首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human erythrocytes were incubated in a Ringer's solution enriched with 10–18% H217O. The longitudinal relaxation time (T1) of the 17O was determined separately in samples of red cell suspesions, packed cells, and supernatant. The longitudinal relaxation of 17O in erythrocyte suspensions was non-exponential, reflecting water exchange across the cell membranes as well as relaxation processes inside and outside the cell.The T1 of intracellular 17O is 4–5 times shorter than in the supernatant, similar to the enhancement of proton relaxation by hemoglobin in erythrocytes and free solution at the frequency applied (8.13 MHz). This datum is consistent with the thesis that hemoglobin modifies the NMR relaxation behavior of water inside cells and in free solution in the same way.The rate constant
for water exchange was calculated to be 60 and 107 s−1 at 25 and at 37° C, respectively. The apparent activation energy for
over the temperature range 23–37° C was 8.7±1.0 kcal/mole.  相似文献   

2.
The 1H spin-echo NMR signal amplitudes and intensities of low molecular weight solutes in the cytoplasm and extracellular fluid of suspensions of human erythrocytes were shown to depend on the osmotic pressure of the media. At low osmotic pressure (220 mosM/kg) freeze-thaw lysis of the cells resulted in signal enhancement which was greatest for extracellular molecules, but both intra- and extracellular species were almost equally enhanced at 580 mosM/kg. This effect is due to field gradients formed at cell boundaries as a result of differences in magnetic susceptibility between the medium and the cytoplasm. T2 values measured using the Carr-Purcell-Meiboom-Gill pulse sequence, with τ = 0.0003 s, depended little on cell volume and absolute changes in volume magnetic susceptibility were also small. The mean field gradients, calculated from data obtained on cell suspensions at different osmotic pressures, were in the range 0.25–1.98 G/cm and 0.89–2.09 G/cm for intra- and extracellular compartments, respectively. The maintenance of isotonicity of the extracellular fluid during metabolic studies of cell suspensions is important in order to avoid artefacts in the determination of metabolite concentrations when using the spin-echo technique. Conversely it may be possible to perform transport measurements using spin-echo NMR to monitor the cell volume changes which occur during the transmembrane migration of molecules.  相似文献   

3.
Escherichia coli B were more susceptible to radiation lethality and showed a greater oxygen enhancement ratio when exposed in dilute suspension (1 × 105 cells/ml) than when exposed in dense suspensions (1 × 109 cells/ml). The oxygen enhancement, seen with dilute suspensions, was diminished by superoxide dismutase, catalase, mannitol, or histidine. Heat-denatured superoxide dismutase was without effect. The results are interpreted as indicating a role for O2? plus H2O2 in the oxygen enhancement of radiation lethality, and a scheme is proposed which is consistent with the observations.  相似文献   

4.
White and pale yellow coloured bacteria were isolated from the riverside soil, Daejeon, South Korea, and were designated UCM-11T, UCM-F25, and UCM-80T. We found that all strains were able to reduce nitrate, and the cells were aerobic and motile. The DNA G+C contents of UCM-11T, UCM-F25, and UCM-80T were between 68.9 to 71.2 mol% and the main ubiquinone was observed as Q-8. Based on16S rRNA gene sequences, strains UCM-11T and UCM-F25 were found to closely match with Azohydromonas australica IAM 12664T (98.48–98.55%), and the strain UCM-80T was the closest match with Azohydromonas lata IAM 12599T (98.34%). The presence of summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0, summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) as well as twokinds of hydroxyfatty acids consisting of C10:0 3-OH and C12:0 2-OH, and branched fatty acids containing C16:0 iso and C17:0 cyclo were detected in all the strains. Phosphatidylethanolamine was a major polar lipid. DNA–DNA relatedness confirmed UCM-11T, UCM-F25 and UCM-80T as novel members of the genus Azohydromonas. Based on the morphological, physiological, biochemical and genotypic characteristics, we suggest that strains UCM-11T, UCM-F25, and UCM-80T represent novel species within the genus Azohydromonas. The names Azohydromonas riparia sp. nov., and Azohydromonas ureilytica sp. nov. are proposed for the type strains UCM-11T (=KACC 18570T =NBRC 111646T) and UCM-80T (=KACC 18576T =NBRC 111658T), respectively.  相似文献   

