首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Matsui S 《Biometrics》2004,60(4):965-976
This article develops randomization-based methods for times to repeated events in two-arm randomized trials with noncompliance and dependent censoring. Structural accelerated failure time models are assumed to capture causal effects on repeated event times and dependent censoring time, but the dependence structure among repeated event times and dependent censoring time is unspecified. Artificial censoring techniques to accommodate nonrandom noncompliance and dependent censoring are proposed. Estimation of the acceleration parameters are based on rank-based estimating functions. A simulation study is conducted to evaluate the performance of the developed methods. An illustration of the methods using data from an acute myeloid leukemia trial is provided.  相似文献   

2.
Many randomized experiments suffer from noncompliance. Some of these experiments, so-called encouragement designs, can be expected to have especially large amounts of noncompliance, because encouragement to take the treatment rather than the treatment itself is randomly assigned to individuals. We present an extended framework for the analysis of data from such experiments with a binary treatment, binary encouragement, and background covariates. There are two key features of this framework: we use an instrumental variables approach to link intention-to-treat effects to treatment effects and we adopt a Bayesian approach for inference and sensitivity analysis. This framework is illustrated in a medical example concerning the effects of inoculation for influenza. In this example, the analyses suggest that positive estimates of the intention-to-treat effect need not be due to the treatment itself, but rather to the encouragement to take the treatment: the intention-to-treat effect for the subpopulation who would be inoculated whether or not encouraged is estimated to be approximately as large as the intention-to-treat effect for the subpopulation whose inoculation status would agree with their (randomized) encouragement status whether or not encouraged. Thus, our methods suggest that global intention-to-treat estimates, although often regarded as conservative, can be too coarse and even misleading when taken as summarizing the evidence in the data for the effects of treatments.  相似文献   

3.
Causal approaches based on the potential outcome framework providea useful tool for addressing noncompliance problems in randomizedtrials. We propose a new estimator of causal treatment effectsin randomized clinical trials with noncompliance. We use theempirical likelihood approach to construct a profile randomsieve likelihood and take into account the mixture structurein outcome distributions, so that our estimator is robust toparametric distribution assumptions and provides substantialfinite-sample efficiency gains over the standard instrumentalvariable estimator. Our estimator is asymptotically equivalentto the standard instrumental variable estimator, and it canbe applied to outcome variables with a continuous, ordinal orbinary scale. We apply our method to data from a randomizedtrial of an intervention to improve the treatment of depressionamong depressed elderly patients in primary care practices.  相似文献   

4.
In randomized trials with imperfect compliance, it is sometimes recommended to supplement the intention‐to‐treat estimate with an instrumental variable (IV) estimate, which is consistent for the effect of treatment administration in those subjects who would get treated if randomized to treatment and would not get treated if randomized to control. The IV estimation however has been criticized for its reliance on simultaneous existence of complementary “fatalistic” compliance states. The objective of the present paper is to identify some sufficient conditions for consistent estimation of treatment effects in randomized trials with stochastic compliance. It is shown that in the stochastic framework, the classical IV estimator is generally inconsistent for the population‐averaged treatment effect. However, even under stochastic compliance, with certain common experimental designs the IV estimator and a simple alternative estimator can be used for consistent estimation of the effect of treatment administration in well‐defined and identifiable subsets of the study population.  相似文献   

5.
Cheng J 《Biometrics》2009,65(1):96-103
Summary .  This article considers the analysis of two-arm randomized trials with noncompliance, which have a multinomial outcome. We first define the causal effect in these trials as some function of outcome distributions of compliers with and without treatment (e.g., the complier average causal effect, the measure of stochastic superiority of treatment over control for compliers), then estimate the causal effect with the likelihood method. Next, based on the likelihood-ratio (LR) statistic, we test those functions of or the equality of the outcome distributions of compliers with and without treatment. Although the corresponding LR statistic follows a chi-squared  (χ2)  distribution asymptotically when the true values of parameters are in the interior of the parameter space under the null, its asymptotic distribution is not  χ2  when the true values of parameters are on the boundary of the parameter space under the null. Therefore, we propose a bootstrap/double bootstrap version of a LR test for the causal effect in these trials. The methods are illustrated by an analysis of data from a randomized trial of an encouragement intervention to improve adherence to prescribed depression treatments among depressed elderly patients in primary care practices.  相似文献   

6.
Little RJ  Long Q  Lin X 《Biometrics》2009,65(2):640-649
Summary .  We consider the analysis of clinical trials that involve randomization to an active treatment ( T  = 1) or a control treatment ( T  = 0), when the active treatment is subject to all-or-nothing compliance. We compare three approaches to estimating treatment efficacy in this situation: as-treated analysis, per-protocol analysis, and instrumental variable (IV) estimation, where the treatment effect is estimated using the randomization indicator as an IV. Both model- and method-of-moment based IV estimators are considered. The assumptions underlying these estimators are assessed, standard errors and mean squared errors of the estimates are compared, and design implications of the three methods are examined. Extensions of the methods to include observed covariates are then discussed, emphasizing the role of compliance propensity methods and the contrasting role of covariates in these extensions. Methods are illustrated on data from the Women Take Pride study, an assessment of behavioral treatments for women with heart disease.  相似文献   

