首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dissipation of excess excitation energy in British plant species   总被引:32,自引:1,他引:32  
The reversible dissipation of excitation energy in higher plants is believed to protect against light-induced damage to the photosynthetic apparatus. This dissipation is measured as the non-photochemical quenching of chlorophyll fluorescence. A method is described whereby the saturated capacity for rapidly reversible non-photochemical quenching can be compared between plant species. This method was applied to 22 common British plant species whose habitat was quantified using an index that describes shade tolerance. An association was found between occurrence in open habitats and a high capacity for non-photochemical quenching. It was found that, whilst this capacity was species dependent, it did not depend upon the conditions under which the plant was grown. The possible role of zeaxanthin as a determinant of quenching capacity was examined by measuring the contents of xanthophyll cycle carotenoids for each species. Comparing species, no correlation was seen between the saturated level of non-photochemical quenching and zeaxanthin content expressed relative to either total carotenoid or to chlorophyll. When zeaxanthin was expressed relative to the amount of xanthophyll cycle intermediates (zeaxanthin, antheraxanthin and violaxanthin), a weak correlation was seen.  相似文献   

2.
3.
The aim of the work was to find the optimal photon irradiance for the growth of green cells of Haematococcus pluvialis and to study the interrelations between changes in photochemical parameters and pigment composition in cells exposed to photon irradiances between 50 and 600?µmol?m?2?s?1 and a light:dark cycle of 12:12?h. Productivity of cultures increased with irradiance. However, the rate of increase was higher in the range 50–200?µmol??2?s?1. The carotenoid content increased with increasing irradiance, while the chlorophyll content decreased. The maximum quantum yield of PSII (Fv/Fm) gradually declined from 0.76 at the lowest irradiance of 50?µmol??2?s?1 to 0.66 at 600?µmol??2?s?1. Photosynthetic activity showed a drop at the end of the light period, but recovered fully during the following dark phase. A steep increase in non-photochemical quenching was observed when cultures were grown at irradiances above 200?µmol??2?s?1. A sharp increase in the content of secondary carotenoids also occurred above 200?µmol?m?2?s?1. According to our results, with H. pluvialis green cells grown in a 5-cm light path device, 200?µmol??2?s?1 was optimal for growth, and represented a threshold above which important changes in both photochemical parameters and pigment composition occurred.  相似文献   

4.
The carotenoid composition of sun leaves of nine species of annual crop plants (some with several varieties) was compared with sun and shade leaves of several other groups of plants, among those sun and shade leaves of several species of perennial shrubs and vines and deep-shade leaves of seven rainforest species. All sun leaves contained considerably greater amounts of the components of the xanthophyll cycle violaxanthin, antheraxanthin and zeaxanthin as well as of β-carotene than the shade leaves, as had previously been reported for a variety of other species by Thayer & Björkman (Photosynthesis Research, 1990, 23, 331–343). Therefore, high light specifically stimulated β,β-carotenoid synthesis. The sun leaves of these crop species did not contain α-carotene which was, however, present in large amounts in all shade leaves and in smaller amounts in sun leaves of three of the four species of perennial shrubs and vines. There was no difference in neoxanthin content on a chlorophyll basis between sun and shade leaves, and there was no consistent general difference in the lutein content between all sun and all shade leaves. The zeaxanthin (and antheraxanthin) content at peak irradiance and the xanthophyll cycle pool size were compared for sun leaves from the different groups of plants with different life forms and different metabolic activities. When growing in full sunlight the annual crop species and a perennial mesophyte had high rates of photosynthesis whereas the perennial shrubs and vines had relatively low photosynthesis rates. More zeaxanthin (and antheraxanthin) were accumulated at noon in full sunlight in those species with the lower photosynthesis rates. However, it was not such that those species also possessed the larger pools of violaxanthin + antheraxanthin + zeaxanthin. Instead, the xanthophyll cycle pools of sun leaves of the annual crop species and the perennial mesophyte were not smaller, and were even possibly larger, than those of sun leaves of the perennial shrubs and vines with low photosynthesis rates. This was so in spite of the fact that the crop species experienced much lesser degrees of excessive light at full sun than the shrubs and vines. Thus, many of the crop species converted only about 30–50% of their xanthophyll cycle pool to zeaxanthin at noon, whereas the shrubs and vines typically converted more than 80% of their pool into zeaxanthin. The crop species also had larger pools of β-carotene than the shrubs and vines but smaller pools of lutein than the majority of the latter species.  相似文献   