5.
6.
The transverse water proton relaxation times (T2) of erythrocytes homozygous and heterozygous for hemoglobin S have been measured as a function of oxyhemoglobin concentration at 37 °C. An immediate decrease in T2 is observed in S/S erythrocytes as the amount of oxyhemoglobin is decreased and the maximum change is observed at 50% deoxyhemoglobin S. In heterozygous erythrocytes, the T2 remains unchanged until a critical level of deoxyhemoglobin is attained. The critical level of deoxyhemoglobin is a function of the percentage of hemoglobin S in the heterozygous erythrocytes. A Hill plot of the data obtained from S/S erythrocytes gives an n value of around 2.4. These results suggest that the measurement of T2 is sensitive to the very early stages of the polymerization process. This suggestion is supported by calculations; our T2 measurements are sensitive to a range of correlation times expected for hemoglobin monomers at one extreme and linear polymers of seven hemoglobin molecules at the other extreme.  相似文献   

7.
A novel mesophilic, methylotrophic, methanogenic archaeon, designated strain EK1T, was enriched and isolated from wetland sediment. Phylogenetic analysis showed that strain EK1T was affiliated with the genus Methanomethylovorans within the family Methanosarcinaceae, and shared the highest 16S rRNA and methyl-coenzyme M reductase alpha-subunit gene sequence similarity with the type strain of Methanomethylovorans hollandica (98.8 and 92.6 %, respectively). The cells of strain EK1T were observed to be Gram-negative, non-motile and irregular cocci that did not lyse in 0.1 % (w/v) sodium dodecyl sulfate. Methanol, mono-, di- and trimethylamine, dimethyl sulfide and methanethiol were found to be used as catabolic and methanogenic substrates, whereas H2/CO2, formate, 2-propanol and acetate were not. Growth was observed at 25–40 °C (optimum, 37 °C), at pH 5.5–7.5 (optimum, pH 6.0–6.5) and in the presence of 0–0.1 M NaCl (optimum, 0 M). Growth and methane production rates were stimulated in the presence of H2/CO2 although methane production and growth yields were not significantly affected; acetate, formate, 2-propanol and CO/CO2/N2 did not affect methane production. CoCl2 (0.6–2.0 μM) and FeCl2 (25 mg/l) stimulated growth, while yeast extract and peptone did not. The DNA–DNA hybridization experiment revealed a relatedness of <20 % between EK1T and the type strains of the genus Methanomethylovorans. The DNA G+C content of strain EK1T was determined to be 39.2 mol%. Based on the polyphasic taxonomic study, strain EK1T represents a novel species belonging to the genus Methanomethylovorans, for which the name Methanomethylovorans uponensis sp. nov. is proposed. The type strain is strain EK1T(=NBRC 109636T = KCTC 4119T = JCM 19217T).  相似文献   

8.
A taxonomic study was carried out on strain 22II-S11-z10T, which was isolated from the surface seawater of the Atlantic Ocean. The bacterium was found to be Gram-stain negative, oxidase and catalase positive, oval- to rod-shaped and non-motile. Growth was observed at salinities of 0.5–9 % and at temperatures of 10–41 °C. The isolate can reduce nitrate to nitrite, degrade gelatin and aesculin, but can not degrade Tween 80. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S11-z10T belongs to the genus Actibacterium, with the highest sequence similarity to the type strain Actibacterium mucosum CECT 7668T (97.3 %). The DNA–DNA hybridization estimate value between strain 22II-S11-z10T and A. mucosum CECT 7668T was 19.30 ± 2.29 %. The principal fatty acids were identified as Summed Feature 8 (C18:1 ω7c/ω6c as defined by the MIDI system, 75.2 %) and Summed Feature 3 (C16:1 ω7c/ω6c, 6.9 %). The G+C content of the chromosomal DNA was determined to be 59.0 mol%. The respiratory quinone was determined to be Q-10 (100 %). Phosphatidylglycerol, phosphatidylcholine, two phospholipids, two aminolipids and two lipids were identified in the polar lipids. The combined genotypic and phenotypic data show that strain 22II-S11-z10T represents a novel species within the genus Actibacterium, for which the name Actibacterium atlanticum sp. nov. is proposed, with the type strain 22II-S11-z10T (=MCCC 1A09298T = LMG 27158T).  相似文献   

