首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物活性物质在食品、饵料、化妆品、保健品和医药等行业具有广阔的应用前景,其研究早已受到广泛关注。鉴于海洋硅藻具有生长速度快、生物活性物质含量高、易于规模培养、便于提取等诸多优势,为理想的生物活性物质生产者。尽管国内外已进行了大量利用海洋硅藻生产生物活性物质的研究,但是受限于培养工艺老旧、生产成本过高等缺陷,商业化利用海洋硅藻开发生物活性物质依然停滞不前。阐述海洋硅藻五种常见生物活性物质的应用价值,进一步探讨海洋硅藻高产生物活性物质的策略,就如何低成本、高效开发利用硅藻源生物活性物质提出建议,为海洋硅藻商业化开发利用提供参考。  相似文献   

2.

Background

Diatoms are one of the most ecologically important aquatic micro-eukaryotes. As a group unambiguously recognized as diatoms, they seem to have appeared relatively recently with a limited record of putative remains from oldest sediments. In contrast, molecular clock estimates for the earliest possible emergence of diatoms suggest a considerably older date. Depending on the analysis, Paralia and Leptocylindrus have been recovered within the basal molecular divergences of diatoms. Thus these genera may be in the position to inform on characters that the earliest diatoms possessed.

Findings

Here we present auxospore development and structure of initial and post-auxospore cells in a representative of the ancient non-polar centric genus Paralia. Their initial frustules showed unusual, but not unprecedented, spore-like morphology. Similarly, initial frustules of Leptocylindrus have been long considered resting spores and a unique peculiarity of this genus. However, even though spore-like in appearance, initial cells of Paralia readily resumed mitotic divisions. In addition, Paralia post-auxospore cells underwent several rounds of mitoses in a multi-step process of building a typical, “perfect” vegetative valve. This degree of heteromorphy immediately post-auxosporulation is thus far unknown among the diatoms.

Implications

A spore-related origin of diatoms has already been considered, most recently in the form of the “multiplate diploid cyst” hypothesis. Our discovery that the initial cells in some of the most ancient diatom lineages are structurally spore-like is consistent with that hypothesis because the earliest diatoms may be expected to look somewhat similar to their ancestors. We speculate that because the earliest diatoms may have appeared less diatom-like and more spore-like, they could have gone unrecognized as such in the Triassic/Jurassic sediments. If correct, diatoms may indeed be much older than the fossil record indicates, and possibly more in line with some molecular clock predictions.  相似文献   

3.
While diatoms are widely present in terms of diversity and abundance in nature, few species are currently used for biotechnologically applications. Most studies have focussed on intracellularly synthesised eicosapentaenoic acid (EPA), a polyunsaturated fatty acid (PUFA) used for pharmaceutical applications. Applications for other intracellular molecules, such as total lipids for biodiesel, amino acids for cosmetic, antibiotics and antiproliferative agents, are at the early stage of development. In addition, the active principle component must be identified amongst the many compounds of biotechnological interest. Biomass from diatom culture may be applied to: (1). aquaculture diets, due to the lipid- and amino-acid-rich cell contents of these microorganisms, and (2). the treatment of water contaminated by phosphorus and nitrogen in aquaculture effluent, or heavy metal (bioremediation). The most original application of microalgal biomass, and specifically diatoms, is the use of silicon derived from frustules in nanotechnology. The competitiveness of biotechnologically relevant products from diatoms will depend on their cost of production. Apart from EPA, which is less expensive when obtained from Phaeodactylum tricornutum than from cod liver, comparative economic studies of other diatom-derived products as well as optimisation of culture conditions are needed. Extraction of intracellular metabolites should be also optimised to reduce production costs, as has already been shown for EPA. Using cell immobilisation techniques, benthic diatoms can be cultivated more efficiently allowing new, biotechnologically relevant products to be investigated.  相似文献   

