首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Podosomes are dynamic actin-rich structures composed of a dense F-actin core surrounded by a cloud of more diffuse F-actin. Src performs one or more unique functions in osteoclasts (OCLs), and podosome belts and bone resorption are impaired in the absence of Src. Using Src−/− OCLs, we investigated the specific functions of Src in the organization and dynamics of podosomes. We found that podosome number and the podosome-associated actin cloud were decreased in Src−/− OCLs. Videomicroscopy and fluorescence recovery after photobleaching analysis revealed that the life span of Src−/− podosomes was increased fourfold and that the rate of actin flux in the core was decreased by 40%. Thus, Src regulates the formation, structure, life span, and rate of actin polymerization in podosomes and in the actin cloud. Rescue of Src−/− OCLs with Src mutants showed that both the kinase activity and either the SH2 or the SH3 binding domain are required for Src to restore normal podosome organization and dynamics. Moreover, inhibition of Src family kinase activities in Src−/− OCLs by Src inhibitors or by expressing dominant-negative SrcK295M induced the formation of abnormal podosomes. Thus, Src is an essential regulator of podosome structure, dynamics and organization.  相似文献   

2.
Podosomes are punctate adhesion structures first described in osteoclasts and next found in src-transformed cells of mesenchymal origin. Podosomes were never observed in cultured epithelial cells where cell-matrix adhesion structures were represented only by focal contacts and hemidesmosomes interacting with microfilaments and intermediate filaments, respectively. Rat bladder carcinoma cells and normal human keratinocytes showed that hemidesmosome-like structures are organized around a core of actin filaments that appears early during cell adhesion and looks similar to those of podosomes described in cells of mesenchymal origin. The epithelial podosome-like structures specifically contain Arp2/3 complex, cortactin, dynamin, gelsolin, N-WASP, VASP, Grb2 and src-like kinase(s). The integrin alpha3beta1 is localized circularly around F-actin cores and co-distributes with paxillin, vinculin and zyxin. The maintenance of the F-actin core and the surrounding hemidesmosomes depends on actin polymerization, src family kinases and Grb2, but not on microtubular integrity. Thus, podosomes are not unique to cells of mesenchymal origin, but also appear in epithelial cells where they may take part in regulating basement membrane adhesion.  相似文献   

3.
Immunolocalization of beta 3 subunit of integrins in osteoclast membrane   总被引:1,自引:0,他引:1  
Utilizing isolated and cultured osteoclasts it has been possible to establish that they adhere to the substrate through specialized close contact areas, the podosomes, that in fully spread osteoclasts in vitro or in vivo are located within the clear zone. The cytochemical organization of podosomes has further been investigated in order to elucidate their possible involvement in the control of substrate recognition, that precedes bone resorption. An immunofluorescence investigation, performed utilizing human osteoclasts, shows that the beta 2 integrin subunit that in human monocytes is expressed and located in podosomes is absent in human osteoclasts, while the beta 3 subunit of the vitronectin receptor is expressed by osteoclasts, but not by other monocyte-derived cells and colocalizes with vinculin around the actin core of the podosome. The beta 1 subunit of the fibronectin receptors is also found, but with a diffuse pattern, in the osteoclast membrane. These results indicate that podosomes, while present in different cell types, may have in the osteoclast an unique cytochemical organization related to the peculiar function of this cell.  相似文献   

4.
Focal contacts and hemidesmosomes are cell-matrix adhesion structures of cultured epithelial cells. While focal contacts link the extracellular matrix to microfilaments, hemidesmosomes make connections with intermediate filaments. We have analyzed hemidesmosome assembly in 804G carcinoma cells. Our data show that hemidesmosomes are organized around a core of actin filaments that appears early during cell adhesion. These actin structures look similar to podosomes described in cells of mesenchymal origin. These podosome-like structures are distinct from focal contacts and specifically contain Arp3 (Arp2/3 complex), cortactin, dynamin, gelsolin, N-WASP, VASP, Grb2 and src-like kinase(s). The integrin alpha3beta1 is localized circularly around F-actin cores and co-distributes with paxillin, vinculin, and zyxin. We also show that the maintenance of the actin core and hemidesmosomes is dependent on actin polymerization, src-family kinases, and Grb2, but not on microtubules. Video microscopy analysis reveals that assembly of hemidesmosomes is preceded by recruitment of beta4 integrin subunit to the actin core before its positioning at hemidesmosomes. When 804G cells are induced to migrate, actin cores as well as hemidesmosomes disappear and beta4 integrin subunit becomes co-localized with dynamic actin at leading edges. We show that podosome-like structures are not unique to cells of mesenchymal origin, but also appear in epithelial cells, where they seem to be related to basement membrane adhesion.  相似文献   

