首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a continuation of our SAR studies of dipeptidyl aspartyl-fmk as caspase inhibitors, we explored the replacement of the P2 alpha-amino acid by a peptidomimetic alpha-hydroxy acid. These alpha-carbamoyl-alkylcarbonyl-aspartyl fluoromethylketones were found to be potent caspase inhibitors, and the SAR of these compounds is similar to the corresponding dipeptidyl aspartyl-fmk. MX1153, (S)-3-methyl-2-(phenylcarbamoyl)butanoyl-Asp-fmk, is identified as a potent broad-spectrum caspase inhibitor, and is selective for caspases versus other proteases. MX1153 also has good activity in the cell apoptosis protection assays and is active in the mouse liver apoptosis model.  相似文献   

2.
As a continuation of our SAR studies of dipeptidyl aspartyl-fmk as caspase inhibitors, we explored the replacement of the P(2) amino acid by a 2-aminoaryl acid or other non-natural amino acids. Several of these compounds, such as 6l and 6p, were found to have good activities with inhibition potencies of around 100 nM in a caspase-3 enzyme assay. EP1113, Z-Val-(2-aminobenzoyl)-Asp-fmk (9b), is identified as a potent broad-spectrum caspase inhibitor with IC(50) values of 6-60 nM in different caspases. EP1113 also has good activity in a cell apoptosis protection assay.  相似文献   

3.
A group of styrylquinolines were synthesized and tested for their anti-proliferative activity. Anti-proliferative activity was evaluated against the human colon carcinoma cell lines that had a normal expression of the p53 protein (HCT116 p53+/+) and mutants with a disabled TP53 gene (HCT116 p53-/-) and against the GM 07492 normal human fibroblast cell line. A SAR study revealed the importance of Cl and OH as substituents in the styryl moiety. Several of the compounds that were tested were found to have a marked anti-proliferative activity that was similar to or better than doxorubicin and were more active against the p53 null than the wild type cells. The cellular localization tests and caspase activity assays suggest a mechanism of action through the mitochondrial pathway of apoptosis in a p53-independent manner. The activity of the styrylquinoline compounds may be associated with their DNA intercalating ability.  相似文献   

4.
1-Benzoyl-3-cyanopyrrolo[1,2-a]quinoline (2a) was identified as a novel apoptosis inducer through our caspase- and cell-based high-throughput screening assay. Compound 2a had good activity against several breast cancer cell lines but was much less active against several other cancer cell lines. SAR studies of 2a found that substitution at the 4-position of the 1-benzoyl group was important for activity. Replacing the 3-cyano group by an ester or ketone group led to inactive compounds. Interestingly, 4-substituted analogs such as 1-(4-(1H-imidazol-1-yl)benzoyl)-3-cyanopyrrolo[1,2-a]quinoline (2k) were found to be broadly and highly active in the caspase activation assay as well as in the cell growth inhibition assay with low nM EC(50) and GI(50) values in human breast cancer cells T47D, human colon cancer cells HCT116, and hepatocellular carcinoma cancer cells SNU398. Compound 2a was found not to inhibit tubulin polymerization up to 50 microM, while 2k was found to inhibit tubulin polymerization with an IC(50) value of 5 microM, indicating that certain substituents at the 4-position of the 1-benzoyl group can change the mechanism of action.  相似文献   

5.
This study investigates the role of caspase 2 in apoptotic signaling of nonhuman primate male germ cells triggered by mild testicular hyperthermia, testosterone (T(e)) implants, or by combined interventions. Mean incidence of germ cell apoptosis increased significantly by Day 3 in the heat (H(e)) alone group and by Day 8 in the Te alone group but peaked at Day 3 in H(e) + T(e) group. We found activation of caspase 2 in both germ cells and Sertoli cells after induction of apoptosis. Most notably, active caspase 2 immunoreactivity was detected only in those germ cells susceptible to apoptosis compared with controls, where little or no such staining is detected. To further explore the role of caspase 2 in regulating male germ cell death, we next evaluated the efficacy of caspase 2 inhibition in preventing or attenuating heat-induced germ cell apoptosis in rats. Caspase 2 inhibition significantly (P < 0.05) prevented such heat-induced germ cell apoptosis. The protection offered by the caspase 2 inhibitor occurred upstream of mitochondria, involving suppression of mitogen-activated protein kinase (MAPK) 14 activation and inducible nitric oxide synthase (NOS2) induction and, in turn, suppression of cytochrome c-mediated death pathway. Together, our results show that caspase 2 is activated in male germ cells undergoing apoptosis in nonhuman primates after heat stress, hormonal deprivation, or after combined interventions. Blockade of caspase 2 activation prevents heat-induced germ cell apoptosis in rats by suppressing the MAPK14- and NO-mediated intrinsic pathway signaling.  相似文献   

