首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of various conditions such as initial pH, dye concentrations, amount of pellet, temperature and agitation on decolourising activity of Funalia trogii were investigated. These, except initial pH, were all found to be important for dye decolourising activity of F. trogii. The decolourisation of the dye involved adsorption of the dye compound by fungal pellets at the initial stage, followed by the decolourisation through microbial metabolism. Heat-killed pellets were also tested for their ability to decolourise Astrazon Red dye. These pellets adsorbed the dye and 55% decolourisation was obtained in 24 h. But at the second cycle there was only 24% decolourisation. Our observation showed that Astrazon Red dye decolourisation by heat-killed pellets was mainly due to biosorption. The longevity of the decolourisation activity of F. trogii pellets was also investigated in repeated batch mode. Variations in the amount of pellet increased % decolourisation and stability of pellets.  相似文献   

2.
White-rot fungal strains of Trametes versicolor and Phanerochaete chrysosporium were selected to study the decolourisation of the textile dye, Reactive Black 5, under alkaline–saline conditions. Free and immobilised T. versicolor cells showed 100 % decolourisation in the growth medium supplemented with 15 g l?1 NaCl, pH 9.5 at 30 °C in liquid batch culture. Continuous culture experiments were performed in a fixed-bed reactor using free and immobilised T. versicolor cells and allowed 85–100 % dye decolourisation. The immobilisation conditions for the biomass and the additional supply of carbon sources improved the decolourisation performance during a long-term trial of 40 days. Lignin peroxidase, laccase and glyoxal oxidase activities were detected during the experiments. The laccase activity varied depending on carbon source utilized and glycerol-enhanced laccase activity compared to sucrose during extended growth.  相似文献   

3.
The white rot fungus Trametes versicolor was shown to be capable of decolorizing three reactive dyes in a sequencing batch process, using glucose as the carbon and energy source over an extended period without supplementation of new mycelium. Decolorization activity was related to the expression of extracellular peroxidases and could be continuously reactivated by sheering the suspended pellets. Pure culture experiments were carried out simultaneously in agitated Erlenmeyer flasks and in completely stirred tank reactors with two azo dyes, C.I. Reactive Black 5 and C.I. Reactive Red 198 as well as the anthraquinone dye C.I. Reactive Blue 19 (Brilliant Blue R). Results show high and stable degrees of decolorization of 91%-99% in both systems, which could be repeated without decrease in activity over time. Under nonsterile conditions only five cycles of decolorization could be achieved. An increasing bacterial population suppressed fungal growth and the formation of peroxidases. Copyright John Wiley & Sons, Inc.  相似文献   

4.
A total of 37 strains of aquatic hyphomycetes and 95 fungal isolates derived from diverse freshwater environments were screened on agar plates for the decolourisation of the disazo dye Reactive Black 5 and the anthraquinone dye Reactive Blue 19. The decolourisation of 9 azo and 3 anthraquinone dyes by 9 selected aquatic fungi was subsequently assessed in a liquid test system. The fungi were representatives of mitosporic anamorphs, and 6 strains had proven ascomycete affiliations. For comparison, 5 white rot basidiomycetes were included. The majority of dyes were decolourised by several mitosporic aquatic isolates at rates essentially comparable to those observed with the most efficient white rot fungus. Under certain conditions, particular aquatic strains decolourised dyes even more efficiently than the best performing white rot basidiomycete. Upon fungal treatment of several dyes, new absorbance peaks appeared, indicating biotransformation metabolites. All together, these results point to the potential of fungi occurring in freshwater environments for the treatment of dye-containing effluents.  相似文献   

5.
In this work, the anaerobic period of an anaerobic–aerobic sequencing batch reactor was found to allow the reductive decolourisation of azo dyes. 1-l reactors were operated in 24-h cycles comprising anaerobic and aerobic reaction phases, fed with a simulated textile effluent including a reactive type (Remazol Brilliant Violet 5R) or an acid type (Acid Orange 7) azo dye. The aim was to assess the role of different redox phenomena in the anaerobic decolourisation process. Selective inhibition of sulphate reducing bacteria was carried out in the sulphate-containing, reactive dye fed reactor, resulting in nearly complete, though reversible and inhibition of decolourisation. The acid dye fed reactor's supplementation with sulphate, though resulting in sulphate reduction, did not improve decolourisation. Other redox mediators, namely quinones, were more effective in promoting electron transfer to the azo bond. Bio-augmentation of the acid dye fed reactor with a pure sulphate reducer strain known to decolourise azo dyes, Desulfovibrio alaskensis, was also carried out. Decolourisation was improved, but apparently as a result of the carbon source change required to support D. alaskensis growth. A chemically mediated reduction of the azo bond coupled to biological sulphate reduction, thus seemed to account for the high decolourisation yields of both dyes.  相似文献   