4.
Landoulsi J  Cooksey KE  Dupres V 《Biofouling》2011,27(10):1109-1124
There is a considerable body of information regarding bacterially enhanced corrosion, however, this review focuses on diatoms (unicellular algae) whose contribution to biocorrosion is less well studied. The reasons why diatoms have been neglected in studies of biocorrosion in natural waters are discussed and the question whether diatoms should be considered as inert with respect of electrochemical processes is considered. A particular focus is given to the case of stainless steels (SS), which are widely used in variety of applications in natural waters. Basic information on the cell biology of diatoms is included in the review, particularly with respect to their ability to 'sense' and adhere to surfaces. Investigations at the nanoscale are reviewed as these studies provide information about the behavior of cells at interfaces. Recent advances include the use of atomic force microscopy (AFM), although only a few studies have been applied to diatoms. Regarding the electrochemical behavior of SS, the mechanisms by which diatoms influence the potential ennoblement process is discussed. Such studies reveal the association of diatoms, in addition to bacteria, with biocorrosion processes.  相似文献   

5.
There is a considerable body of information regarding bacterially enhanced corrosion, however, this review focuses on diatoms (unicellular algae) whose contribution to biocorrosion is less well studied. The reasons why diatoms have been neglected in studies of biocorrosion in natural waters are discussed and the question whether diatoms should be considered as inert with respect of electrochemical processes is considered. A particular focus is given to the case of stainless steels (SS), which are widely used in variety of applications in natural waters. Basic information on the cell biology of diatoms is included in the review, particularly with respect to their ability to ‘sense’ and adhere to surfaces. Investigations at the nanoscale are reviewed as these studies provide information about the behavior of cells at interfaces. Recent advances include the use of atomic force microscopy (AFM), although only a few studies have been applied to diatoms. Regarding the electrochemical behavior of SS, the mechanisms by which diatoms influence the potential ennoblement process is discussed. Such studies reveal the association of diatoms, in addition to bacteria, with biocorrosion processes.  相似文献   

6.
7.
S. Ito  H. Kitamura 《Hydrobiologia》1997,358(1-3):281-284
The mass production of juvenile seeds of the sea cucumber,Stichopus japonicus has recently developed by the SeaFarming Center of Saga Prefecture. Methods for the culture ofperiphicic diatoms have been improved. There are three importantsteps in propagating the diatoms. The first step is theenrichment, with the addition of the nutrient salts, undercontrolled light intensity. The second step is washing withhigh pressure seawater and reversal of the plates. The laststep is elimination of copepods, which feed on diatoms, usinga pesticide. Small periphitic diatoms such as Navicula,Amphora, Achnanthes, and Nitzschia are easily culturedat a density of more than one million cells cm–2, andthese diatoms are able to induce larval metamorphosis andserve as a food source for juvenile sea cucumbers.  相似文献   

8.
Abstract Diatoms possess a number of attributes which contribute to their suitability as biological indicators. They are highly sensitive to water chemistry changes, abundant in aquatic environments, largely cosmopolitan in distribution, less habitat dependent than macroinverte-brates and have a well-studied taxonomy and ecology. Furthermore, the preservation of diatom valves in lake sediments means that they can provide otherwise unavailable baseline data which can be used to assess and contextualize human impacts on aquatic ecosystems. The value of diatoms as bioindicators in contemporary and palaeolimnological studies has been well established overseas. Despite this, they have been under-utilized in Australia. This paper outlines some of the applications and potential for the use of diatoms as biological indicators in Australia.  相似文献   

9.
Frustules, the silica shells of diatoms, have unique porous architectures with good mechanical strength. In recent years, biologists have learned more about the mechanism of biosilica shells formation; meanwhile, physicists have revealed their optical and microfluidic properties, and chemists have identified ways to modify them into various materials while maintaining their hierarchical structures. These efforts have provided more opportunities to use biosilica structures in microsystems and other commercial products. This review focuses on the preparation of biosilica structures and their applications, especially in the development of microdevices. We discuss existing methods of extracting biosilica from diatomite and diatoms, introduce methods of separating biosilica structures by shape and sizes, and summarize recent studies on diatom-based devices used for biosensing, drug delivery, and energy applications. In addition, we introduce some new findings on diatoms, such as the elastic deformable characteristics of biosilica structures, and offer perspectives on planting diatom biosilica in microsystems.  相似文献   

