首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytosol from the adrenal gland of male and female rats contains a specific binding protein for oestradiol-17β. This protein has all the characteristics of a cytoplasmic oestrogen receptor. It is excluded by Sephadex G-200 gel filtration, has a sedimentation coefficient of 8–9 S by sucrose density gradient centrifugation in low salt and dissociates into a 4 S form by centrifugation in high salt (0.5 M KCl). The binding protein is heat sensitive and oestradiol-17β binding is eliminated by protease and by sulphydryl blocking reagents (2mM p-chloromercuriphenylsulphonate). The bound oestradiol dissociates very slowly at 0°C. The adrenal oestrogen receptors have a very high affinity for oestradiol-17β, but lower affinity for oestradiol-17α and do not bind testosterone, androstene-3,17-dione or corticosterone. Scatchard analysis of the saturation data for oestradiol revealed one class of high affinity binding sites with an apparent equilibrium constant of dissociation KD at 0°C of 5.8 × 10−10M. The number of binding sites was calculated to be 70 fmol/mg cytosol protein. Cytosol fractions from androgen insensitive (tfm) male rats contain oestrogen receptors in amounts very similar to that of the normal littermates.  相似文献   

2.
Nestin expression in rat adrenal gland   总被引:2,自引:1,他引:1  
The constituents of the intermediate filament network of adrenal gland cells have not been deeply investigated in vivo. Adrenocortical cells have been reported to express cytokeratins and vimentin, but the intermediate filament components of the adrenomedullary cells are still unknown. Nestin is an intermediate filament protein that is mainly expressed in the developing nervous and muscle systems. It has been reported to be unable to form filaments by itself and it co-assembles with vimentin. Using immunocytochemical and biochemical approaches, the present study demonstrates that nestin is expressed in situ either in the cortex or in the medulla of adult rat adrenal glands. Nestin-negative cells prevalently form the zona glomerulosa whereas the zona fasciculata and the zona reticularis are mainly nestin-immunoreactive. Nestin-positive cells always express vimentin-like immunoreactivity but several cells apparently expressing only vimentin are detectable too. Nestin is also expressed by adrenomedullary cells that also display a faint vimentin-like immunoreactivity. We hypothesise that the inconstant detection of nestin in adrenocortical cells depends on their different functional moments. Moreover, even though our data do not allow to confirm vimentin in adrenomedullary cells, in situ detection of nestin in the adrenal medulla indirectly supports in vivo expression of vimentin in chromaffin cells.  相似文献   

3.
4.
5.
Prolactin-releasing peptide (PrRP) is a novel peptide found in bovine hypothalamus as an endogenous ligand of an orphan G-protein-coupled receptor (hGR3). It is known that PrRP is widely distributed and plays roles in the central nervous system (CNS). In particular, PrRP acts as a neurotransmitter that mediates stress and activates the hypothalamo-pituitary-adrenal axis. On the other hand, only a few studies have so far been performed on PrRP in peripheral tissues. Among peripheral tissues, appreciable levels of PrRP are found only in the adrenal gland; however, the PrRP-producing cells in the adrenal gland have not been identified. In this study, we detected PrRP mRNA in the rat adrenal medulla. So, we tried to identify the PrRP-producing cells in primary culture cells of the adrenal medulla. We found immunopositive PrRP cells among the cultured cells from the adrenal gland, but not in the adrenal gland tissue, by means of immunocytochemistry. The PrRP immunopositive cells were double positive for tyrosine hydroxylase (TH) and for phenylethanolamine N-methyltransferase (PNMT), which indicates that PrRP may be produced in a part of the adrenaline cells in the adrenal gland. This is the first report that PrRP is produced in the adrenaline-containing cells of the adrenal gland.  相似文献   

6.
The response of the adrenal gland to zinc deficiency was examined in male weanling rats. In comparison with decapsulated adrenals from ad libitum fed controls, glands from zinc deficient rats had greater relative weight (mg/g body wt), DNA concentration, and total lipid and cholesterol concentrations as well as a smaller protein/DNA ratio. Several of these differences (protein/DNA and cholesterol concentration) could be attributed to the inanition accompanying zinc deficiency, as zinc deficient values were similar to those of pair fed controls. Values for total DNA and protein concentration were similar for all groups. Electron micrographs of the zona fasciculata showed a small number of lipid droplets in the adrenals from ad libitum fed controls, an increase in lipid droplets from pair fed controls, and an even more striking increase in lipid droplets from the zinc deficient adrenals. The increased adrenal lipid composition in the zinc deficient group may be secondary to enhanced steroidogenesis or a zinc deficiency-induced defect of lipid metabolism.  相似文献   