9.
A novel, Gram-staining negative, yellow pigmented bacterial strain, designated 15J11-2T, was isolated from soil sample on Jeju Island, Republic of Korea. The strain was subjected to a taxonomic study using a polyphasic approach. The strain was able to grow at temperature range from 10°C to 30°C, pH 7–8, and in presence of 0–1% (w/v) NaCl. Comparative 16S rRNA gene sequence analysis showed that strain 15J11-2T belongs to the genus Spirosoma and levels of 16S rRNA gene sequence similarity ranged from 91.5% to 89.8%. The genomic DNA G + C content of strain 15J11-2T was 46.0 mol%. The isolate contained phosphatidylethanolamine and an unidentified aminophospholipid as the main polar lipids, menaquinone MK-7 as the predominant respiratory quinone, and summed feature 3 (C16:1ω6c/C16:1ω7c; 39.4%), C16:1ω5c (27.1%), and C16:0 (13.0%) as the major fatty acids, which supported the affiliation of strain 15J11-2T to the genus Spirosoma. The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 15J11-2T from recognized Spirosoma species. On the basis of its phenotypic properties, genotypic distinctiveness, chemotaxonomic features, strain 15J11-2T represents a novel species of the genus Spirosoma, for which the name Spirosoma flavus sp. nov. is proposed. The type strain is 15J11-2T (= KCTC 52026T = JCM 31998T).  相似文献   

10.
Two halophilic archaeal strains, YC87T and YCA11, were isolated from Yuncheng salt lake in Shanxi, China. Cells of the two strains were observed to be pleomorphic rod-shaped, stained Gram-negative and produced red-pigmented colonies. Strain YC87T was able to grow at 20–50 °C (optimum 37 °C), at 1.4–4.8 M NaCl (optimum 2.1 M NaCl), at 0.05–1.0 M MgCl2 (optimum 0.3 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.0) while strain YCA11 was able to grow at 20–50 °C (optimum 37 °C), at 2.1–4.8 M NaCl (optimum 3.1 M NaCl), at 0.01–0.7 M MgCl2 (optimum 0.1 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.5). The cells of both isolates were observed to lyse in distilled water. The minimum NaCl concentrations that prevented cell lysis were determined to be 8 % (w/v) for strain YC87T and 12 % (w/v) for strain YCA11. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether; another major glycolipid and trace amounts of several unidentified lipids were also detected. The 16S rRNA gene sequences of the two strains were 99.8 % identical, showing 93.2–98.2 % similarity to members of the genus Halorubrum of the family Halobacteriaceae. The rpoB′ gene similarity between strains YC87T and YCA11 was 99.3 % and showed 87.5–95.2 % similarity to the closest relative members of the genus Halorubrum. The DNA G+C content of strains YC87T and YCA11 were determined to be 64.9 and 64.5 mol%, respectively. The DNA–DNA hybridization value between strain YC20T and strain YC77 was 87 % and the two strains showed low DNA–DNA relatedness with Halorubrum cibi JCM 15757T and Halorubrum aquaticum CGMCC 1.6377T, the most related members of the genus Halorubrum. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains YC87T and YCA11 represent a novel species of the genus Halorubrum, for which the name Halorubrum rubrum sp. nov. is proposed. The type strain is YC87T (=CGMCC 1.12124T = JCM 18365T).  相似文献   

11.
A Gram-negative, motile, rod-shaped, aerobic bacterial strain, designated S7-2-11T, was isolated from apple orchard soil from Gyeongsangnam-do Province, Republic of Korea, and was characterized taxonomically using a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain S7-2-11T belongs to the family Cytophagaceae in phylum Bacteroidetes, and is closely related to Spirosoma luteolum 16F6ET (94.2% identity), Spirosoma knui 15J8-12T (92.7%), and Spirosoma linguale DSM 74T (91.0%). The G + C content of the genomic DNA of strain S7-2-11T was 49.8 mol%. Strain S7-2-11T contained summed feature 3 (C16:1 ω7c/C16:1 ω6c; 35.1%), C16:1 ω5c (22.4%), C15:0 iso (13.9%), and C17:0 iso 3-OH (10.6%) as major cellular fatty acids, and MK-7 as the predominant respiratory quinone. The main polar lipids were phosphatidylethanolamine, an unidentified aminophospholipid, and two unidentified polar lipids. Phenotypic and chemotaxonomic data supported the affiliation of strain S7-2-11T with the genus Spirosoma. The results of physiological and biochemical tests showed the genotypic and phenotypic differentiation of the isolate from recognized Spirosoma species. On the basis of its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain S7-2-11T represents a novel species of the genus Spirosoma, for which the name Spirosoma pomorum sp. nov. is proposed. The type strain is S7-2-11T (= KCTC 52726T = JCM 32130T).  相似文献   