6.
Apoptosis is a crucial biological process, and activation of caspase endoproteases is essential for proper regulation and execution of apoptosis. Because caspases also appear to be central players in several pathological states, there is a practical need within the biopharmaceutical research community for facile, noninvasive cellular assays for the discovery of compounds that modulate caspase activity. Tandem molecules of green fluorescent protein (GFP) stably expressed within cells can serve as a genetically encoded sensor of protease activity. Using this technology, we have developed a stable cellular system for the screening of agents that modulate activation of the caspase cascade. This assay technology allows for the real-time monitoring of apoptosis in situ, using conventional fluorescent plate reader detection. By applying this assay system to an actual compound screen, small-molecule inducers of cell apoptosis were reliably identified. Follow-up pharmacology confirmed that the rank-order potency of primary hits using the intracellular GFP assay corresponded to that found using a conventional, cell lysis-based assay method.  相似文献   

7.
The aim of this study was to investigate the protective effect of inhibition of aquaporin-1 (AQP1) expression against aristolochic acid I (AA-I)-induced apoptosis. HK-2 cells impaired by AA-I were used in this study as the cell model of aristolochic acid nephropathy. Apoptosis was studied by different methods, including 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assays, flow cytometry, and caspase 3 activity assays. We compared AA-I-mediated apoptosis in HK-2 cells with or without knockdown of AQP1 expression by RNA interference. MTT assays showed that AA-I inhibited the viability of HK-2 cells in a time- and concentration-dependent manner. Apoptosis was evidenced by the results of the Annexin V/propidium iodide assay and the occurrence of a sub-G1 peak in cell-cycle analysis. The activity of caspase 3 was found to have been increased by AA-I in a concentration-dependent manner. However, AQP1 RNA interference provided protection against injury in cells treated with AA-I (40 μM) for 24 h and attenuated the number of apoptotic cells. These results suggested that AQP1 plays an important role in AA-I-induced apoptosis and that inhibition of AQP1 expression may protect HK-2 cells from AA-I-induced apoptotic damage.  相似文献   

8.
Caspase‐2 has been shown to initiate apoptotic cell death in response to specific intracellular stressors such as DNA damage. However, the molecular mechanisms immediately upstream of its activation are still poorly understood. We combined a caspase‐2 bimolecular fluorescence complementation (BiFC) system with fluorophore‐specific immunoprecipitation to isolate and study the active caspase‐2 dimer and its interactome. Using this technique, we found that tumor necrosis factor receptor‐associated factor 2 (TRAF2), as well as TRAF1 and 3, directly binds to the active caspase‐2 dimer. TRAF2 in particular is necessary for caspase‐2 activation in response to apoptotic cell death stimuli. Furthermore, we found that dimerized caspase‐2 is ubiquitylated in a TRAF2‐dependent manner at K15, K152, and K153, which in turn stabilizes the active caspase‐2 dimer complex, promotes its association with an insoluble cellular fraction, and enhances its activity to fully commit the cell to apoptosis. Together, these data indicate that TRAF2 positively regulates caspase‐2 activation and consequent cell death by driving its activation through dimer‐stabilizing ubiquitylation.  相似文献   

9.
Caspase 8 is a key apoptotic factor in the receptor/ligand apoptosis-signaling cascade. Absent caspase 8 expression is shown to correlate with poor prognosis in neuroblastoma. Paradoxically, the caspase 8 gene can produce as plice variant and novel inhibitor of itself-caspase 8l. The presence of caspase 8 alone in tumors may not necessarily portend a good prognosis. We sought to determine whether caspase 8l is present in neuroblastoma and whether over-expression of this protein could inhibit caspase 8-dependent apoptosis. Six of 6 histologically undifferentiated and 2 of 5 differentiated neuroblastoma tumors expressed the caspase 8l isoform, whereas caspase 8l was absent in 3 of 3 ganglioneuromas. Seven human neuroblastoma cell lines were surveyed. Two of the 5 cell lines that expressed caspase 8 also expressed the caspase 8l isoform and both were of a less differentiated neuronal phenotype. Over-expression of caspase 8l in cell lines afforded protection against TRAIL, but not against etoposide induced apoptosis. Conversely, blockade of Caspase 8l in cells that express this splice variant made them more sensitive to apoptosis induced cell death. We demonstrate the caspase 8l isoform is present in neuroblastoma and appears to be associated with undifferentiated cell lines and tumors. Furthermore, it suppresses caspase 8-dependent apoptosis.  相似文献   

