首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipogenesis from glucose and lipoprotein lipase activity were investigated in humans. The reliability of measurements was quantified and correlations with fat cell weight were assessed. Twenty-four subjects (7 women, 17 men) were studied twice within a 2-week period, along with 17 additional male subjects who were studied once and used only in the correlation analyses. All subjects were not regularly involved in an exercise-training program and were between 18 and 30 years of age. Following an overnight fast, adipose tissue specimens were obtained by suprailiac biopsy and fat cells were collagenase isolated. Mean fat cell weight was obtained from 400 to 500 cell diameter determinations per subject. Basal and insulin-stimulated fat cell lipogenesis from glucose were determined using D-[U-14C]glucose and were reported in nanomoles of glucose per hour per 10(6) cells. Adipose tissue heparin-releasable lipoprotein lipase activity was also determined and expressed in micromoles of free fatty acids per hour per gram of tissue and per 10(6) cells. Fat cell weight, basal and insulin-stimulated lipogenesis and lipoprotein lipase activity per gram showed high reliability of measurement, interclass and intraclass coefficients being 0.83 and over. Lipoprotein lipase activity per 10(6) cells showed a somewhat lower degree of reliability, interclass and intraclass coefficients being, respectively, 0.69 and 0.81. On the other hand, fat cell weight was positively correlated with lipoprotein lipase activity (r = 0.80), while no significant correlation was observed between basal lipogenesis and fat cell weight. Moreover, basal lipogenesis presented no significant correlation with lipoprotein lipase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The osmic acid fixation-Coulter electronic counter method described for determining adipose cell size and number in intact adipose tissue fragments has been modified for use with suspensions of isolated rat and human adipose cells. Mean cell sizes in tissue fragments and isolated cell suspensions prepared from the same tissue are virtually identical in rats of various weights. No statistically significant difference in mean adipose cell size between tissue and isolated cell suspension was observed in human adipose tissue although the variability was much greater than in rat tissue. The distribution of cell sizes among replicate samples is more uniform in the isolated cell preparations, possibly reflecting the considerably larger quantities of tissue used in preparing isolated cells than in determining cell size and number directly from tissue fragments. An example of the utility of the modified method during routine metabolic studies with isolated rat epididymal adipose cells is described; isolated cells of increasing size can be obtained from rats of increasing body weight, or from the separated distal and proximal portions of the fat pads of rats of the same weight.  相似文献   

3.
To determine the effect of obesity on the size distribution of fat cell populations in human adipose tissue, omental fat tissue biopsies were obtained from lean, moderately obese, and massively obese patients. The size distributions of adipocytes from lean and obese fat tissues examined by the scanning electron microscopic method were bimodal, consisting of populations of very small fat cells and mature fat cells, in contrast to collagenase-derived isolated cells that showed only the large mature fat cells. The very small fat cell population represented 21 to 26% of the total fat cell number in the lean and in both obese groups. In contrast, preparations of human fat cells isolated by the collagenase method systematically excluded the very small fat cells. In massive obesity, both cell populations participated in the hyperplastic growth but only the larger mature fat cells increased in size, implying that these two cell populations differ in their physiological role.  相似文献   

4.
Background: Mesenchymal stem cells are able to undergo adipogenic differentiation and present a possible alternative cell source for regeneration and replacement of adipose tissue. The human infrapatellar fat pad is a promising source of mesenchymal stem cells with many source advantages over from bone marrow. It is important to determine whether a potential mesenchymal stem‐cell exhibits tri‐lineage differentiation potential and is able to maintain its proliferation potential and cell‐surface characterization on expansion in tissue culture. We have previously shown that mesenchymal stem cells derived from the fat pad can undergo chondrogenic and osteogenic differentiation, and we characterized these cells at early passage. In the study described here, proliferation potential and characterization of fat pad‐derived mesenchymal stem cells were assessed at higher passages, and cells were allowed to undergo adipogenic differentiation. Materials and methods: Infrapatellar fat pad tissue was obtained from six patients undergoing total knee replacement. Cells isolated were expanded to passage 18 and proliferation rates were measured. Passage 10 and 18 cells were characterized for cell‐surface epitopes using a range of markers. Passage 2 cells were allowed to undergo differentiation in adipogenic medium. Results: The cells maintained their population doubling rates up to passage 18. Cells at passage 10 and passage 18 had cell‐surface epitope expression similar to other mesenchymal stem cells previously described. By staining it was revealed that they highly expressed CD13, CD29, CD44, CD90 and CD105, and did not express CD34 or CD56, they were also negative for LNGFR and STRO1. 3G5 positive cells were noted in cells from both passages. These fat pad‐derived cells had adipogenic differentiation when assessed using gene expression for peroxisome proliferator‐activated receptor γ2 and lipoprotein lipase, and oil red O staining. Discussion: These results indicate that the cells maintained their proliferation rate, and continued expressing mesenchymal stem‐cell markers and pericyte marker 3G5 at late passages. These results also show that the cells were capable of adipogenic differentiation and thus could be a promising source for regeneration and replacement of adipose tissue in reconstructive surgery.  相似文献   