5.
Serine/threonine protein phosphatase (PP) 2A is thought to dephosphorylate phosphorylated beta1 integrin to link with actin filaments (F-actin). However, whether PP2A participates in the regulation of F-actin assembly to which beta1 integrin is anchored is unclear. We report here that the core enzyme of PP2A (PP2A-AC), consisting of the regulatory subunit A (PP2A-A) and the catalytic subunit C (PP2A-C), forms a complex with beta1 integrin, a small GTPase Rac, and its effector IQGAP1 in non-malignant human mammary epithelial (HME) cells. Treatment of HME cells with okadaic acid (OA), an inhibitor of PP2A, caused cell rounding, reduction in F-actin assembly that links with beta1 integrin, and dissociation of IQGAP1-bound PP2A-AC from Rac-beta1 integrin. The dissociation of IQGAP1-PP2A-AC was accompanied by loss of F-actin gelating activity of Rac-beta1 integrin. In breast cancer MCF-7 cells, which possess PP2A-C but lack PP2A-A, IQGAP1 was not associated with Rac-beta1 integrin but with PP2A-C, with no distinct F-actin assembly that linked to Rac-beta1 integrin even before treatment with OA. We therefore propose that PP2A, especially PP2A-A, functions to maintain F-actin assembly to which beta1 integrin is anchored by recruitment of IQGAP1 to Rac-beta1 integrin.  相似文献   

6.
Pyk2 is a member of the focal adhesion kinase (FAK) family, highly expressed in the central nervous system and haemopoietic cells. Although Pyk2 is homologous to FAK, its role in signaling pathways was shown to be distinct from that of FAK. We show here that Pyk2 is highly expressed in peritoneal IC-21 macrophage and is tyrosine phosphorylated in response to cell attachment to fibronectin and fibrinogen. Upon IC-21 cell adhesion, Pyk2 tyrosine phosphorylation is inhibited by blocking antibodies to the integrin subunits alpha(M) and beta(2). Furthermore, Pyk2 is rapidly tyrosine phosphorylated in response to ligation of beta(2) integrins by antibodies. In migrating macrophages, Pyk2 localizes to perinuclear regions and to podosomes, where it is clustered with tyrosine phosphorylated proteins. Furthermore, in the podosomal ring structure, which surrounds the central actin core, Pyk2 co-localizes with vinculin, talin, and paxillin. In the podosomes, Pyk2 also co-localizes with the integrin alpha(M)beta(2). Lastly, reduction of Pyk2 expression in macrophages leads to inhibition of cell migration. We propose that Pyk2 is functionally linked to the formation of podosomes where it mediates the integrin-cytoskeleton interface and regulates cell spreading and migration.  相似文献   

7.
Ectopic expression of a constitutive active mutant of the GTPase Cdc42 (V12Cdc42) in vascular endothelial cells triggers the dissolution of stress fibres and focal adhesion contacts and causes the repolymerisation of actin into dots. Each punctate structure consists of an F-actin core surrounded by a vinculin ring, consistent with the definition of podosomes. We now report further analysis of these complexes and show the presence of established podosomal markers such as cortactin, gelsolin, dynamin, N-WASP, and Arp2/3 which are absent in focal adhesions. Endothelial podosomes appear as randomly distributed conical structures, distributed on, but restricted to, the ventral membrane and confined to contact sites between cells and their substratum. The nature of the extracellular matrix does not influence podosome formation nor their spatial organisation. Induction of podosomes in response to V12Cdc42 is not associated with a migratory nor with a proliferative phenotype. These results add endothelial cells to the list of cell types endowed with the ability to form podosomes in vitro and raise the possibility that endothelial cells could form such structures under certain physiological or pathological conditions.  相似文献   