10.
Mann  D. G. 《Hydrobiologia》1993,(1):11-20
Sexual reproduction takes many forms within the diatoms. The variation has been classified by several authors, but in most cases the distinctions between their main categories have depended on the number of gametes produced per gametangium (and thus on how many zygotes per pair of copulating cells), and upon whether fusion is oogamous, anisogamous or isogamous. These classifications are not themselves an adequate basis for taxonomic comparison, which should be based on individual characteristics of the sexual process. Diatoms seem to be primitively oogamous. In araphid pennate diatoms and some raphid diatoms the gametes and gametangia are morphologically alike but physiologically distinct; one gametangium produces active gametes and the other passive ones. This may be the primitive condition in pennate diatoms, providing a link to the oogamy of centrics via the morphological anisogamy of Rhabdonema Kütz.  相似文献   

11.
Paul J. Molino 《Biofouling》2013,29(5):365-379
Diatoms are a major component of microbial slimes that develop on man-made surfaces placed in the marine environment. Toxic antifouling paints, as well as environmentally friendly, fouling-release coatings, tend to be effective against most fouling organisms, yet fail badly to diatom slimes. Biofouling diatoms have been found to tenaciously adhere to and colonise even the most resistant of artificial surfaces. This review covers the basic biology of fouling marine diatoms, their mechanisms of adhesion and the nature of their adhesives, as well as documenting the various approaches that have been utilised to understand the formation and maintenance of diatom biofouling layers.  相似文献   

12.
Molino PJ  Wetherbee R 《Biofouling》2008,24(5):365-379
Diatoms are a major component of microbial slimes that develop on man-made surfaces placed in the marine environment. Toxic antifouling paints, as well as environmentally friendly, fouling-release coatings, tend to be effective against most fouling organisms, yet fail badly to diatom slimes. Biofouling diatoms have been found to tenaciously adhere to and colonise even the most resistant of artificial surfaces. This review covers the basic biology of fouling marine diatoms, their mechanisms of adhesion and the nature of their adhesives, as well as documenting the various approaches that have been utilised to understand the formation and maintenance of diatom biofouling layers.  相似文献   

13.
Since the first discovery of the very high virus abundance in marine environments, a number of researchers were fascinated with the world of "marine viruses", which had previously been mostly overlooked in studies on marine ecosystems. In the present paper, the possible role of viruses infecting marine eukaryotic microalgae is enlightened, especially summarizing the most up-to-the-minute information of marine viruses infecting bloom-forming dinoflagellates and diatoms. To author's knowledge, approximately 40 viruses infecting marine eukaryotic algae have been isolated and characterized to different extents. Among them, a double-stranded DNA (dsDNA) virus "HcV" and a single-stranded RNA (ssRNA) virus "HcRNAV" are the only dinoflagellate-infecting (lytic) viruses that were made into culture; their hosts are a bivalve-killing dinoflagellate Heterocapsa circularisquama. In this article, ecological relationship between H. circularisquama and its viruses is focused. On the other hand, several diatom-infecting viruses were recently isolated and partially characterized; among them, one is infectious to a pen-shaped bloom-forming diatom species Rhizosolenia setigera; some viruses are infectious to genus Chaetoceros which is one of the most abundant and diverse diatom group. Although the ecological relationships between diatoms and their viruses have not been sufficiently elucidated, viral infection is considered to be one of the significant factors affecting dynamics of diatoms in nature. Besides, both the dinoflagellate-infecting viruses and diatom-infecting viruses are so unique from the viewpoint of virus taxonomy; they are remarkably different from any other viruses ever reported. Studies on these viruses lead to an idea that ocean may be a treasury of novel viruses equipped with fascinating functions and ecological roles.  相似文献   

14.
The diversity of chloroplast forms, and their number and cellular location, as well as pyrenoid structure, distinguishes diatoms from other groups of heterokont algae. The fine chloroplast structure is considered to be informative for taxonomic and phylogenetic studies of diatoms. Six species of diatoms belonging to different classes have been examined with transmission electron microscopy. New data on the chloroplast structure have been obtained. Characteristics of the pyrenoid ultrastructure of diatoms belonging to various phylogenetic clades have been defined more precisely. The results specify the ultrastructure of pyrenoids for different phylogenetic clades of diatoms and contribute to the previously obtained data.  相似文献   