5.
The purpose of the present work was to study age- and weight-controlled rats to determine which is the primary factor in reducing the lipolytic response of free fat cells and which has the greater effect on the ratio of fat cells to nonfat cells in adipose tissue. The method for estimating fat cell and nonfat cell numbers is based on the analysis of adipose tissue and fat cell DNA and lipid. In adequately fed rats, epididymal adipocyte hyperplasia is complete between 9 and 14 wk of age. Chronic underfeeding delays, but does not eliminate, normal fat cell hyperplasia and is accompanied by a net loss in the nonfat cell population. During 9-14 wk of age, rat epididymal adipose tissue enlarges mainly through adipocyte hypertrophy. Total fat cells from the epididymal adipose tissue of control rats represent only 20-23% of the total cell population. Chronic underfeeding increases the percentage of fat cells in the fat pad from 23 to 28%. Noradrenaline-stimulated lipolysis is proportional to fat cell numbers but is inhibited when fat cell lipid increases to over 80% of fat pad wet weight. Rat age is apparently not primarily responsible for the decreased noradrenaline-stimulated lipolysis in fat cells of 350-g rats in vitro.  相似文献   

6.
We investigated the rs9939609 single nucleotide polymorphism of the FTO gene in relation to fat cell function and adipose tissue gene expression in 306 healthy women with a wide range in body mass index (18-53 kg/m(2)). Subcutaneous adipose tissue biopsies were taken for fat cell metabolism studies and in a subgroup (n = 90) for gene expression analyses. In homozygous carriers of the T-allele, the in vitro basal (spontaneous) adipocyte glycerol release was increased by 22% (P = 0.007) and the in vivo plasma glycerol level was increased by approximately 30% (P = 0.037) compared with carriers of the A allele. In contrast, there were no genotype effects on catecholamine-stimulated lipolysis or basal or insulin-induced lipogenesis. We found no difference between genotypes for adipose tissue mRNA levels of FTO, hormone-sensitive lipase, adipose triglyceride lipase, perilipin, or CGI-58. Finally, the adipose tissue level of FTO mRNA was increased in obesity (P = 0.002), was similar in subcutaneous and omental adipose tissue, was higher in fat cells than in fat tissue (P = 0.0007), and was induced at an early stage in the differentiation process (P = 0.004). These data suggest a role of the FTO gene in fat cell lipolysis, which may be important in explaining why the gene is implicated in body weight regulation.  相似文献   

7.
The success of stem cell application in regenerative medicine, usually require a stable source of stem or progenitor cells. Fat tissue represents a good source of stem cells because it is rich in stem cells and there are fewer ethical issues related to the use of such stem cells, unlike embryonic stem cells. Therefore, there has been increased interest in adipose-derived stem cells (ADSCs) for tissue engineering applications. Here, we aim to provide an easy processing method for isolating adult stem cells from human adipose tissue harvested from the subcutaneous fat of the abdominal wall during gynecologic surgery. We used a homogenizer to mince fat and compared the results with those obtained from the traditional cut method involving a sterile scalpel and forceps. Our results showed that our method provides another stable and quality source of stem cells that could be used in cases with a large quantity of fat. Furthermore, we found that pregnancy adipose-derived stem cells (P-ADSCs) could be maintained in vitro for extended periods with a stable population doubling and low senescence levels. P-ADSCs could also differentiate in vitro into adipogenic, osteogenic, chondrogenic, and insulin-producing cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirates, adipose tissues obtained from pregnant women contain multipotent cells with better proliferation and showed great promise for use in both stem cell banking studies as well as in stem cell therapy.  相似文献   