8.
We investigated in a colon adenocarcinoma cell line, the exclusive role of extracellular matrix (ECM) components in the absence of soluble factors regarding the integrin clustering processes, and their implication in cell adhesion, spreading and organization of the actin cytoskeleton. Caco-2 cells were shown to express at the plasma membrane 11 integrins, some of which (e.g. alpha3beta1, alpha5beta1, alpha6beta1/beta4, alpha8beta1 and alpha(v)beta1/beta5/beta6) were identified for the first time in this cell line. Cell adhesion and spreading processes were governed essentially by lamellipodium, the regulation of which was shown to be induced by two types of integrin clustering processes mediated by ECM proteins alone. During these phenomena, alpha2beta1, alpha(v)beta6 and alpha6beta1 integrins, the Caco-2 cell specific receptors of type IV collagen, fibronectin and laminin, respectively, were clustered in small focal complexes (point contacts), whereas alpha(v)beta5, the vitronectin receptor in this cell line, was aggregated in focal adhesions. The two levels of integrin clustering induced only F-actin cortical web formation organized in thin radial and/or circular filaments. We conclude thus that ECM components per se through their action on integrin clustering are involved in cell adhesion, cortical actin cytoskeleton organization and cell spreading.  相似文献   

9.
《The Journal of cell biology》1994,126(5):1299-1309
We describe a novel approach to study tyrosine-phosphorylated (PY) integrins in cells transformed by virally encoded tyrosine kinases. We have synthesized a peptide (PY beta 1 peptide) that represents a portion of the cytoplasmic domain of the beta 1 integrin subunit and is phosphorylated on the tyrosine residue known to be the target of oncogenic tyrosine kinases. Antibodies prepared against the PY beta 1 peptide, after removal of cross-reacting antibodies by absorption and affinity purification, recognized the PY beta 1 peptide and the tyrosine-phosphorylated form of the intact beta 1 subunit, but did not bind the nonphosphorylated beta 1 peptide, the nonphosphorylated beta 1 subunit or other unrelated tyrosine-phosphorylated proteins. The anti- PY beta 1 antibodies labeled the podosomes of Rous sarcoma virus- transformed fibroblasts, but did not detectably stain nontransformed fibroblasts. The localization of the tyrosine phosphorylated beta 1 subunits appeared distinct from that of the beta 1 subunit. Adhesion plaques were stained by the anti-beta 1 subunit antibodies in Rous sarcoma virus-transformed fibroblasts plated on fibronectin, whereas neither podosomes nor adhesion plaques were labeled on vitronectin or on uncoated plates. Anti-phosphotyrosine antibodies labeled podosomes, adhesion plaques and cell-cell boundaries regardless of the substratum. One of the SH2 domains of the p85 subunit of phosphatidylinositol-3- kinase bound to the PY beta 1 peptide, but not to the non- phosphorylated beta 1 cytoplasmic peptide. Other SH2 domains did not bind to the PY beta 1 peptide. These results show that the phosphorylated form of the beta 1 integrin subunit is detected in a different subcellular localization than the nonphosphorylated form and suggest that the phosphorylation on tyrosine of the beta 1 subunit cytoplasmic domain may affect cellular signaling pathways.  相似文献   

10.
RhoB affects macrophage adhesion, integrin expression and migration   总被引:1,自引:0,他引:1  
Rho GTPases regulate multiple cellular responses, including cell motility and cell cycle progression. The Rho isoform RhoB represses transformation and affects endosomal trafficking, but its effects on cell adhesion and migration have not been investigated in detail. Here we show that RhoB-null macrophages are more rounded than wild-type macrophages on fibronectin and uncoated glass, and have reduced adhesion to ICAM-1 and glass but not fibronectin. This correlated with lower cell surface expression of beta2 and beta3 integrins but not beta1 integrin. RhoB-null cells migrated faster than Wt cells on fibronectin, consistent with their smaller spread area, but slower than Wt cells on glass, reflecting their reduced adhesion. C3 transferase, which inhibits RhoA, RhoB and RhoC, induced cell spreading but this effect was reduced in RhoB-null cells. However, RhoB is not required for assembly of podosomes, which are integrin-based adhesion sites, whereas C3 transferase induced a decrease in podosomes and defects in tail retraction. Since macrophages do not express RhoC, these effects of C3 transferase are due to inhibition of RhoA rather than RhoB. Our results suggest that RhoB affects cell shape and migration by regulating surface integrin levels.  相似文献   