7.
8.
Distribution of P2X receptors in the rat adrenal gland   总被引:4,自引:0,他引:4  
The distribution of each of the seven subtypes of ATP-gated P2X receptors was investigated in the adrenal gland of rat utilizing immunohistochemical techniques with specific polyclonal antibodies to unique peptide sequences of P2X1-7 receptors. A small number of chromaffin cells showed positive immunoreaction for P2X5 and P2X7, with the relative occurrence of P2X7-immunoreactive chromaffin cells exceeding that of P2X5. The preganglionic nerve fibres that form terminal plexuses around some chromaffin cells showed P2X1 immunoreactivity. Intrinsic adrenal neurones were observed to be positively stained for P2X2 and P2X3 receptors. P2X2 immunoreactivity occurred in several neurones found singly or in groups in the medulla, while only a small number of neurones were immunoreactive for P2X3. Adrenal cortical cells were positively immunostained for P2X4-7. Immunoreactivity for P2X4 was confined to the cells of the zona reticularis, while P2X5-7 immunoreactivities occurred in cells of the zona fasciculata. The relative occurrence of immunoreactive cortical cells of the zona fasciculata was highest for P2X6, followed by P2X7 and then P2X5. The smooth muscle of some capsular and subcapsular blood vessels showed P2X2 immunoreactivity. The specific and widespread distribution of P2X receptor subtypes in the adrenal gland suggests a significant role for purine signalling in the physiology of the rat adrenal gland.  相似文献   

9.
The distribution of cyclic 3′, 5′ -nucleotide phosphodiesterase activity in the rat adrenal gland has been studied. Phosphodiesterase activity was 10-fold higher in the zona glomerulosa than in the zona fasciculata-reticularis. Kinetic studies carried out at low substrate concentrations suggest the possible presence of multiple forms of phosphodiesterase activity in both zones of the adrenal; however, these forms appear to have similar apparent Km's for cAMP. Thus, the well known differences in the steroidogenic response of the two zones to ACTH stimulation may be partially explained by large differences in total activities of the various forms of phosphodiesterase.  相似文献   

10.
The present study applied the separated adrenal capsules of rats for wholemount immunocytochemistry and used tyrosine hydroxylase (TH) antibody as a marker for catecholamines. TH-immunoreactive nerve bundles without varicosities and fibers with varicosities were seen to run along or to encircle blood vessels entering the adrenal capsule from the outside, and then to run along a network of blood vessels in the intracapsular region. Also, the TH-immunoreactive nerve bundles and fibers were found to run along blood vessels in the subcapsular region. Some TH-immunoreactive nerve fibers and bundles with varicosities, unassociated with the blood vessels, were seen in the subcapsular region. In this region, TH-immunoreactive nerve fibers with varicosities were often seen to be closely associated with the cortical cells. Some TH-immunoreactive nerve fibers without varicosities were visible within the splanchnic nerve in the subcapsular region. The present study suggests that numerous catecholaminergic nerve fibers are associated with blood vessels forming a network in the superficial region of the rat adrenal gland.  相似文献   

11.
We elucidated the functional contribution of K(+) channels to cholinergic control of catecholamine secretion in the perfused rat adrenal gland. The small-conductance Ca(2+)-activated K(+) (SK(Ca))-channel blocker apamin (10-100 nM) enhanced the transmural electrical stimulation (ES; 1-10 Hz)- and 1, 1-dimethyl-4-phenyl-piperazinium (DMPP; 5-40 microM)-induced increases in norepinephrine (NE) output, whereas it did not affect the epinephrine (Epi) responses. Apamin enhanced the catecholamine responses induced by acetylcholine (6-200 microM) and methacholine (10-300 microM). The putative large-conductance Ca(2+)-activated K(+) channel blocker charybdotoxin (10-100 nM) enhanced the catecholamine responses induced by ES, but not the responses induced by cholinergic agonists. Neither the K(A) channel blocker mast cell degranulating peptide (100-1000 nM) nor the K(V) channel blocker margatoxin (10-100 nM) affected the catecholamine responses. These results suggest that SK(Ca) channels play an inhibitory role in adrenal catecholamine secretion mediated by muscarinic receptors and also in the nicotinic receptor-mediated secretion of NE, but not of Epi. Charybdotoxin-sensitive Ca(2+)-activated K(+) channels may control the secretion at the presynaptic site.  相似文献   

12.
13.
Summary Distribution of cholinesterase in the adrenal medulla of the rat was studied using acetylthiocholine, butyrylthiocholine and -naphtyl acetate as substrates and eserine, di-isopropylfluorophosphate (DFP), 1:5-bid-(4-trimethylammoniumphenyl)-pentan-3-one di-iodide (62. C. 47) and tetra-isopropylpyrophosphoramide (iso-OMPA) as inhibitors.Acetylcholinesterase was observed in the nerve trunks, the ganglion cells, the coarse and the fine nerve fibers. The fine medullary network showed along the fibers small strongly positive ovoid bodies.Non-specific cholinesterase was detected in the capsule, the nerve trunks, the coarse nerve fibers and the fibers surrounding the noradrenaline-containing, fluorescent medullary cell islets. A weak reaction was also seen in the cytoplasm of the medullary cells. The fine medullary fibers with the ovoid bodies were essentially negative.A method was developed to demonstrate first non-specific cholinesterase and then acetylcholinesterase in the same section. The different distributions of the two cholinesterases were confirmed with this method.With 8 Figures in the Text, of which 2 in ColourThis work has been supported by a research grant from the National Institute of Arthritis and Metabolic Disease, the U.S. Public Health Service (A-1725) and by a grant from Finland's Cultural Fund.  相似文献   