10.
The activity of ICE-like proteases or caspases is essential for apoptosis. Multiple caspases participate in apoptosis in mammalian cells but how many caspases are involved and what is their relative contribution to cell death is poorly understood. To identify caspases activated in apoptotic cells, we developed an approach to simultaneously detect multiple active caspases. Using tumor cells as a model, we have found that CPP32 (caspase 3) and Mch2 (caspase 6) are the major active caspases in apoptotic cells, and are activated in response to distinct apoptosis-inducing stimuli and in all cell lines analyzed. Both CPP32 and Mch2 are present in apoptotic cells as multiple active species. In a given cell line these species remained the same irrespective of the apoptotic stimulus used. However, the species of CPP32 and Mch2 detected varied between cell lines, indicating differences in caspase processing. The strategy described here is widely applicable to identify active caspases involved in apoptosis.  相似文献   

11.
Caspase-dependent apoptotic pathways in CNS injury   总被引:15,自引:0,他引:15  
Recent studies have suggested a role for neuronal apoptosis in cell loss following acute CNS injury as well as in chronic neurodegeneration. Caspases are a family of cysteine requiring aspartate proteases with sequence similarity to Ced-3 protein of Caenorhabditis elegans. These proteases have been found to contribute significantly to the morphological and biochemical manifestations of apoptotic cell death. Caspases are translated as inactive zymogens and become active after specific cleavage. Of the 14 identified caspases, caspase-3 appears to be the major effector of neuronal apoptosis induced by a variety of stimuli. A role for caspase-3 in injury-induced neuronal cell death has been established using semispecific peptide caspase inhibitors. This article reviews the current literature relating to pathways regulating caspase activation in apoptosis associated with acute and chronic neurodegeneration, and suggests that identification of critical upstream caspase regulatory mechanisms may permit more effective treatment of such disorders.  相似文献   

12.
Apoptosis eliminates inappropriate or autoreactive T lymphocytes during thymic development. Intracellular mediators involved in T-cell receptor (TCR)-mediated apoptosis in developing thymocytes during negative selection are therefore of great interest. Caspases, cysteine proteases that mediate mature T-cell apoptosis, have been implicated in thymocyte cell death, but their regulation is not understood. We examined caspase activities in distinct thymocyte subpopulations that represent different stages of T-cell development. We found caspase activity in CD4+CD8+ double positive (DP) thymocytes, where selection involving apoptosis occurs. Earlier and later thymocyte stages exhibited no caspase activity. Only certain caspases, such as caspase-3 and caspase-8-like proteases, but not caspase-1, are active in DP thymocytes in vivo and can be activated when DP thymocytes are induced to undergo apoptosis in vitro by TCR-crosslinking. Thus, specific caspases appear to be developmentally regulated in thymocytes.  相似文献   

13.
This study aims to evaluate and compare the antiproliferative and proapoptotic effects of resveratrol (trans-3,4',5-trihydoxystilbene) with two of its naturally occurring oligomers, epsilon-viniferin (a dimer) and miyabenol C (a trimer). Proliferation assays performed on myeloid and lymphoid cell lines show that the three compounds inhibit cell growth of all cell types tested, with miyabenol C being the most efficient (IC50 ranging from 10.8 to 29.4 muM). Further analysis performed on the multiple myeloma cell line U266 shows that all compounds modify cell cycle distribution probably via actions on different targets. Whereas cells treated with resveratrol accumulate in S phase, cells treated with epsilon-viniferin and miyabenol C accumulate in G2/M and G0/G1, respectively. Miyabenol C is also the most efficient at inducing cell death in U266 cells. All compounds induce apoptosis of U266 cells via mechanisms entirely dependent on caspase activation and associated with mitochondrial membrane potential disruption. Compounds do not act directly on the mitochondrial membrane, but could induce activation of upstream caspases such as caspase 8 and/or caspase 2, depending on the compound. In no case did upstream caspase 8 activation involve Fas/FasL interaction. Taken together, these results show that epsilon-viniferin and, more importantly, miyabenol C represent potent antitumor agents that require further investigation, either alone or in combination with resveratrol.  相似文献   