8.
Two methods were used to determine the mean cell diameters of 37 samples of human adipose tissue, obtained by open or needle biopsy. Method I was the sizing of cells in cell suspensions and Method II was a quick, simple method of sizing cells from fixed sections. The agreement between the two methods was good (r = 0.93, P = less than 0.001). The results using Method II were slightly lower than those using Method I, and a correction factor is suggested. Method II has several advantages over Method I and we propose that it is a suitable method for sizing cells when a quick method with a permanent record is required.  相似文献   

9.
For many years, there was little interest in the biochemistry or physiology of adipose tissue. It is now well recognized that adipocytes play an important dynamic role in metabolic regulation. They are able to sense metabolic states via their ability to perceive a large number of nervous and hormonal signals. They are also able to produce hormones, called adipokines, that affect nutrient intake, metabolism and energy expenditure. The report by Rodbell in 1964 that intact fat cells can be obtained by collagenase digestion of adipose tissue revolutionized studies on the hormonal regulation and metabolism of the fat cell. In the context of the advent of systems biology in the field of cell biology, the present seems an appropriate time to look back at the global contribution of the fat cell to cell biology knowledge. This review focuses on the very early approaches that used the fat cell as a tool to discover and understand various cellular mechanisms. Attention essentially focuses on the early investigations revealing the major contribution of mature fat cells and also fat cells originating from adipose cell lines to the discovery of major events related to hormone action (hormone receptors and transduction pathways involved in hormonal signaling) and mechanisms involved in metabolite processing (hexose uptake and uptake, storage, and efflux of fatty acids). Dormant preadipocytes exist in the stroma-vascular fraction of the adipose tissue of rodents and humans; cell culture systems have proven to be valuable models for the study of the processes involved in the formation of new fat cells. Finally, more recent insights into adipocyte secretion, a completely new role with major metabolic impact, are also briefly summarized.  相似文献   

10.
To study the influence of endurance training on glucose conversion into fat cell triglycerides, 24 (13 women, 11 men) inactive subjects (25.0 +/- 3.8 yr of age) took part in a 20-wk ergocycle training program 4 days and increasing to 5 days/wk, 40-45 min/day, starting at 60% and increasing to 85% of the heart rate reserve. Several body fatness indicators were measured before and after the training program: seven skinfold thicknesses, percent fat, and mean fat cell weight. Fat cell basal and maximal insulin-stimulated glucose conversion into triglycerides were also determined using [14C]glucose. Body fatness indicators decreased significantly after training only in male subjects (P less than 0.05). Basal and maximal insulin-stimulated glucose conversion into triglycerides increased significantly with training (P less than 0.05): pretest values (nanomoles glucose per hour per 10(6) cells) being 24.9 +/- 2.1 and 28.7 +/- 2.5, while post-test values were 30.1 +/- 3.2 and 33.0 +/- 3.4 for basal and insulin-stimulated values, respectively. However, this lipogenic increase was only observed in male subjects (P less than 0.01). Changes in body fatness indicators induced by training were negatively correlated with changes induced in fat cell glucose conversion into triglycerides (-0.24 less than or equal to r less than or equal to -0.45). These results demonstrate that endurance training increases fat cell glucose conversion into triglycerides and suggest that adipose tissue metabolism is part of the adaptive response to training. Moreover, it appears that adipose tissue response to aerobic training is more efficient in males than in females.  相似文献   

11.
BackgroundEpidemiological and experimental studies have shown a protective effect of helminth infections in weight gain and against the development of metabolic dysfunctions in the host. However, the mechanisms Treg cells exert in the helminth-obesity interface has been poorly investigated. The present study aimed to verify the influence of Heligmosomoides polygyrus infection in early stages of high fat diet-induced obesity.Principal findingsThe presence of infection was able to prevent exacerbated weight gain in mice fed with high fat diet when compared to non-infected controls. In addition, infected animals displayed improved insulin sensitivity and decreased fat accumulation in the liver. Obesity-associated inflammation was reduced in the presence of infection, demonstrated by lower levels of leptin and resistin, lower infiltration of Th1 and Th17 cells in adipose tissue, higher expression of IL10 and adiponectin, increased infiltration of Th2 and eosinophils in adipose tissue of infected animals. Of note, the parasite infection was associated with increased Treg frequency in adipose tissue which showed higher expression of cell surface markers of function and activation, like LAP and CD134. The infection could also increase adipose Treg suppressor function in animals on high fat diet.ConclusionThese data suggest that H. polygyrus modulates adipose tissue Treg cells with implication for weight gain and metabolic syndrome.  相似文献   