12.
Four bacterial strains were isolated from a crude oil contaminated saline soil in Shengli Oilfield, China. Strains SL014B-28A2T and SL014B-80A1 were most closely related to Rubrimonas cliftonensis OCh 317T, while strains SL003B-26A1T and SL003B-26A2 were most closely related to but readily different from the species in the Pannonibacter-Labrenzia-Roseibium-Stappia cluster. The major fatty acids were C18:1ω7c, C16:0, C18:0 and 11-Methyl C18:1ω7c, and C18:1ω7c, 11-Methyl C18:1ω7c and C18:0, respectively, for these two groups of isolates. Q-10 was the predominant ubiquinone. The G + C contents of genomic DNA of the four isolates were 67.9, 69.7, 65.6 and 65.6 mol%. Based on the polyphasic taxonomic characteristics, strains SL014B-28A2T and SL014B-80A1 represented a novel species of the genus Rubrimonas, for which the name Rubrimonas shengliensis sp. nov. is proposed, with strain SL014B-28A2T (=LMG 26072T = CGMCC 1.9170T) as the type strain. Isolates SL003B-26A1T and SL003B-26A2 represented a novel genus and species of the family Rhodobacteraceae, for which the name Polymorphum gilvum gen. nov., sp. nov. is proposed, with strain SL003B-26A1T (=LMG 25793T = CGMCC 1.9160T) as the type strain.  相似文献   

13.
The dependence of the water proton magnetic resonance spin-lattice relaxation rate (T1??1) in the rotating frame on the strength of the spin-locking (H1) field has been investigated for packed oxy and deoxy normal and sickle erythrocytes at temperatures from 9 to 40 °C. The T1??1 of oxy or deoxy normal erythrocytes shows no dependence on H1 up to ~7 G at any temperature studied. On the other hand, T1??1 decreases from about 40 s?1 to 15 s?1 (H1 from 0 to ~7 G) for deoxygenated packed sickle cells at 40 °C. The magnitude of this variation of T1??1 with H1 decreases with decreasing temperature. Oxy packed sickle cells also show a dependence of T1??1 on H1 but the magnitude is <10% of that of the deoxygenated samples. These results suggest that water proton T1??1 measurements are a sensitive probe of hemoglobin S polymerization and provide a novel technique for the study of slow water motions in these systems. The T1??1 results are compared with low frequency T1?1 results of other investigators on hemoglobin S solutions. Analysis of the data suggests that water proton motions with correlation times of the order of 10?5 s are present in the deoxygenated sickle cell samples at temperatures above 10 °C.  相似文献   

14.
A taxonomic study was carried out on strain 22II-S11-z7T, which was isolated from the surface seawater of the Atlantic Ocean. The bacterium was found to be Gram-negative, oxidase negative and catalase positive, long-rod shaped, and gliding. Growth was observed at salinities of 1–5 % and at temperatures of 10–41 °C. The isolate was capable of hydrolysing gelatin and Tween 80 and able to reduce nitrate to nitrite, but unable to degrade aesculin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S11-z7T belongs to the genus Aquimarina, with highest sequence similarity to Aquimarina megaterium XH134T (98.31 %), followed by Aquimarina macrocephali JAMB N27T (96.59 %); other species of the genus Aquimarina shared 93.63–96.08 % sequence similarity. The ANI value between strain 22II-S11-z7T and A. megaterium XH134T was found to be 91.86–91.81 %. The DNA–DNA hybridization estimated value between strain 22II-S11-z7T and A. megaterium XH134T was 47.7 ± 2.6 %. The principal fatty acids were identified as Summed Feature 3 (C16:1 ω7c/ω6c, as defined by the MIDI system; 8.1 %), SummedFeature 9 (iso-C17:1 ω7c/C16:110-methyl; 6.8 %), iso-C15:0 G (11.3 %), iso-C15:0 (24.9 %), iso-C16:0 (5.7 %), C16:0 (5.2 %), iso-C15:0 3OH (6.4 %) and iso-C17:0 3OH (21.5 %). The G+C content of the chromosomal DNA was determined to be 32.99 mol %. The respiratory quinone was determined to be MK-6 (100 %). Phosphatidylethanolamine, two unidentified aminolipids, five unidentified phospholipids and two unidentified lipids were found to be present. The combined genotypic and phenotypic data show that strain 22II-S11-z7T represents a novel species within the genus Aquimarina, for which the name Aquimarina atlantica sp. nov. is proposed, with the type strain 22II-S11-z7T (=MCCC 1A09239T = KCTC 42003T).  相似文献   