15.
BIOMINERALIZATION is the process by which living organisms assemble structures from naturally occurring inorganic compounds. Mineral deposition is common and widespread amongst Protozoa and in most instances the mineralized structures provide skeletal support and protection for softer organic parts [10]. The 2 most common minerals to be deposited by Protozoa are silica and calcium carbonate. Groups of Protozoa that deposit silica, which we are concerned with here, include the diatoms, chrysophytes, choanoflagellates, Radiolar-ia, Heliozoa and testate amoebae [10]. In the majority of silica-depositing protista, silica is taken up from the medium in the form of monomelic orthosilicic acid Si(OH)4 (soluble reactive silicate) and deposited as amorphous, polymerised biogenic silica or opal within membrane-bounded vesicles known as silica deposition vesicles (SDV). Often biogenic silica is characteristically patterned and ornamented and for most protozoan groups the morphology of silicified parts is of prime taxonomic importance. By far the most extensively studied group of silica-depositing organisms are the diatoms [1, 12, 13]. To date most of our knowledge of silica metabolism in protists has been based on investigations into this group. Diatoms require silica for the production of their frustules. Uptake and deposition of silica occurs within a closely denned portion of the cell cycle, between nuclear division and cell separation. It occupies about ± of the cell cycle and without an adequate supply of silica diatoms are unable to produce new frustule valves with the result that cell division cannot be completed. Diatoms, therefore, have an obligate requirement for silica and without this nutrient they cease to grow [11]. In contrast to diatoms a number of other silica-depositing protistan groups, such as loricate choanoflagellates and certain chrysophytes, have a facultative requirement for silica. In the past decade the ultras true ture, physiology and ecology of loricate choanoflagellates have been extensively studied by a number of different workers [7] and the significance of these studies to our understanding of the mechanisms, controls and dynamics of silica secretion is summarised and discussed here.  相似文献   

16.
Abstract

Benthic diatoms, which often dominate marine biofilms are mostly pennate along with a few centric species that have an attached mode of life. Even though the range of diatoms in biofilms is diverse, their ecology is poorly understood because of the difficulty in sampling and enumeration. Scraping or brushing are the traditional methods used for removal of diatoms from biofilms developed on solid substrata. The method of removal is the most critical step in enumerating the biofilm diatom community structure. In this study, a nylon brush and ceramic scraper were used as tools for the removal of diatoms from 1 – 4-day-old biofilms developed on fibreglass coupons and glass microscope slides. Standardisation of methods showed that the sample volume used in the analyses had the least influence on the quantification, whereas the method of removal was critical. The nylon brush was more efficient at recovering diatoms compared to a ceramic scraper. Direct microscopic enumeration of the community in the case of glass slides indicated that scraping resulted in between 30–50% underestimation. Heterogeneity in diatom community structure between replicate samples is one possible reason for such underestimation.  相似文献   

17.
Patil JS  Anil AC 《Biofouling》2005,21(3-4):181-188
Benthic diatoms, which often dominate marine biofilms are mostly pennate along with a few centric species that have an attached mode of life. Even though the range of diatoms in biofilms is diverse, their ecology is poorly understood because of the difficulty in sampling and enumeration. Scraping or brushing are the traditional methods used for removal of diatoms from biofilms developed on solid substrata. The method of removal is the most critical step in enumerating the biofilm diatom community structure. In this study, a nylon brush and ceramic scraper were used as tools for the removal of diatoms from 1 - 4-day-old biofilms developed on fibreglass coupons and glass microscope slides. Standardisation of methods showed that the sample volume used in the analyses had the least influence on the quantification, whereas the method of removal was critical. The nylon brush was more efficient at recovering diatoms compared to a ceramic scraper. Direct microscopic enumeration of the community in the case of glass slides indicated that scraping resulted in between 30-50% underestimation. Heterogeneity in diatom community structure between replicate samples is one possible reason for such underestimation.  相似文献   