14.
Administration of pharmacological doses of glucocorticoid to male rats in vivo suppresses adrenal steroidogenesis and inhibits testicular steroidogenesis by inhibiting the anterior pituitary secretion of LH. In contrast, administration of ACTH to these pharmacologically-suppressed rats stimulates the adrenal secretion of progesterone and testicular steroidogenesis. The mechanism by which ACTH increases testicular steroidogenesis is dependent on the presence of the adrenal gland and is reproduced by the administration of progesterone. The conclusion from these data is that the adrenal gland has an important role in generating external signals that modulate the hypothalamic-pituitary-gonadal axis in male rats. The adrenal secretion of glucocorticoid acts as a negative signal to testicular steroidogenesis whereas progesterone acts as a positive signal. The adrenal secretion of progesterone and its conversion to testosterone by steroidogenic enzymes in the cytoplasm of the Leydig cell may provide an alternative pathway for testosterone biosynthesis and may account for the increased plasma testosterone levels during the acute phase of stress and mating.  相似文献   

15.
16.
Catecholamine secretion in the rat can be studied in freely moving and anaesthetized animals, in isolated-perfused adrenals, medullae slices and isolated cultured cells. In addition the rat offers the advantage over the more widely used bovine adrenal model that researchers can have access to animals of the same age, sex and feeding conditions. Catecholamine release is similar to other species although it gives robust secretion in response to stimuli such as muscarinic agonists, bradykinin or VIP. It also allows the study of neurotransmission at the splanchnic-adrenal synapse. The use of single-cell preparations (patch-clamp, microfluorimetry, amperometry or capacitance) has overcome the limitations of the number of cells obtained from a gland. It is possible to study secretion in animal models of hypertension, chronic stress or diabetes and rats can be genetically modified.  相似文献   

17.
We elucidated the contribution of endogenous pituitary adenylate cyclase-activating polypeptide (PACAP) to neurally evoked catecholamine secretion from the isolated perfused rat adrenal gland. Infusion of PACAP (100 nM) increased adrenal epinephrine and norepinephrine output. The PACAP-induced catecholamine output responses were inhibited by the PACAP type I receptor antagonist PACAP- (6-38) (30-3,000 nM) but were resistant to the PACAP type II receptor antagonist [Lys1,Pro2,5,Ara3,4,Tyr6]-vasoactive intestinal peptide (LPAT-VIP; 30-3,000 nM). Transmural electrical stimulation (ES; 1-10 Hz) or infusion of ACh (6-200 nM) increased adrenal epinephrine and norepinephrine output. PACAP-(6-38) (3,000 nM), but not LPAT-VIP, also inhibited the ES-induced catecholamine output responses. However, PACAP-(6-38) did not affect the ACh-induced catecholamine output responses. PACAP at low concentrations (0.3-3 nM), which had no influence on catecholamine output, enhanced the ACh-induced catecholamine output responses, but not the ES-induced catecholamine output responses. These results suggest that PACAP is released from the nerve endings to facilitate the neurally evoked catecholamine secretion through PACAP type I receptors in the rat adrenal gland.  相似文献   

18.
19.
alpha-Melanocyte-stimulating-hormone (alpha-MSH) is an agonist at the melanocortin 3 receptor (MC3-R) and melanocortin 4 receptor (MC4-R). alpha-MSH stimulates corticosterone release from rat adrenal glomerulosa cells in vitro. Agouti-related protein (AgRP) an endogenous antagonist at the MC3-R and MC4-R, is expressed in the adrenal gland. We investigated the expression of the MC3-R and MC4-R and the role of AgRP in the adrenal gland. MC3-R and MC4-R expression was detected in rat adrenal gland using RT-PCR. The effect of AgRP on alpha-MSH-induced corticosterone release was investigated using dispersed rat adrenal glomerulosa cells. AgRP administered alone did not affect corticosterone release, but co-administration of AgRP and alpha-MSH attenuated alpha-MSH-induced corticosterone release. To investigate glucocorticoid feedback, adrenal AgRP expression was compared in rats treated with dexamethasone to controls. AgRP mRNA was increased in rats treated with dexamethasone treatment compared to controls. Our findings demonstrate that adrenal AgRP mRNA is regulated by glucocorticoids. AgRP acting via the MC3-R or MC4-R may have an inhibitory paracrine role, blocking alpha-MSH-induced corticosterone secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号