6.
Twelve white-rot fungal strains belonging to seven different species were screened on plates under alkaline condition to study the decolourisation of the textile dyes Reactive Black 5 and Poly R-478. Three strains of Trametes versicolor (Micoteca da Universidade do Minho (MUM) 94.04, 04.100 and 04.101) and one strain of Phanerochaete chrysosporium (MUM 94.15) showed better decolourisation results. These four strains were used for decolourisation studies in liquid culture medium. All four selected strains presented more efficient decolourisation rates on Reactive Black 5 than on Poly R-478. For both dyes on solid and liquid culture media, the decolourisation capability exhibited by these strains depended on dye concentration and pH values of the media. Finally, the decolourisation of Reactive Black 5 by T. versicolor strains MUM 94.04 and 04.100 reached 100 %. In addition, the highest white-rot fungi ligninolytic enzyme activities were found for these two strains.  相似文献   

7.
The white rot fungus Irpex lacteus is able to decolorize such synthetic dyes as Reactive Orange 16 and Remazol Brilliant Blue R. Here, we demonstrate that this type of dye decolorization is mainly related to a laccase-like enzyme activity associated with fungal mycelium. In its bound form, the enzyme detected showed a pH optimum of 3.0 for the oxidation of ABTS, DMP and guaiacol, and a pH of 7.0 for syringaldazine. The highest enzymatic activity was obtained with ABTS as substrate. Enzyme activity was fully inhibited with 50mM NaN(3). Depending on the chemical structure of dyes, redox mediators had a positive effect on the dye decolorization by fungal mycelium. Enzyme isolated from fungal mycelium was able to decolorize synthetic dyes in vitro.  相似文献   

8.
A continuous fluidized-bed bioreactor was developed for the decolourisation of cotton bleaching effluent with a wood rotting fungus. Different initial concentrations of effluent were tested with either glucose or starch as co-substrates. With this system, 75–80% colour removal was achieved with an initial A400 of 4.7, using a 3 day-retention time. It showed high and stable decolourisation activity in long term continuous operation. © Rapid Science Ltd. 1998  相似文献   

9.
采取液体深层发酵的方法 ,研究了不同碳氮比对薄盖灵芝 [Ganodermacapense (Lloyd)Teng]液体培养的影响。结果表明 ,在氮量固定的情况下 ,随碳量的增加 ,薄盖灵芝菌丝体干重逐渐增大 ,各处理发酵液的pH值呈“上升→下降→平稳”的变化趋势 ;当碳量固定时 ,各处理的pH值变化基本呈“双峰”型。不同碳氮比对薄盖灵芝液体发酵影响较大 ,通过对菌丝生长量、pH值的测定以及对发酵液及菌球培养性状的观察 ,认为碳氮比在 2 0∶1~ 4 0∶1(C3~C7)对薄盖灵芝的液体发酵均较适宜。其中以 30∶1(C5 )为最适宜 ,在此条件下 ,终止发酵的pH值为 3 4 ,菌球数量虽为 113个 10mL发酵液 ,但菌丝体干重为 6 83 4mg dL。发酵液澄清度高 ,呈真溶液状 ,菌球大小均匀。  相似文献   

10.
撕裂蜡孔菌在开放体系中对甲基橙染料的静态脱色研究   总被引:1,自引:0,他引:1  
王娜  于圣  褚衍亮  徐翔宇  林陈强 《菌物学报》2015,34(6):1196-1204
为了评价撕裂蜡孔菌处理偶氮染料的应用潜力,用性能稳定的甲基橙染料为材料,采用批次试验在开放性体系中研究了染料初始浓度、菌丝生物量、温度、pH等因素对该菌脱色能力的影响,运用菌丝体反接、染液光谱扫描、菌丝体显微观察等方法探讨了菌丝体脱色的可能机制,利用植物萌发试验进行了染料和脱色后溶液的毒性测试。结果表明,撕裂蜡孔菌在开放的静止体系中能够对甲基橙高效脱色,其最适脱色温度为35℃,最佳脱色pH值在6左右。菌丝对甲基橙的脱色表现在吸附和产酶降解两个方面,脱色过程中染料对菌丝体本身的影响较少。植物毒性分析显示撕裂蜡孔菌脱色48h后的产物对植物的毒性比甲基橙本身更强,若要彻底降解可能需要较长时间。本研究可为染料脱色工艺提供新的菌种。  相似文献   