5.
In this study the variations in surface reflectance properties and pigment concentrations of Antarctic moss over species, sites, microtopography and with water content were investigated. It was found that species had significantly different surface reflectance properties, particularly in the region of the red edge (approximately 700 nm), but this did not correlate strongly with pigment concentrations. Surface reflectance of moss also varied in the visible region and in the characteristics of the red edge over different sites. Reflectance parameters, such as the photochemical reflectance index (PRI) and cold hard band were useful discriminators of site, microtopographic position and water content. The PRI was correlated both with the concentrations of active xanthophyll‐cycle pigments and the photosynthetic light use efficiency, Fv/Fm, measured using chlorophyll fluorescence. Water content of moss strongly influenced the amplitude and position of the red‐edge as well as the PRI, and may be responsible for observed differences in reflectance properties for different species and sites. All moss showed sustained high levels of photoprotective xanthophyll pigments, especially at exposed sites, indicating moss is experiencing continual high levels of photochemical stress.  相似文献   

6.
The effects on pigment composition and photosynthesis of low temperature during growth were examined in the third leaf of three chilling-tolerant and three chilling-sensitive genotypes of Zea mays L. The plants were grown under a controlled environment at 24 or 14 °C at a photon flux density (PFD) of 200 or 600 μ mol m–2 s–1. At 24 °C, the two classes of genotypes showed little differences in their photosynthetic activity and their composition of pigments. At 14 °C, photosynthetic activity was considerably reduced but the chilling-tolerant genotypes displayed higher photosynthetic rates than the chilling-sensitive ones. Plants grown at 14 °C showed a reduced chlorophyll (Chl) a + b content and a reduced Chl a / b ratio but an increased ratio of total carotenoids to Chl a + b . These changes in pigment composition in plants grown at low temperature were generally more pronounced in the chilling-sensitive genotypes than in the tolerant ones, particularly at high PFD. Furthermore, at 14 °C, all the genotypes showed increased ratios of lutein, neoxanthin and xanthophyll-cycle carotenoids to Chl a + b but a reduced ratio of β -carotene to Chl a + b , especially at high PFD. At 14 °C, the chilling-tolerant genotypes, when compared with the sensitive ones, were characterized by higher contents of β -carotene and neoxanthin, a lower content of xanthophyll-cycle carotenoids, a lower ratio of xanthophylls to β -carotene, and less of their xanthophyll-cycle carotenoid pool in the form of zeaxanthin. These differences between the two classes of genotypes were more pronounced at high PFD than at low PFD. The results are discussed in terms of the relationship that may exist in maize between pigment composition and the capacity to form an efficient photosynthetic apparatus at low growth temperature.  相似文献   