12.
Adipose tissue is a source of adult multipotent stem cells that can differentiate along mesenchymal lineage. When mature fat cells obtained from human subcutaneous adipose tissue were maintained with attachment to the ceiling surface of culture flasks filled with medium, two fibroblastic cell populations appeared at the ceiling and the bottom surface. Both populations were positive to CD13, CD90, and CD105, moderately positive to CD9, CD166, and CD54, negative to CD31. CD34, CD66b, CD106, and CD117, exhibited potential of unlimited proliferation, and differentiated along mesenchymal lineage to produce adipocytes, osteoblasts, and chondrocytes. The population that appeared at the ceiling surface showed higher potential of adipogenic differentiation. These observations showed that the cells tightly attached to mature fat cells can generate two fibroblastic cell populations with multiple but distinct potential of differentiation. Since enough number of both populations for clinical transplantation can be easily obtained by maintaining fat cells from a small amount of subcutaneous adipose tissue, this method has an advantage in preparing autologous cells for patients needing repair of damaged tissues by reconstructive therapy.  相似文献   

13.
Comparison of two methods for determining human adipose cell size   总被引:10,自引:0,他引:10  
The mean cell sizes of specimens of human adipose tissue were determined on sectioned slices according to the method described by Sj?str?m et al. (J. Lipid Res. 1971. 12: 521-530) and on adipocytes isolated after treatment of the tissue with collagenase. The average mean cell sizes from 11 biopsy specimens were 94.4 and 94.0 micro m, respectively (r = 0.964; P(t(b)) < 0.001; y = 0.90x + 9.74), for the two methods. There was no indication of an increased rupture of isolated large human adipose cells. Thus, with precautions (freshly siliconized glassware and omitting the centrifugation of the isolated cells), the collagenase method may be used for metabolic as well as morphologic studies of human adipose tissue.  相似文献   

14.
Objective: To evaluate a new scanning electronic microscopic (EM) method for assessing fat cell sizes and compare fat cell size distribution in human adipose tissue from different fat depots before and after weight loss. Research Methods and Procedures: Identical human fat tissue biopsies were separated into two fractions: one used to prepare a fat cell suspension by collagenase digestion followed by photomicrography (collagenase method) and the other fixed in formalin for EM analysis. The EM method was evaluated further by determining fat cell sizes from lean and ob/ob mice. Finally, the EM method was used to assess fat cell sizes in biopsies of different human depots from before and after weight loss. Results: Fat cell size distributions measured by the two methods were not identical, but differences were generally small. The EM method reproduced the well‐documented fat cell size difference between lean and ob/ob mice. Large variation was detected in fat cell distributions among three depots in humans. Weight loss reduced fat cell sizes in subjects with large baseline fat cells but had no effect in subjects with small baseline fat cell sizes. Discussion: Our results suggest that the EM method may be a useful alternative for fat cell size analysis of clinical samples.  相似文献   

15.
Two cell populations with a phenotype similar to that of mesenchymal stem cells (MSC) with different characteristics for expression of surface antigene CD34 were derived from subcutaneous fat. CD34-positive cells were derived from subcutaneous fat of the inferior eyelid obtained during transconjuctival blepharoplasty. CD34-negative cells were derived from adipose tissue obtained during lipoaspiration from the same patients. These cells displayed common characteristics for morphology and expression of basic markers characterizing them as mesenchymal stem cells. On being induced for differentiation, these two cell populations were able to differentiate to cells of adipose (adipocytes), bone (osteoblastes, osteocytes), cartilage (chondroblasts, chondrocytes), and nervous (neurons, astrocytes and oligodendrocytes) tissues.  相似文献   

16.
Free fatty acid release from fat cells, obtained from epididymal adipose tissue of rats of different sizes, was found to be dependent on the cell surface area, regardless of the age of the animals. The same result was found with cells of different sizes from the same animal. These results, when related to in vivo conditions, would indicate that for the same adipose tissue mass, activity would decrease with increasing cell size. On the other hand, the total activity of a given tissue would increase by increasing the size of its cells.  相似文献   