11.
Biodegradation of Reactive blue-25 by Aspergillus ochraceus NCIM-1146   总被引:1,自引:0,他引:1  
The present study dealt with the decolorization and degradation of textile dye Reactive blue-25 (0.1gl(-1)) by mycelium of Aspergillus ochraceus NCIM-1146. Spectrophotometric and visual examinations showed that the decolorization was through fungal adsorption, followed by degradation. Shaking condition was found to be better for complete and faster adsorption (7h) and decolorization (20 days) of dye Reactive blue-25 (100mgl(-1)) as compared to static condition. Presence of glucose in medium showed faster adsorption (4h) and decolorization of dye from bound (7 days) mycelium. FTIR and GCMS analysis study revealed biodegradation of Reactive blue-25 into two metabolites phthalimide and di-isobutyl phthalate.  相似文献   

12.
Three caprolactam-degrading bacterial isolates grew in liquid synthetic medium containing solubilised solid waste of a nylon-6 production plant as the sole source of carbon and nitrogen. Typically, the caprolactam content of solid waste was decreased by 95% in 72 h by Alcaligenes faecalis. A. faecalis was the most potent caprolactam-degrading bacterium out of the three isolates. The biomass of the bacteria obtained by growth in the solubilised solid waste medium had the ability to decolourise some synthetic azo and triphenylmethane dyes. Decolourisation of dyes was obtained in static condition, in synthetic medium which contained only the components of the solid waste as the sole sources of carbon and nitrogen and also in nutritionally rich medium. The supplementation of yeast extract to solid waste medium did not increase the efficiency of decolourisation in case of two of the bacterial cultures. Depending on the dye, medium and bacteria used, decolourisation in the range of 35–94% was achieved in 48–96 h. The decolourisation was not due to the adsorption of the dyes by the bacterial biomass except in case of Procion Blue MR and Black B. Based on these observations, the simultaneous biological treatment of the solid waste of nylon-6 plant and the decolourisation of synthetic dyes present in wastewater or solid waste is envisaged.  相似文献   

13.
Six mitosporic fungi belonging to five species (Aspergillus flavus var. flavus, Aspergillus ochraceus, Cladosporium cladosporioides, Penicillium glabrum and Penicillium verrucosum) were selected from a screening on 258 fungal strains as the most promising for their ability to remove 2 model dyes in solid conditions. Hence they were tested in liquid conditions for their ability to decolourise 3 model dyes and 9 industrial dyes widely used in the textile industry. The influence of the culture medium, particularly its carbon:nitrogen ratio, on biomass development and decolourisation capacity was considered. All the strains were able to grow in the dyed media and displayed various degrees of decolourisation according to the dye and culture medium. The decolourisation was due to biosorption phenomena. Aspergillus ochraceus performed the highest decolourisation yield being able to remove all dyes over 90%. This strain was also found very effective, both in the living and inactivated form, against simulated effluents that mimicked the recalcitrance of real wastewaters being composed of ten different dyes at high concentration (1,000 ppm), in saline solution.  相似文献   

14.
Of 18 commercially used textile dyes, eight were degraded by the white rot fungus,Phanerochaete chrysosporium, by 40 to 73% based on decrease of colour. Both the lignin-degrading enzyme system ofP. chrysosporium and adsorption to its cell mass were involved in the degradation of the diazo dye, Reactofix Gold Yellow. Degradation was best achieved by adding the dye to the medium and then inoculating with pre-grown mycelium; inoculation with spores resulted mainly in dye adsorption.  相似文献   

15.
This research documents the removal of the dye Gris Lanaset G from aqueous solutions by fungal pellets. Adsorption of the dye by dead biomass pellets of Trametes versicolor was determined and compared with dye removal by enzymatic degradation. Six kinetic equations were fitted to the experimental adsorption data obtained. The results indicate that kinetics such as the Elovich equation, which considers that the rate-controlling step is the diffusion of the dye molecules, show the best fit. Nonlinear Langmuir and Freundlich equations were also fitted into the adsorption data, and it can be concluded that the adsorption equilibrium can be interpreted by the Langmuir isotherm. Adsorption plays an important role in the process of the elimination of color from textile wastewater, although not all of the elimination is due to this physical process when the microorganism is active. The removal of color (around 90%) with active microorganisms is greater than that obtained with the adsorption process.  相似文献   