7.
Abstract: Photoprotection mechanisms have been studied during autumnal senescence in sun and shade leaves of woody plants with different ecological characteristics and senescence patterns. Three of them belonging to the same family, Betulaceae: the shade‐intolerant and early successional species (Betula alba L.), the shade‐tolerant and late successional species (Corylus avellana L.), and an N‐fixing tree with low N resorption efficiency (Alnus glutinosa L.). The other two species: a shade‐intolerant (Populus tremula L.) and a shade‐tolerant (Cornus sanguinea L.), were chosen because of their ability to accumulate anthocyanins during autumnal leaf senescence. The study of plants with different ecological strategies allowed us to establish general trends in photoprotection mechanisms during autumnal senescence, when nutrient remobilisation occurs, but also during whole leaf ontogeny. We have not found a clear relationship between shade tolerance and the level of photoprotection; the main difference between both groups of species being the presence of α‐carotene in shade leaves of shade‐tolerant species. Preceding autumn, nitrogen resorption started in mid‐summer and occurred in parallel with a slight and continuous ascorbate, chlorophyll and carotenoid degradation. However, the ascorbate pool remained highly reduced and lipid oxidation did not increase at this time. Contrasting with ascorbate, α‐tocopherol accumulated progressively in all species. Only during the last stages of senescence was chlorophyll preferentially degraded with respect to carotenoids, leading to the yellowing of leaves, except in A. glutinosa in which a large retention of chlorophyll and N took place. Senescing leaves were characterised, except in C. sanguinea, by a relative increase in the proportion of de‐epoxidised xanthophylls: zeaxanthin, antheraxanthin and lutein. The light‐induced accumulation of anthocyanins in C. sanguinea could play an additional protective role, compensating for the low retention of de‐epoxidised xanthophylls. These different strategies among deciduous species are consistent with a role for photoprotective compounds in enhancing nitrogen remobilization and storage for the next growing season.  相似文献   

8.
The pigment composition of the light-harvesting complexes of Photosystem II (LHC II) has been determined for lettuce (Lactuca sativa). In common with other members of the composite, the photosynthetic tissues of this species may contain large amounts of the carotenoid lactucaxanthin (, -carotene-3,3'-diol) in addition to their normal compliment of carotenoids. The occurrence and distribution of lactucaxanthin in LHC II has been examined using isoelectric focusing of BBY particles followed by reversed-phase HPLC analysis of the pigments. The major carotenoids detected in LHC IIb, LHC IIa (CP29) and LHC IIc (CP26) purified from dark-adapted lettuce were lutein, violaxanthin, neoxanthin and lactucaxanthin. Lactucaxanthin has been shown to be a major component of PS II, accounting for 26% of total xanthophyll in both LHC IIb (23% total xanthophyll) and in the minor complexes (12–16%). In this study, LHC IIb was clearly resolved into four bands and their carotenoid composition determined. These four bands proved to be very similar in their pigment content and composition, although the relative amounts of neoxanthin and lutein in particular were found to increase from bands 1 to 4 (i.e. with increasing electrophoretic mobility). The operation of the xanthophyll cycle has also been examined in the LHC of L. sativa following light treatment. The conversion efficiency for violaxanthinzeaxanthin was nearly identical for each light-harvesting complex examined at 58–61%. Nearly half of the zeaxanthin formed in PS II was associated with LHC IIb, although the molar ratio of zeaxanthin:chlorophyll a was highest in the minor LHC.Abbreviations HPLC high performance liquid chromatography - IEF isoelectric focusing - LHCII light-harvesting complex associated with Photosystem II - PS II Photosystem II - qE pH-dependent nonphotochemical quenching of chlorophyll fluorescence  相似文献   

9.
Dynamics and possible function of the lutein epoxide (Lx) cycle, that is, the reversible conversion of Lx to lutein (L) in the light-harvesting antennae, were investigated in leaves of tropical tree species. Photosynthetic pigments were quantified in nine Inga species and species from three other genera. In Inga , Lx levels were high in shade leaves (mostly above 20 mmol mol−1 chlorophyll) and low in sun leaves. In Virola surinamensis , both sun and shade leaves exhibited very high Lx contents (about 60 mmol mol−1 chlorophyll). In Inga marginata grown under high irradiance, Lx slowly accumulated within several days upon transfer to deep shade. When shade leaves of I. marginata were briefly exposed to the sunlight, both violaxanthin and Lx were quickly de-epoxidized. Subsequently, overnight recovery occurred only for violaxanthin, not for Lx. In such leaves, containing reduced levels of Lx and increased levels of L, chlorophyll fluorescence induction showed significantly slower reduction of the photosystem II electron acceptor, Q A, and faster formation as well as a higher level of non-photochemical quenching. The results indicate that slow Lx accumulation in Inga leaves may improve light harvesting under limiting light, while quick de-epoxidation of Lx to L in response to excess light may enhance photoprotection.  相似文献   