7.
O'Malley AJ  Normand SL 《Biometrics》2005,61(2):325-334
While several new methods that account for noncompliance or missing data in randomized trials have been proposed, the dual effects of noncompliance and nonresponse are rarely dealt with simultaneously. We construct a maximum likelihood estimator (MLE) of the causal effect of treatment assignment for a two-armed randomized trial assuming all-or-none treatment noncompliance and allowing for subsequent nonresponse. The EM algorithm is used for parameter estimation. Our likelihood procedure relies on a latent compliance state covariate that describes the behavior of a subject under all possible treatment assignments and characterizes the missing data mechanism as in Frangakis and Rubin (1999, Biometrika 86, 365-379). Using simulated data, we show that the MLE for normal outcomes compares favorably to the method-of-moments (MOM) and the standard intention-to-treat (ITT) estimators under (1) both normal and non-normal data, and (2) departures from the latent ignorability and compound exclusion restriction assumptions. We illustrate methods using data from a trial to compare the efficacy of two antipsychotics for adults with refractory schizophrenia.  相似文献   

8.
9.
In randomized trials with noncompliance, causal effects cannot be identified without strong assumptions. Therefore, several authors have considered bounds on the causal effects. Applying an idea of VanderWeele ( 2008 ), Chiba ( 2009 ) gave bounds on the average causal effects in randomized trials with noncompliance using the information on the randomized assignment, the treatment received and the outcome under monotonicity assumptions about covariates. But he did not consider any observed covariates. If there are some observed covariates such as age, gender, and race in a trial, we propose new bounds using the observed covariate information under some monotonicity assumptions similar to those of VanderWeele and Chiba. And we compare the three bounds in a real example.  相似文献   

10.
Matsui S 《Biometrics》2005,61(3):816-823
This article develops methods for stratified analyses of additive or multiplicative causal effect on binary outcomes in randomized trials with noncompliance. The methods are based on a weighted estimating function for an unbiased estimating function under randomization in each stratum. When known weights are used, the derived estimator is a natural extension of the instrumental variable estimator for stratified analyses, and test-based confidence limits are solutions of a quadratic equation in the causal parameter. Optimal weights that maximize asymptotic efficiency incorporate variability in compliance aspects across strata. An assessment based on asymptotic relative efficiency shows that a substantial enhancement in efficiency can be gained by using optimal weights instead of conventional ones, which do not incorporate the variability in compliance aspects across strata. Application to a field trial for coronary heart disease is provided.  相似文献   

11.
Chen H  Geng Z  Zhou XH 《Biometrics》2009,65(3):675-682
Summary .  In this article, we first study parameter identifiability in randomized clinical trials with noncompliance and missing outcomes. We show that under certain conditions the parameters of interest are identifiable even under different types of completely nonignorable missing data: that is, the missing mechanism depends on the outcome. We then derive their maximum likelihood and moment estimators and evaluate their finite-sample properties in simulation studies in terms of bias, efficiency, and robustness. Our sensitivity analysis shows that the assumed nonignorable missing-data model has an important impact on the estimated complier average causal effect (CACE) parameter. Our new method provides some new and useful alternative nonignorable missing-data models over the existing latent ignorable model, which guarantees parameter identifiability, for estimating the CACE in a randomized clinical trial with noncompliance and missing data.  相似文献   

12.
Unmeasured confounders are a common problem in drawing causal inferences in observational studies. VanderWeele (Biometrics 2008, 64, 702–706) presented a theorem that allows researchers to determine the sign of the unmeasured confounding bias when monotonic relationships hold between the unmeasured confounder and the treatment, and between the unmeasured confounder and the outcome. He showed that his theorem can be applied to causal effects with the total group as the standard population, but he did not mention the causal effects with treated and untreated groups as the standard population. Here, we extend his results to these causal effects, and apply our theorems to an observational study. When researchers have a sense of what the unmeasured confounder may be, conclusions can be drawn about the sign of the bias.  相似文献   

13.
Adjusting for intermediate variables is a common analytic strategy for estimating a direct effect. Even if the total effect is unconfounded, the direct effect is not identified when unmeasured variables affect the intermediate and outcome variables. Therefore, some researchers presented bounds on the controlled direct effects via linear programming. They applied a monotonic assumption about treatment and intermediate variables and a no-interaction assumption to derive narrower bounds. Here, we improve their bounds without using linear programming and hence derive a bound under the monotonic assumption about an intermediate variable only. To improve the bounds, we further introduce the monotonic assumption about confounders. While previous studies assumed that an outcome is a binary variable, we do not make that assumption. The proposed bounds are illustrated using two examples from randomized trials.  相似文献   