17.
Although body fat distribution strongly predicts metabolic health outcomes related to excess weight, little is known about the factors an individual might exhibit that predict a particular fat distribution pattern. We utilized the meal fatty acid tracer-adipose biopsy technique to assess upper and lower body subcutaneous (UBSQ and LBSQ, respectively) meal fat storage in lean volunteers who then were overfed to gain weight. Meal fatty acid storage in UBSQ and LBSQ adipose tissue, as well as daytime substrate oxidation (indirect calorimetry), was measured in 28 nonobese volunteers [n = 15 men, body mass index = 22.1 ± 2.5 (SD)] before and after an ~8-wk period of supervised overfeeding (weight gain = 4.6 ± 2.2 kg, fat gain = 3.8 ± 1.7 kg). Meal fat storage (mg/g adipose tissue lipid) in UBSQ (visit 1: 0.78 ± 0.34 and 1.04 ± 0.71 for women and men, respectively, P = 0.22; visit 2: 0.71 ± 0.24 and 0.90 ± 0.37 for women and men, respectively, P = 0.08) and LBSQ (visit 1: 0.60 ± 0.23 and 0.48 ± 0.29 for women and men, respectively, P = 0.25; visit 2: 0.62 ± 0.24 and 0.65 ± 0.23 for women and men, respectively, P = 0.67) adipose tissue did not differ between men and women at either visit. Fractional meal fatty acid storage in UBSQ (0.31 ± 0.15) or LBSQ (0.19 ± 0.13) adipose tissue at visit 1 did not predict the percent change in regional body fat in response to overfeeding. These data indicate that meal fat uptake trafficking in the short term (24 h) is not predictive of body fat distribution patterns. In general, UBSQ adipose tissue appears to be a favored depot for meal fat deposition in both sexes, and redistribution of meal fatty acids likely takes place at later time periods.  相似文献   

18.
The formation of new adipocytes occurs either at the stage of multiplication or differentiation or both. It seems possible that the formation of new fat cells is dependent on the average cell weight in a given adipose tissue depot, but there may also be other regional, local regulatory factors. Multiplication of fat cells has been suggested to be stimulated by 17-beta-oestradiol while the differentiation of adipocytes is stimulated by growth hormone, glucocorticoids, insulin, insulin-like growth factor and female sex hormones. There are, probably, other factors acting in circulation or locally. The factors promoting growth of new fat cells with overfeeding are at present unknown. Some hypothetical possibilities are discussed.  相似文献   

19.
The metabolism of androstenedione (A) to estrone (E1) and 5 alpha-reduced androgens was studied in stromal cells derived from human adipose tissue from different body sites. The tissue was obtained from non-obese patients undergoing cosmetic liposuction or at the time of surgery for reduction mammoplasty. The conversion of A to E1 per 1x 10(6) cells was between 6- and 30-fold greater in the upper thigh, buttock, and flank than in the abdomen. These differences were present in primary culture and persisted to at least the third subculture. Estrogen formation in breast adipose tissue was similar to that found in cells from abdominal fat. The formation of 5 alpha-reduced metabolites (5 alpha-androstenedione, androsterone, and dihydrotestosterone) varied from patient to patient but was similar in cells from different body sites. These studies show that the regional distribution of fat may influence the metabolism of androgens in adipose tissue, with upper body fat tending to form a lower ratio of estrogens to 5 alpha-reduced androgens than lower body fat.  相似文献   

20.
The main objective of this work is to quantify the impact of photodynamic/photothermal treatment by using visible LED and NIR laser irradiation through the skin of subcutaneous fat in vivo followed up by tissue sampling and histology. The optical method may provide reduction of regional or site‐specific accumulations of abdominal or subcutaneous adipose tissue precisely and least‐invasively by inducing cell apoptosis and controlled necrosis of fat tissue. As photodynamic/photothermal adipose tissue sensitizers Brilliant Green (BG) or Indocyanine Green (ICG) dyes were injected subcutaneously in rats. The CW LED device (625 nm) or CW diode laser (808 nm) were used as light sources, respectively. Biopsies of skin together with subcutaneous tissues were taken for histology. The combined action BG‐staining and LED‐irradiation (BG + LED) or ICG‐staining and NIR‐laser irradiation (ICG + NIR) causes pronounced signs of damage of adipose tissue characterized by a strong stretching, thinning, folding and undulating of cell membranes and appearance of necrotic areas. As a posttreatment after 14 days only connective tissue was observed at the site of necrotic areas. The data obtained are important for safe light treatment of site‐specific fat accumulations, including cellulite. This work provides a basis for the development of fat lipolysis technologies and to move them to clinical applications. Schematics of animal experiment.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号