11.
Podosomes are adhesion structures in osteoclasts and are structurally related to focal adhesions mediating cell motility during bone resorption. Here we show that gelsolin coprecipitates some of the focal adhesion-associated proteins such as c-Src, phosphoinositide 3-kinase (PI3K), p130(Cas), focal adhesion kinase, integrin alpha(v)beta(3), vinculin, talin, and paxillin. These proteins were inducibly tyrosine-phosphorylated in response to integrin activation by osteopontin. Previous studies have defined unique biochemical properties of gelsolin related to phosphatidylinositol 3,4,5-trisphosphate in osteoclast podosomes, and here we demonstrate phosphatidylinositol 3,4,5-trisphosphate/gelsolin function in mediating organization of the podosome signaling complex. Overlay and GST pull-down assays demonstrated strong phosphatidylinositol 3,4,5-trisphosphate-PI3K interactions based on the Src homology 2 domains of PI3K. Furthermore, lipid extraction of lysates from activated osteoclasts eliminated interaction between gelsolin, c-Src, PI3K, and focal adhesion kinase despite equal amounts of gelsolin in both the lipid-extracted and unextracted experiment. The cytoplasmic protein tyrosine phosphatase (PTP)-proline-glutamic acid-serine-threonine amino acid sequences (PEST) was also found to be associated with gelsolin in osteoclast podosomes and with stimulation of alpha(v)beta(3)-regulated phosphorylation of PTP-PEST. We conclude that gelsolin plays a key role in recruitment of signaling proteins to the plasma membrane through phospholipid-protein interactions and by regulation of their phosphorylation status through its association with PTP-PEST. Because both gelsolin deficiency and PI3K inhibition impair bone resorption, we conclude that phosphatidylinositol 3,4,5-trisphosphate-based protein interactions are critical for osteoclast function.  相似文献   

12.
Osteoclasts are unique cells that utilize podosomes instead of focal adhesions for matrix attachment and cytoskeletal remodeling during motility. We have shown that osteopontin (OP) binding to the alpha(v)beta(3) integrin of osteoclast podosomes stimulated cytoskeletal reorganization and bone resorption by activating a heteromultimeric signaling complex that includes gelsolin, pp(60c-src), and phosphatidylinositol 3'-kinase. Here we demonstrate that gelsolin deficiency blocks podosome assembly and alpha(v)beta(3)-stimulated signaling related to motility in gelsolin-null mice. Gelsolin-deficient osteoclasts were hypomotile due to retarded remodeling of the actin cytoskeleton. They failed to respond to the autocrine factor, OP, with stimulation of motility and bone resorption. Gelsolin deficiency was associated with normal skeletal development and endochondral bone growth. However, gelsolin-null mice had mildly abnormal epiphyseal structure, retained cartilage proteoglycans in metaphyseal trabeculae, and increased trabecular thickness. With age, the gelsolin-deficient mice expressed increased trabecular and cortical bone thickness producing mechanically stronger bones. These observations demonstrate the critical role of gelsolin in podosome assembly, rapid cell movements, and signal transduction through the alpha(v)beta(3) integrin.  相似文献   

13.
14.
Invadosomes are adhesive mechanosensory modules composed of a dense F-actin core surrounded by a ring of adhesion molecules and able to infiltrate compact tissue environment in physiological and pathological conditions. These structures comprise podosomes that are found in a variety of cells under physiological conditions and invadopodia in transformed or cancer cells. Invadosomes are regulated by extracellular matrix signals and are endowed with degradative machinery for extracellular matrix. The ability of extracellular matrix signals to orchestrate the building, dynamics, and function of invadosomes is based on mechano-chemical integrin outside-in signaling and requires integrin cross-talk. This review highlights recent findings that place Src as an inducer and PKC as an amplifier in the assembly of integrin stimulated invadosome through mechanotransduction and polarized endo/exocytic trafficking pathways for key proteolytic and enzymatic activities in a temporally and spatially confined manner.  相似文献   