10.
The photosynthetic pigments and photochemical efficiency of photosystem 2 (PS2) were studied in four constitutive species (Achillea millefolium L., Festuca pseudovina Hack. ex Wiesb., Potentilla arenaria Borkh., and Thymus degenianus Lyka) of a semiarid grassland in South-eastern Hungary. Every species displayed typical sun-adapted traits and substantial plasticity in the composition and functioning of the photosynthetic apparatus. The contents of chlorophylls (Chls) and carotenoids (Cars) on a dry matter basis declined from May to July, however, the amount of total Cars on a Chl basis increased. This increase was the largest in Potentilla (48 %) and the smallest in Achillea (14 %). The pool of xanthophylls (VAZ) was between 25 % and 45 % of the total Car content and was larger in July than in May. The content of β-carotene increased by July, but lutein content did not change significantly. The Chl fluorescence ratio Fv/Fm was reduced by 3–10 % at noon, reflecting the down-regulation of PS2 in the period of high irradiance and high temperature. The occurrence of minimal values of ΔF/Fm’ showed close correlation to the de-epoxidation rate of violaxanthin. Hence in natural habitats these species developed a considerable capacity to dissipate excess excitation energy in the summer period in their photosynthetic apparatus through the xanthophyll cycle pool and a related photoprotective mechanism, when the photochemical utilization of photon energy was down-regulated.  相似文献   

11.
Sun and shade leaves of several plant species from a neotropical forest were exposed to excessive light to evaluate the responses of photosystem I in comparison to those of photosystem II. Potential photosystem I activity was determined by means of the maximum P700 absorbance change around 810 nm (ΔA810max) in saturating far-red light. Leaf absorbance changes in dependence of increasing far-red light fluence rates were used to calculate a ‘saturation constant’, Ks, representing the far-red irradiance at which half of the maximal absorbance change (ΔA810max/2) was reached in the steady state. Photosystem II efficiency was assessed by measuring the ratio of variable to maximum chlorophyll fluorescence, Fv/Fm, in dark-adapted leaf samples. Strong illumination caused a high degree of photo-inhibition of photosystem II in all leaves, particularly in shade leaves. Exposure to 1800–2000 μ mol photons m2 s1 for 75 min did not substantially affect the potential activity of photosystem I in all species tested, but caused a more than 40-fold increase of Ks in shade leaves, and a three-fold increase of Ks in sun leaves. The increase in Ks was reversible during recovery under low light, and the recovery process was much faster in sun than in shade leaves. The novel effect of high-light stress on the light saturation of P700 oxidation described here may represent a complex reversible mechanism within photosystem I that regulates light-energy dissipation and thus protects photosystem I from photo-oxidative damage. Moreover, we show that under high-light stress a high proportion of P700 accumulates in the oxidized state, P700+. Presumably, conversion of excitation energy to heat by this cation radical may efficiently contribute to photoprotection.  相似文献   