14.
Taylor L  Zhou XH 《Biometrics》2009,65(1):88-95
Summary .  Randomized clinical trials are a powerful tool for investigating causal treatment effects, but in human trials there are oftentimes problems of noncompliance which standard analyses, such as the intention-to-treat or as-treated analysis, either ignore or incorporate in such a way that the resulting estimand is no longer a causal effect. One alternative to these analyses is the complier average causal effect (CACE) which estimates the average causal treatment effect among a subpopulation that would comply under any treatment assigned. We focus on the setting of a randomized clinical trial with crossover treatment noncompliance (e.g., control subjects could receive the intervention and intervention subjects could receive the control) and outcome nonresponse. In this article, we develop estimators for the CACE using multiple imputation methods, which have been successfully applied to a wide variety of missing data problems, but have not yet been applied to the potential outcomes setting of causal inference. Using simulated data we investigate the finite sample properties of these estimators as well as of competing procedures in a simple setting. Finally we illustrate our methods using a real randomized encouragement design study on the effectiveness of the influenza vaccine.  相似文献   

15.
16.
Loeys T  Goetghebeur E 《Biometrics》2003,59(1):100-105
Survival data from randomized trials are most often analyzed in a proportional hazards (PH) framework that follows the intention-to-treat (ITT) principle. When not all the patients on the experimental arm actually receive the assigned treatment, the ITT-estimator mixes its effect on treatment compliers with its absence of effect on noncompliers. The structural accelerated failure time (SAFT) models of Robins and Tsiatis are designed to consistently estimate causal effects on the treated, without direct assumptions about the compliance selection mechanism. The traditional PH-model, however, has not yet led to such causal interpretation. In this article, we examine a PH-model of treatment effect on the treated subgroup. While potential treatment compliance is unobserved in the control arm, we derive an estimating equation for the Compliers PROPortional Hazards Effect of Treatment (C-PROPHET). The jackknife is used for bias correction and variance estimation. The method is applied to data from a recently finished clinical trial in cancer patients with liver metastases.  相似文献   

17.
This paper addresses treatment effect heterogeneity (also referred to, more compactly, as 'treatment heterogeneity') in the context of a controlled clinical trial with binary endpoints. Treatment heterogeneity, variation in the true (causal) individual treatment effects, is explored using the concept of the potential outcome. This framework supposes the existance of latent responses for each subject corresponding to each possible treatment. In the context of a binary endpoint, treatment heterogeniety may be represented by the parameter, pi2, the probability that an individual would have a failure on the experimental treatment, if received, and would have a success on control, if received. Previous research derived bounds for pi2 based on matched pairs data. The present research extends this method to the blocked data context. Estimates (and their variances) and confidence intervals for the bounds are derived. We apply the new method to data from a renal disease clinical trial. In this example, bounds based on the blocked data are narrower than the corresponding bounds based only on the marginal success proportions. Some remaining challenges (including the possibility of further reducing bound widths) are discussed.  相似文献   

18.
Stuart G. Baker 《Biometrics》2011,67(1):319-323
Summary Recently, Cheng (2009 , Biometrics 65, 96–103) proposed a model for the causal effect of receiving treatment when there is all‐or‐none compliance in one randomization group, with maximum likelihood estimation based on convex programming. We discuss an alternative approach that involves a model for all‐or‐none compliance in two randomization groups and estimation via a perfect fit or an expectation–maximization algorithm for count data. We believe this approach is easier to implement, which would facilitate the reproduction of calculations.  相似文献   

19.
Vanderweele TJ 《Biometrics》2008,64(3):702-706
Summary .   Unmeasured confounding variables are a common problem in drawing causal inferences in observational studies. A theorem is given which in certain circumstances allows the researcher to draw conclusions about the sign of the bias of unmeasured confounding. Specifically, it is possible to determine the sign of the bias when monotonicity relationships hold between the unmeasured confounding variable and the treatment, and between the unmeasured confounding variable and the outcome. Some discussion is given to the conditions under which the theorem applies and the strengths and limitations of using the theorem to assess the sign of the bias of unmeasured confounding.  相似文献   

20.
Nie H  Cheng J  Small DS 《Biometrics》2011,67(4):1397-1405
In many clinical studies with a survival outcome, administrative censoring occurs when follow-up ends at a prespecified date and many subjects are still alive. An additional complication in some trials is that there is noncompliance with the assigned treatment. For this setting, we study the estimation of the causal effect of treatment on survival probability up to a given time point among those subjects who would comply with the assignment to both treatment and control. We first discuss the standard instrumental variable (IV) method for survival outcomes and parametric maximum likelihood methods, and then develop an efficient plug-in nonparametric empirical maximum likelihood estimation (PNEMLE) approach. The PNEMLE method does not make any assumptions on outcome distributions, and makes use of the mixture structure in the data to gain efficiency over the standard IV method. Theoretical results of the PNEMLE are derived and the method is illustrated by an analysis of data from a breast cancer screening trial. From our limited mortality analysis with administrative censoring times 10 years into the follow-up, we find a significant benefit of screening is present after 4 years (at the 5% level) and this persists at 10 years follow-up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号