Euphorbia lagascae Spreng. seeds contains high levels of the epoxidated fatty acid vernolic acid ( cis-12-epoxyoctadeca-cis-9-enoic acid). To obtain transgenic oilcrops producing high levels of vernolic acid, better knowledge of its endogenous metabolism is needed. In this paper we study the gene activities involved in the mobilization and oxidation of vernolic acid during germination. A cDNA library was constructed from mRNA isolated from germinating E. lagascae seeds. Over 300 cDNA clones were partially characterized by DNA sequencing. Of the sequenced cDNAs, 18% encoded proteins with a putative function related to the metabolism of lipids or fatty acids. Among these cDNAs were genes coding for lipase, thiolase, acyl-CoA reductase and epoxide hydrolase. Of the sequenced clones, 4.5% encoded lipid-transfer proteins (LTPs), indicating the high abundance of such proteins during germination. We isolated the full-length sequences of the E. lagascae cDNAs encoding the LTPs ElLTP1 and ElLTP2. These proteins share only 38% identity, but both show high similarity to LTPs from other plant species. Both sequences contain eight cysteine residues, which are conserved in most plant LTPs. Expression analysis revealed that both genes were specifically expressed during germination.  相似文献   

18.
19.
The review deals with recent results and problems of gene expression during germination of Bacillus spores. Three problems were selected: 1. The activation of metabolism as a prerequisite for the synthesis of nucleic acids and proteins. 2. The activation of nucleic acid and protein synthesis during germination. 3. The gene expression programme of germinating spores. Using the highly sensitive two-dimensional polyacrylamide gel analysis three major classes of proteins were distinguished, depending on the time of onset and duration of their syntheses: a) proteins made throughout germination (main class), b) proteins whose synthesis started only after a lag phase and then continued throughout germination, and c) proteins which are synthesized only during the early phases of germination. The programme of protein synthesis is an indicator for the control of gene expression during germination. The regulation of expression of these major gene groups during spore outgrowth is discussed.  相似文献   

20.
While understanding that seed germination is crucial for ecological restoration activities, the seed traits of desert perennials are understudied. We experimentally determined germination traits of 43 species from 14 families from Hummock grasslands in the Great Sandy Desert, Australia. We defined morphological and physiological seed traits of framework species required for restoration and investigated the effects of fire and temperature on seed germination. We classified dormancy and explored the effect of Karrikinolide, a fire cue derived from smoke, on germination. Seeds of 38 (88%) out of 43 species were dormant: 13 (30%) with physical and 25 (58%) with physiological dormancy. Karrikinolide promoted seed germination of 9 (21%) species across all life-forms except trees, and widened the range of germination temperatures and increased germination rate of one species. Although high germination percentages were obtained over a wide temperature range, germination rate was affected by temperature. Non-dormant seeds and seeds pre-treated to overcome physical dormancy germinated quickly, with times to 50% germination of 1–5 days. Dormancy class differed between life-forms and families. Fast germination of non-dormant seeds is a trait that allows seeds to germinate during short periods of moisture availability. An absence of under-developed embryos is consistent with the global trends for hot deserts. A response to Karrikinolide shows that seed germination is related to a fire cue. These results will inform land managers of effective seed pre-treatments prior to seed broadcasting for restoration, and information on seed germination temperatures and rates will improve the understanding of when and where seeds could germinate in restored sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号