16.
17.
Zhang SJ  Yang M  Yang QX  Zhang Y  Xin BP  Pan F 《Biotechnology letters》2003,25(17):1479-1482
Three reactive dyes were rapidly adsorbed by the mycelium pellets of Penicillium oxalicum. Dye removal of Reactive Blue 19 was up to 60% in 10 min and 91% in 80 min. Dye adsorption isotherms fitted Langmuir model well and the maximum adsorption capacities at 20 °C were calculated to be 160 mg g–1 for Reactive Blue 19, 122 mg g–1 for Reactive Red 241 and 137 mg g–1 for Reactive Yellow 145, respectively. The pellets exhibited a high dye adsorption capacity (80–180 mg g–1) for all of the 3 dyes over a wide pH range (pH 2–10), and the maximum adsorption was obtained at pH 2. The adsorption capacity was mildly increased by increasing salinity.  相似文献   

18.
This study was undertaken for the possibility of application of pre-grown pellets for biotechnological treatment of dyes and textile industry waste waters. Mycelial pellets of five different white rot fungi were tested for their dye decolorization activity. The pellets of Funalia trogii, Phanerochaete chrysosporium and Trametes versicolor were determined as the most effective ones. The decolorization ability of viable pellets was compared with the decolorization (adsorption) ability of dead pellets during repeated batch studies. Astrazon Black dye was decolorized effectively, about 90%, by viable pellets of all fungi during the first use. Viable F. trogii pellets were found as the most effective pellets. Upon pellet treatment not only a high decolorization but also reduced toxicity (antimicrobial activity) of the Astrazon Black dye was recorded. This type of decolorization activity with commercial or crude laccase was partially observed. Growing cells of F. trogii in batch system showed lower efficiency in color removal of mixed dyes compared to the pre-grown pellets in repeated batch system. The results in this study showed that mycelial pellets could effectively be used as an alternative to traditional physicochemical processes.  相似文献   

19.
Most of the published studies on azo dye colour removal involve anaerobic mixed cultures and there is some interest in the knowledge of how dye reduction occurs, if by facultative, strictly anaerobic or both bacterial trophic groups present in classic anaerobic digestors. This paper describes the behaviour of methanogenic and mixed bacteria cultures on the colour removal in batch systems, of a commercial azo dye, C.I. Acid Orange 7, used in paper and textile industries. The aim of this study is to demonstrate, by analysing dye decolourisation, that it occurs with mixed cultures as well as with strictly anaerobic (methanogenic) cultures. Tests were performed with a range of dye concentrations between 60 and 300 mg l−1. The influence of dye concentration on the carbon source removal and decolourisation processes was studied. The effect of carbon source concentration on colour removal was also analysed for both cultures. The degradation rates in mixed and methanogenic cultures were compared. The consumption of carbon source was monitored by COD analysis and dye degradation by ultraviolet-visible spectrophotometry and thin layer chromatography.  相似文献   

20.

Background

Tyrophagus putrescentiae (Acari: Astigmata) and Fusarium sp. co-occur in poorly managed grain. In a laboratory experiment, mite grazing resulted in significant reduction of fungal mycelium on cultivation plates. The destruction of mycelium appeared to be a result of an interaction between the mites, fungi and associated bacteria.

Methodology and Principal Findings

A laboratory experiment was performed to simulate a situation of grain multiinfested by mites and Fusarium fungi. Changes of mite-associated bacterial community in T. putrescentiae were described in 3 habitats: (i) T. putrescentiae mites from a rearing diet prior to their transfer to fungal diet; (ii) fungal mycelium before mite introduction; (iii) mites after 7 day diet of each Fusarium avenaceum, F. culmorum, F. poae and F. verticillioides. Bacterial communities were characterized by 16 S rRNA gene sequencing. In total, 157 nearly full-length 16 S rRNA gene sequences from 9 samples representing selected habitats were analyzed. In the mites, the shift from rearing to fungal diet caused changes in mite associated bacterial community. A diverse bacterial community was associated with mites feeding on F. avenaceum, while feeding on the other three Fusarium spp. led to selection of a community dominated by Bacillaceae.

Conclusions/Significance

The work demonstrated changes of bacterial community associated with T. putrescentiae after shift to fungal diets suggesting selection for Bacillaceae species known as chitinase producers, which might participate in the fungal mycelium hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号