15.
Phagocytosis and subsequent phagosome maturation by professional phagocytes are essential in the clearance of infectious microbial pathogens. The molecular regulation of phagosome maturation is largely unknown. We show that integrin beta(1) plays critical roles in the phagocytosis of microbial pathogens and phagosome maturation. Macrophages lacking integrin beta(1) expression exhibit reduced phagocytosis of bacteria, including group B streptococcus and Staphylococcus aureus. Furthermore, phagosomes from macrophages lacking integrin beta(1) show lowered maturation rate, defective acquisition of lysosome membrane markers, and reduced F-actin accumulation in the periphagosomal region. Integrin beta(1)-deficient macrophages exhibit impaired bactericidal activity. We found that the expression of the Rho family GTPases Rac1, Rac2, and Cdc42 was reduced in integrin beta(1)-deficient macrophages. Ectopic expression of Rac1, but not Cdc42, in integrin beta(1)-deficient macrophages restored defective phagosome maturation and F-actin accumulation in the periphagosomal region. Importantly, macrophages lacking Rac1/2 also exhibit defective maturation of phagosomes derived from opsonized Escherichia coli or IgG beads. Taken together, these results suggest that integrin beta(1) regulates phagosome maturation in macrophages through Rac expression.  相似文献   

16.
《The Journal of cell biology》1995,131(6):1867-1880
The rapid and reversible upregulation of the functional activity of integrin receptors on T lymphocytes is a vital step in the adhesive interactions that occur during successful T cell recognition of foreign antigen and transendothelial migration. Although the ligation of several different cell surface receptors, including the antigen- specific CD3/T cell receptor complex, the CD2, CD7, and CD28 antigens, as well as several chemokine receptors, has been shown to rapidly upregulate integrin function, the intracellular signaling events that initiate this increase in adhesion remain poorly defined. In this study, we have used DNA-mediated gene transfer to explore the role of phosphatidylinositol 3-kinase (PI 3-K) in the upregulation of beta 1 integrin functional activity mediated by the CD2 antigen. CD2 was expressed in the myelomonocytic cell line HL60, which expresses beta 1 integrins that mediate adhesion to fibronectin and VCAM-1 in an activation-dependent manner. Antibody stimulation of CD2 expressed on HL60 transfectants resulted within minutes in increased beta 1-mediated adhesion to fibronectin and VCAM-1 at levels comparable to that obtained upon stimulation with the phorbol ester PMA. A role for PI 3-K in CD2-mediated increases in beta 1 integrin function is suggested by: (a) the ability of the PI 3-K inhibitor wortmannin to completely inhibit CD2-induced increases in beta 1 integrin activity; (b) the association of PI 3-K with CD2; and (c) induced PI 3-K activity upon CD2 stimulation. The mode of association of PI 3-K with CD2 is not mediated by tyrosine phosphorylation-dependent binding of PI 3-K via SH2 domains, since: (a) PI 3-K is associated with CD2 in unstimulated cells; (b) CD2 stimulation fails to increase the amount of associated PI 3-K; and (c) the CD2 cytoplasmic domain lacks tyrosine residues. A role for both protein kinase C and cytoskeletal rearrangements in CD2 regulation of integrin activity is also suggested, since a PKC inhibitor partially inhibits CD2-induced increases in beta 1 integrin function, and CD2 stimulation increases F-actin content in a wortmannin- sensitive manner. Analysis of human peripheral T cells indicated that CD2 stimulation also results in PI 3-K-dependent upregulation of beta 1 integrin activity. Thus, these results demonstrate that CD2 can function as an adhesion regulator in the absence of expression of the CD3/T cell receptor complex; and directly implicate PI 3-K as a critical intracellular mediator involved in the regulation of beta 1 integrin functional activity by the CD2 antigen.  相似文献   