14.
Thiosemicarbazones have been the focus of scientists owing to their broad clinical anticancer range. Herein, A Series of new thiosemicarbazone derivatives 5 – 9 were synthesized and confirmed through the use of different spectroscopic techniques along with elemental analysis. The in vitro cytotoxic activity of compounds 5 – 9 against MCF-7 and A549 cell lines and normal breast cells were assessed. Several compounds were found to be active. The most active compound 7 caused MCF-7 cell cycle arrest at G1/ S phases; and induced apoptosis at the pre-G1 phase. The apoptosis-inducing activity of compound 7 was proofed by the elevation of caspase 3/7 activity and also by up-regulation of the expression of Bax and p53 proteins together with the down-regulation of the expression of the Bcl-2 protein. It also had a strong inhibitory effect topoisomerase IIβ enzyme. Molecular Docking study revealed that the synthesized compounds had good docking scores compared to the standard drug Etoposide towards the topoisomerase IIβ protein (3QX3). Overall, these findings confirmed that the new thiosemicarbazone derivatives could aid in the development of promising cancer drug candidates.  相似文献   

15.
Preserving the uterus in a state of relative quiescence is vital to the maintenance of a successful pregnancy. Elevated cytoplasmic levels of uterine caspase 3 during pregnancy have been proposed as a potential regulator of uterine quiescence through direct targeting and disabling of the uterine contractile architecture. However, despite highly elevated levels of uterine caspase 3 during pregnancy, there is minimal evidence of apoptosis. This current study defines the mechanism whereby the pregnant uterine myocyte may harness the tocolytic activity of active caspases while avoiding apoptotic cell death. Using the pregnant mouse model, we have analyzed the uterus for changes in pro- and antiapoptotic signaling patterns associated with the advancing stages of pregnancy. Briefly, we have found that members of the IAP family, such as SURVIVIN and XIAP, and the Bcl2 family members, such as MCL1, are elevated in the uterine myocyte during late gestation. The IAP family members are the only endogenous inhibitors of active caspase 3, and MCL1 limits activation of caspase 3 by suppressing proapoptotic signaling. Elevated XIAP levels partner with SURVIVIN, resulting in increased levels of the antiapoptotic MCL1 via NFKB activation; these together have the potential to limit both the activity and level of active caspase 3 in the pregnant uterus as term approaches. We propose that modification of these antiapoptotic signaling partners allows the pregnant uterus to escape the apoptotic action of elevated active caspase 3 levels but also functions to limit the levels of active uterine caspase 3 near term.  相似文献   

16.
Two series of azanaphthoquinone annelated pyrrolo oximes have been synthesized. The antiproliferative activities of 10 compounds were evaluated on at least four different cell lines. One series of pyrrolo derivatives showed high cytotoxic activity. The effects on cell cycle and caspase activity were investigated. Compounds 9a and 9b showed an accumulation of cells in G2/M phase. Substantial and dose-dependent caspase activity was found after treatment of cells with 9a and 9b. This indicates an apoptosis inducing property of these compounds.  相似文献   

17.
The activation of a self-amplifying cascade of caspases, of which caspase-8 is the apical protease, mediates Fas-, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-, and TNF-alpha-induced apoptosis in colon cell lines. Nitric oxide (NO) protects from apoptosis induced by Fas and TNF-alpha. We examined whether NCX-456, an NO-releasing derivative of mesalamine, protects colon epithelial cells from cytokine-induced apoptosis. Caco-2 and HT-29 cell lines express death factor receptors and are driven to apoptosis in response to incubation with Fas-agonistic antibody, TNF-alpha/interferon-gamma, and TRAIL. The two novel observations reported here are that 1) cotreatment of cells with NCX-456, but not mesalamine, resulted in concentration-dependent protection against death factor-induced apoptosis and inhibition of caspase activity, and 2) exposure to dithiothreitol, an agent that effectively removes NO from thiol groups, resulted in a 70% recovery of caspase activity, which is consistent with S-nitrosation as a major mechanism for caspase inactivation. These data suggest that caspase S-nitrosation represents a mechanism for protection of colonic mucosal epithelial cells from death factor-induced death.  相似文献   