18.
SILICON METABOLISM IN DIATOMS: IMPLICATIONS FOR GROWTH    总被引:1,自引:0,他引:1  
Diatoms are the world's largest contributors to biosilicification and are one of the predominant contributors to global carbon fixation. Silicon is a major limiting nutrient for diatom growth and hence is a controlling factor in primary productivity. Because our understanding of the cellular metabolism of silicon is limited, we are not fully knowledgeable about intracellular factors that may affect diatom productivity in the oceans. The goal of this review is to present an overview of silicon metabolism in diatoms and to identify areas for future research. Numerous studies have characterized parameters of silicic acid uptake by diatoms, and molecular characterization of transport has begun with the isolation of genes encoding the transporter proteins. Multiple types of silicic acid transporter gene have been identified in a single diatom species, and multiple types appear to be present in all diatom species. The controlled expression and perhaps localization of the transporters in the cell may be factors in the overall regulation of silicic acid uptake. Transport can also be regulated by the rate of silica incorporation into the cell wall, suggesting that an intracellular sensing and control mechanism couples transport with incorporation. Sizable intracellular pools of soluble silicon have been identified in diatoms, at levels well above saturation for silica solubility, yet the mechanism for maintenance of supersaturated levels has not been determined. The mechanism of intracellular transport of silicon is also unknown, but this must be an important part of the silicification process because of the close coupling between silica incorporation and uptake. Although detailed ultrastructural analyses of silica deposition have been reported, we know little about the molecular details of this process. However, proteins occluded within silica that promote silicification in vitro have recently been characterized, and the application of molecular techniques holds the promise of great advances in this area. Cellular energy for silicification and transport comes from aerobic respiration without any direct involvement of photosynthetic energy. As such, diatom silicon metabolism differs from that of other major limiting nutrients such as nitrogen and phosphorous, which are closely linked to photosynthetic metabolism. Cell wall silicification and silicic acid transport are tightly coupled to the cell cycle, which results in a dependency in the extent of silicification on growth rate. Silica dissolution is an important part of diatom cellular silicon metabolism, because dissolution must be prevented in the living cell, and because much of the raw material for mineralization in natural assemblages is supplied by dissolution of dead cells. Perhaps part of the reason for the ecological success of diatoms is due to their use of a silicified cell wall, which has been calculated to impart a substantial energy savings to organisms that have them. However, the growth of diatoms and other siliceous organisms has depleted the oceans of silicon, such that silicon availability is now a major factor in the control of primary productivity. Much new progress in understanding silicon metabolism in diatoms is expected because of the application of molecular approaches and sophisticated analytical techniques. Such insight is likely to lead to a greater understanding of the role of silicon in controlling diatom growth, and hence primary productivity, and of the mechanisms involved in the formation of the intricate silicified structures of the diatom cell wall.  相似文献   

19.
Many methods for using diatoms for routine monitoring of water quality have been developed in Europe and, in some countries, these are being used to enforce environmental legislation. In order to facilitate their wider use, particularly with respect to European Union legislation, steps are being taken to harmonize methodology. In this paper, the principles and practice of sampling are described in relation to the main habitat types encountered in Europe. Although details of methods and sampling programmes have to be tailored to particular circumstances and the overall objectives of the monitoring, a number of generalizations can be made. Where available, rocks and other hard surfaces are the preferred substrates and methods for sampling these are described. If such substrata are not available, then introduced ('artificial') substrata have many applications. Various types of introduced substrata can be used successfully, so long as some basic precautions are described. Other types of substrata such as macrophytes and macroalgae may also be useful under certain circumstances, although there is less consensus in the literature on the most appropriate methods, and of the validity of comparisons between indices computed from epiphytic and epilithic communities. When designing surveys, it is recommended that as far as possible, extremes of non-water quality factors (e.g. shade, current speed, etc) are avoided, unless these are characteristic of the system under investigation. Detailed guidelines for sampling epilithon are described. Along with the recommendations for sampling other substrata, it is hoped that these provide a framework that can be adapted to most river types in Europe. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号