17.
The core fucosylation (alpha1,6-fucosylation) of glycoprotein is widely distributed in mammalian tissues. Recently alpha1,6-fucosylation has been further reported to be very crucial by the study of alpha1,6-fucosyltransferase (Fut8)-knock-out mice, which shows the phenotype of emphysema-like changes in the lung and severe growth retardation. In this study, we extensively investigated the effect of core fucosylation on alpha3beta1 integrin and found for the first time that Fut8 makes an important contribution to the functions of this integrin. The role of core fucosylation in alpha3beta1 integrin-mediated events has been studied by using Fut8(+/+) and Fut8(-/-) embryonic fibroblasts, respectively. We found that the core fucosylation of alpha3beta1 integrin, the major receptor for laminin 5, was abundant in Fut8(+/+) cells but was totally abolished in Fut8(-/-) cells, which was associated with the deficient migration mediated by alpha3beta1 integrin in Fut8(-/-) cells. Moreover integrin-mediated cell signaling was reduced in Fut8(-/-) cells. The reintroduction of Fut8 potentially restored laminin 5-induced migration and intracellular signaling. Collectively, these results suggested that core fucosylation is essential for the functions of alpha3beta1 integrin.  相似文献   

18.
We studied which components of mechanical cell deformation are involved in "stretch modulated ion currents" (SMIC). Murine ventricular myocytes were attached to glass coverslips and deformed in x, y and z with a 16 microm thin glass stylus (S) of calibrated stiffness. Three-dimensional confocal microscopy characterized cell deformation (T-tubular membranes, mitochondria) and bending of S (indicative of the applied force). Axial (x-) displacement of S sheared the upper cell part versus the attached bottom, close to S, it changed sarcomere length and bent z-lines ("z-line displacement"). Vertical (z-press) or transversal (y-shear) displacement of S bulged cytoplasm and mitochondria transversally without detectable z-line displacement. Axial stiffness increased with the extent of stress ("stress stiffening"). Depolymerization of F-actin or block of integrin receptors reduced stiffness. SMIC served as a proxy readout of deformation-induced signaling. Axial deformation activated a non-selective cation conductance (Gns) and deactivated an inwardly rectifying K+ conductance (GK1), z-press or y-shear did not induce SMIC. Depolymerization of F-actin or block of integrin receptors reduced SMIC. SMIC did not depend on changes in sarcomere length but correlated with the extent of z-line bending. We discuss that both shear stress at the attached cell bottom and z-line bending could activate mechanosensors. Since SMIC was absent during deformations without z-line bending we postulate that z-line bending is a necessary component for SMIC signaling.  相似文献   

19.
Neutrophils migrate rapidly by co-ordinating regulation of their beta2-integrin adhesion with turnover of filamentous F-actin. The seven-protein Arp2/3 complex regulates actin polymerisation upon activation by proteins of the WASP-family. To investigate links between actin polymerisation, adhesion, and migration, we used a novel osmotic-shock method to load neutrophils with peptides: (1). WASP-WA and Scar-WA (which incorporate the actin- and Arp2/3-binding regions of WASP and Scar1), to compete with endogenous WASP-family members; (2). proline rich motifs (PRM) from the ActA protein of L. monocytogenes or from vinculin, which bind vasodilator-stimulated phosphoprotein (VASP), a regulator of cytoskeleton assembly. In a flow system, rolling-adherent neutrophils were stimulated with formyl tri-peptide. This caused rapid immobilisation, followed by migration with increasing velocity, supported by activated beta2-integrin CD11b/CD18. Loading ActA PRM (but not vinculin PRM) caused concentration-dependent reduction in migration velocity. At the highest concentration, unstimulated neutrophils had elevated F-actin and were rigid, but could not change their F-actin content or shape upon stimulation. Scar-WA also caused marked reduction in migration rate, but WASP-WA had a lesser effect. Scar-WA did not modify activation-dependent formation of F-actin or change in shape. However, a reduction in rate of downregulation of integrin adhesion appeared to contribute to impaired migration. These studies show that interference in cytoskeletal reorganisation that follows activation in neutrophils, can impair regulation of integrin function as well as motility. They also suggest a role of the Arp2/3 complex and WASP-family in co-ordinating actin polymerisation and integrin function in migrating neutrophils.  相似文献   

20.
Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work sets the scene for future studies of molecular and cellular processes regulating macrophage trans-migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号