18.
Oxidative stress induces caspase-independent retinal apoptosis in vitro   总被引:14,自引:0,他引:14  
Apoptosis is the mode of cell death in retinitis pigmentosa (RP), a heterogeneous group of retinal degenerations. The activation of the caspase proteases forms a pivotal step in the initiation and execution phase of apoptosis in many cells. Inhibition of caspases has been reported to prevent apoptosis in many model systems. However, we demonstrate the absence of caspase activation during retinal cell apoptosis in vitro which involves phosphatidylserine (PS) externalisation, DNA nicking and cell shrinkage. In addition, zVAD-fmk, DEVD-CHO and BD-fmk, inhibitors of the caspases, were unable to alter the characteristics or kinetics of apoptosis, implying that retinal cell death in vitro follows a caspase-independent pathway. We have previously demonstrated the ability of reactive oxygen species (ROS) to act as mediators of retinal cell apoptosis in vitro as well as the ability of antioxidants to prevent retinal cell apoptosis. Here we demonstrate the oxidative inactivation of caspases in this model of retinal apoptosis and provide evidence for an oxidative stress driven cell death pathway that does not involve caspase activity and which retains key features of apoptotic cell death. Furthermore, our data indicates that apoptotic events such as PS exposure, DNA nicking and cell shrinkage may occur independently of caspase activity.  相似文献   

19.
BACKGROUND: Procaspase 3 is a constitutive proenzyme that is activated by cleavage during apoptosis. The resulting enzyme is able to cleave several target proteins after the second aspartate of a DEVD sequence common to all the substrates of caspases 3 and 7 (DEVDase). Because active caspase 3 is a common effector in several apoptotic pathways, it may be a good marker to detect (pre-)apoptotic cells by flow cytometry (FCM). Materials and Methods Apoptosis was induced in U937 or bone marrow mononuclear cells by daunorubicin (DNR), idarubicin (IDA), or camptothecin (CAM). Viable and apoptotic cells were sorted by FCM on the basis of either fluorescein isothiocyante (FITC)-annexin V binding or DiOC6(3) accumulation. DEVDase activity was measured in sorted populations by spectrofluorometry. Cleaved caspase 3 was labeled in situ with phycoerythrin (PE)-conjugated anti-activated caspase 3 antibodies and analyzed by FCM. RESULTS: DEVDase activity was detected in sorted viable CAM- and DNR-treated U937 cells, demonstrating that a partial caspase activation occurred earlier than phosphatidyl-serine exposure and mitochondrial membrane potential dissipation. The presence of a low amount of active caspase 3 in the treated viable cells was confirmed in situ with PE-conjugated anti-active caspase 3 antibodies. The same antibody was used in combination with FITC-annexin V and CD45-PC5 to study caspase 3 activation in acute leukemia blast cells after in vitro DNR and IDA treatment. Both anthracyclines induced a caspase 3-dependent apoptosis that was more efficient in blast cells than in contaminating lymphocytes. CONCLUSIONS: These results demonstrate that anti-active caspase 3 labeling can be an alternative to fluorogenic substrates to efficiently detect early apoptosis by FCM in heterogeneous samples. They also confirm that anthracyclines induce blast cell apoptosis by a caspase 3-dependent pathway.  相似文献   

20.
The induction of apoptosis in neutrophils is an essential event in the resolution of an inflammatory process. We found recently that the reduction of the activity of the neutrophil survival factor p38 MAPK and dephosphorylation and thus activation of caspases must occur to initiate such cell death in these leukocytes. Here, we report a previously undetected early and transient activation of protein phosphatase 2A (PP2A) in neutrophils undergoing apoptosis. The pharmacological inhibition of this phosphatase during Fas-induced apoptosis augmented the levels of phosphorylation of both p38 MAPK and caspase 3, resulting in a decreased activity of caspase 3 and an increased neutrophil survival. The complementary finding of a time-dependent association among PP2A, p38 MAPK, and caspase 3 in intact neutrophils indicated that there is a direct regulatory link among these signaling enzymes during Fas-provoked apoptosis. Moreover, immunoprecipitated active p38 MAPK and recombinant phosphorylated caspase 3 were dephosphorylated by exposure to purified PP2A in vitro. Consequently, the early and temporary activation of PP2A in neutrophils impaired not only the p38 MAPK-mediated inhibition of caspase 3 but also restored the activity to caspase 3 that had already been phosphorylated and thereby inactivated. These findings indicate that PP2A plays a pivotal dual role in the induction of neutrophil apoptosis and therefore also in the resolution of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号