12.
Leaf Xanthophyll content and composition in sun and shade determined by HPLC   总被引:39,自引:0,他引:39  
As a part of our investigations to test the hypothesis that zeaxanthin formed by reversible de-epoxidation of violaxanthin serves to dissipate any excessive and potentially harmful excitation energy we determined the influence of light climate on the size of the xanthophyll cycle pool (violaxanthin + antheraxanthin + zeaxanthin) in leaves of a number of species of higher plants. The maximum amount of zeaxanthin that can be formed by de-epoxidation of violaxanthin and antheraxanthin is determined by the pool size of the xanthophyll cycle. To quantitate the individual leaf carotenoids a rapid, sensitive and accurate HPLC method was developed using a non-endcapped Zorbax ODS column, giving baseline separation of lutein and zeaxanthin as well as of other carotenoids and Chl a and b.The size of the xanthophyll cycle pool, both on a basis of light-intercepting leaf area and of light-harvesting chlorophyll, was ca. four times greater in sun-grown leaves of a group of ten sun tolerant species than in shade-grown leaves in a group of nine shade tolerant species. In contrast there were no marked or consistent differences between the two groups in the content of the other major leaf xanthophylls, lutein and neoxanthin. Also, in each of four species examined the xanthophyll pool size increased with an increase in the amount of light available during leaf development whereas there was little change in the content of the other xanthophylls. However, the -carotene/-carotene ratio decreased and little or no -carotene was detected in sun-grown leaves. Among shade-grown leaves the -carotene/-carotene ratio was considerably higher in species deemed to be umbrophilic than in species deemed to be heliophilic.The percentage of the xanthophyll cycle pool present as violaxanthin (di-epoxy-zeaxanthin) at solar noon was 96–100% for shade-grown plants and 4–53% for sun-grown plants with zeaxanthin accounting for most of the balance. The percentage of zeaxanthin in leaves exposed to midday solar radiation was higher in those with low than in those with high photosynthetic capacity.The results are consistent with the hypothesis that the xanthophyll cycle is involved in the regulation of energy dissipation in the pigment bed, thereby preventing a buildup of excessive excitation energy at the reaction centers.Abbreviations A antheraxanthin - C -carotene - C -carotene - EPS epoxidation state (V+0.5A)/(V+A+Z) - L lutein - N neoxanthin - PFD photon flux density - V violaxanthin - Z zeaxanthin C.I.W.-D.P.B. Publiation No. 1035  相似文献   

13.
The effects of changes in growth temperature on photosynthesis and carotenoid composition were examined in Zea mays L. leaves of different age and different developmental history. The plants were first grown at sub-optimal temperature (14°C) until the full development of the third leaf. At that time, the mature third leaf and the immature fourth leaf had a low chlorophyll (Chl) content, a low Chl a/b ratio, a high carotenoid/Chl a+b ratio, a high xanthophyll/β-carotene ratio, and about 80% of the xanthophyll cycle pool (violaxanthin [V] + antheraxanthin [A] + zeaxanthin [Z]) was in the form of zeaxanthin and antheraxanthin. When the temperature was increased from 14°C to 24°C for three days, increased Chl synthesis, accompanied by an increase in the Chl a/b ratio, took place. The ratios of lutein, neoxanthin, and V+A+Z to Chl a+b decreased markedly, whereas no significant changes appeared in the β-carotene/Chl a+b ratio. Furthermore, there was a sharp decrease in the xanthophyll/β-carotene ratio and most of zeaxanthin was converted to violaxanthin in the xanthophyll cycle. The third leaf and the tip segment of the fourth leaf, both expanded at 14°C, showed little difference in their pigment contents. However, the rate of CO2 assimilation of the tip segment of the fourth leaf was nearly twice that of the third leaf on the third day at 24°C, while the photosynthetic activity was similar in both leaves before the transfer to 24°C. During the warm period at 24°C, new leaf tissue (basal segment of the fourth leaf and part of a fifth leaf) was formed. On the third day at 24°C, the pigment content of 24°C-grown leaf tissue did not differ much from that of 14°C-grown leaf tissue with the exception that the total carotenoid content was lower in the former as compared to the latter, mainly because of a lower V+A+Z content. The rate of CO2 assimilation of 24°C-grown leaf tissue was comparable to that of the tip segment of the fourth leaf. Regardless of which leaf tissue is considered, reducing the temperature from 24°C to 14°C for 5 days slightly affected the pigment content, but violaxanthin was largely converted to zeaxanthin and antheraxanthin in the xanthophyll cycle. The results indicate that compared to old leaf tissue of mature leaves, physiologically younger leaf tissue of immature leaves is much more able to recover from depressions in the photosynthetic activity induced by growth at sub-optimal temperature when the plants experience optimal growth temperatures, but that factors other than the pigment content must determine this capability.  相似文献   

14.
植株叶片的光合色素构成对遮阴的响应   总被引:16,自引:0,他引:16       下载免费PDF全文
叶绿素在植株体内负责光能的吸收、传递和转化, 类胡萝卜素则行使光能捕获和光破坏防御两大功能, 它们在光合作用中起着非常重要的作用。该文综述了几大主要光合色素的分布和功能, 以及不同物种的色素含量和构成差异。阳生植物的叶黄素库较大, 但脱环氧化水平不及阴生植物。黄体素与叶黄素库的比值与植物的耐阴性呈正相关关系。由不同的遮阴源造成的遮阴环境, 光强和光质有很大的差异, 总体来说对植物生长的影响, 建筑物遮阴<阔叶林遮阴<针叶林遮阴。光强的改变可诱导类胡萝卜素的两大循环——叶黄素循环和黄体素循环。由光强诱导的叶绿素含量和叶绿素a/b比值的改变与该物种的耐阴性无关。短时间的遮阴不会对植物的生长造成危害, 叶黄素库的大小不仅与每天接受的光量子有关, 更与光量子在一天的分布有关, 因为光照和温度是协同作用的。光合作用或色素构成是蓝光、红光和远红光共同作用的结果, 不是某一种单色光所能替代的。我们总结了影响植物色素构成的内因和外因, 指出植物主要通过调整光反应中心和捕光天线色素蛋白复合体的比例, 以及两个光系统的比值来调整色素含量和构成以适应不同的光照条件, 提出了现存研究中存在的一些问题, 旨在为今后的相关研究提供建议。  相似文献   

15.
Lutein, a member of the xanthophyll family of carotenoids, suppressed IL-1-induced osteoclast differentiation and bone resorption. The survival of mature osteoclasts was also suppressed by lutein in cultures. When lutein was added to the cultures of osteoblasts, lutein enhanced the formation of mineralized bone nodules by elevating BMP2 expression and inhibiting sclerostin expression. Lutein may be beneficial for bone health.  相似文献   

16.
The influence of the growth photon flux density (PFD) on the size and composition of the carotenoid pool and the size of the reduced ascorbate pool was determined across a light gradient from the forest floor to the canopy and the forest edge of a sub-tropical rainforest in New South Wales, Australia. Nineteen plant species (most collected from multiple sites) representing a broad taxonomic range consistently possessed larger total carotenoid pools when found growing in more exposed sites. There was a significant positive correlation between β-carotene content and growth PFD and a significant negative correlation between α-carotene content and growth PFD. Neoxanthin content exhibited no significant trend while the trend in lutein content varied with mode of expression. The pigments of the xanthophyll cycle (violaxanthin, antheraxanthin and zeaxanthin) exhibited the most pronounced response to growth PFD; they comprised a much greater portion of the total carotenoid pool in high light-acclimated plants. The pool of reduced ascorbate was also several-fold greater in high light-acclimated plants. These acclimatory changes in carotenoid and ascorbate content are consistent with a need for a greater capacity to dissipate excessive absorbed light energy in high light-acclimated plants.  相似文献   

17.
Photosynthetic organisms possess carotenoids that function either as accessory, photoprotective, or structural pigments. Therefore, the carotenoid profile provides information about certain photoacclimation and photoprotection responses. Carotenoids are also important chemosystematic markers because specific enzymes mediate each step of carotenoid biosynthesis. For red algae, diverse and often contradictory carotenoid compositions have been reported. As a consequence, it is difficult to infer the physiological importance of carotenoids in Rhodophyta. To characterize the relationship between carotenoid composition, rhodophycean phylogeny, and the presence of potentially photoprotective pigments, we analyzed the carotenoid composition of 65 subtropical species from 12 orders and 18 rhodophyte families. Our results showed that red algae do not present a unique carotenoid profile. However, a common profile was observed up to the level of order, with exception of the Ceramiales and the Corallinales. The main difference between profiles is related to the xanthophyll that represents the major carotenoid. In some species lutein is the major carotenoid while in others it is substituted by zeaxanthin or antheraxanthin. The presence of this epoxy carotenoid together with the presence of violaxanthin that are xanthophyll cycle (XC)‐related pigments was found in four of the 12 analyzed orders. The carotenoid pigment profiles are discussed in relation to Rhodophyta phylogeny, and it is suggested that the xanthophyll cycle‐related pigments appeared early in the evolution of eukaryotic phototrophs.  相似文献   

18.
植物叶片和冠层光化学反射指数与叶黄素循环的关系   总被引:2,自引:0,他引:2  
以一串红(Salvia splendens Ker-Gawl.)和白车轴草(Trifolium repens Linn.)为材料,使用光谱反射技术测定了这两种植物叶片水平和冠层水平的光化学反射指数(PRI)的日变化,同时使用高效液相色谱分析法测定了这两种植物叶黄素循环的日变化,分析了单叶、群体冠层的PRI与叶黄素循环和叶片实际光化学效率(ΦPSⅡ)和非光化学淬灭(NPQ)之间的关系.结果表明,不论是叶片水平还是冠层水平,两种植物PRI的变化均与叶黄素的脱环氧化程度和NPQ之间呈显著的负相关、与ΦPSⅡ呈显著的正相关.研究结果表明无论叶片水平还是冠层水平上的光谱反射指数均能非常好地反映植物光合机构对光能的利用效率.  相似文献   

19.
在室内砾耕栽培条件下,通过培养液中加入PEG(Polyethylene glycol 分子量为6000)以调节溶液渗透势,设置对照、弱水分胁迫和强水分胁迫3种处理 (培养液渗透势分别为0.02,-0.1,-0.34 MPa), 从1997年开始对臭柏进行长期干旱胁迫模拟实验.2003年测定了臭柏叶片光合色素和光合特性的季节变化.结果表明:对照区气孔导度季节变化在5月和9月份形成了典型的双峰曲线.尽管对照区的气孔导度明显高于其他两个处理,但日光合量却低于弱水分胁迫区.3个处理Chl a/b的比值在11月至翌年3月的低温期内均升高,以强水分胁迫区的增幅最大,其它月份该比值在3个处理之间没有显著的差异.3个处理的叶绿素总量(Chl a+b)在生长季的5~9月份均有不同程度的上升,但其中以强水分胁迫区增幅最小.在11月至翌年3月的低温期,各处理均大幅提高叶黄素总量(V+A+Z)和热耗散色素比例(A+Z)/(V+A+Z) (V:紫黄质、A:单环氧玉米黄质、Z:玉米黄质);在5~7月份的生长高峰期,各处理则明显降低了叶黄素总量和热耗散色素比例.这种趋势在强水分胁迫区表现的更为显著.  相似文献   

20.
Contents and functioning of photosynthetic pigments and gas exchange of Nicotiana tabacum L. leaves were studied in platlets cultivated in vitro under different CO2 supply. The plantlets were grown for six weeks either in glass vessels tightly closed with aluminium foil (G-plants) or in polycarbonate Magenta GA-7 vessels covered with closures with microporous vents (M-plants). M-plants (better supplied with CO2) had higher contents of chlorophyll (Chl) a. Chl b. and β-carotene, higher photochemical activities of photosystem 2 and whole electron transport chain, and lower contents of xanthophyll cycle pigments. Differences in Chl a fluorescence kinetic parameters between G-plants and M-plants were not statistically significant. M-plants had higher net photosynthetic rate, and lower transpiration rate and stomatal conductance than G-plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号