15.
We have recently demonstrated that MAP kinase phosphatase 2 (MKP-2) deficient C57BL/6 mice, unlike their wild-type counterparts, are unable to control infection with the protozoan parasite Leishmania mexicana. Increased susceptibility was associated with elevated Arginase-1 levels and reduced iNOS activity in macrophages as well as a diminished TH1 response. By contrast, in the present study footpad infection of MKP-2−/− mice with L. major resulted in a healing response as measured by lesion size and parasite numbers similar to infected MKP-2+/+ mice. Analysis of immune responses following infection demonstrated a reduced TH1 response in MKP-2−/− mice with lower parasite specific serum IgG2b levels, a lower frequency of IFN-γ and TNF-α producing CD4+ and CD8+ T cells and lower antigen stimulated spleen cell IFN-γ production than their wild-type counterparts. However, infected MKP-2−/− mice also had similarly reduced levels of antigen induced spleen and lymph node cell IL-4 production compared with MKP-2+/+ mice as well as reduced levels of parasite-specific IgG1 in the serum, indicating a general T cell hypo-responsiveness. Consequently the overall TH1/TH2 balance was unaltered in MKP-2−/− compared with wild-type mice. Although non-stimulated MKP-2−/− macrophages were more permissive to L. major growth than macrophages from MKP-2+/+ mice, reflecting their reduced iNOS and increased Arginase-1 expression, LPS/IFN-γ activation was equally effective at controlling parasite growth in MKP-2−/− and MKP-2+/+ macrophages. Consequently, in the absence of any switch in the TH1/TH2 balance in MKP-2−/− mice, no significant change in disease phenotype was observed.  相似文献   

16.
A novel Gram-stain positive, aerobic, short rod-shaped, non-motile bacterium, designated strain CHO1T, was isolated from rhizosphere soil from a ginseng agriculture field. Strain CHO1T was observed to form yellow colonies on R2A agar medium. The cell wall peptidoglycan was found to contain alanine, glycine, glutamic acid, d-ornithine and serine. The cell wall sugars were identified as galactose, mannose, rhamnose and ribose. Strain CHO1T was found to contain MK-11, MK-12, MK-13 as the predominant menaquinones and anteiso-C15:0, iso-C16:0, and anteiso-C17:0 as the major fatty acids. Diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, an unidentified phospholipid and three unidentified glycolipids were found to be present in strain CHO1T. Based on 16S rRNA gene sequence analysis, strain CHO1T was found to be closely related to Microbacterium mangrovi DSM 28240T (97.81 % similarity), Microbacterium immunditiarum JCM 14034T (97.45 %), Microbacterium oryzae JCM 16837T (97.33 %) and Microbacterium ulmi KCTC 19363T (97.10 %) and to other species of the genus Microbacterium. The DNA G+C content of CHO1T was determined to be 70.1 mol %. The DNA–DNA hybridization values of CHO1T with M. mangrovi DSM 28240T, M. immunditiarum JCM 14034T, M. oryzae JCM 16837T and M. ulmi KCTC 19363T were 46.7 ± 2, 32.4 ± 2, 32.0 ± 2 and 29.2 ± 2 %, respectively. On the basis of genotypic, phenotypic and phylogenetic properties, it is concluded that strain CHO1T represents a novel species within the genus Microbacterium, for which the name Microbacterium rhizosphaerae sp. nov. is proposed. The type strain of M. rhizosphaerae is CHO1T (= KEMB 7306-513T = JCM 31396T).  相似文献   

17.
A bacterial strain, K11T, capable of degrading phenol derivatives was isolated from activated sludge of a sewage treatment plant in China. This strain, which can degrade more than ten phenol derivatives, was identified as a Gram-stain negative, rod-shaped, asporogenous, facultative anaerobic bacterium with a polar flagellum. The strain was found to grow in tryptic soy broth in the presence of 0–2.5% (w/v) NaCl (optimum 0–1%), at 4–43 °C (optimum 30–35 °C) and pH 4.5–10.5 (optimum 7.5–8). Comparative analysis of nearly full-length 16S rRNA gene sequences showed that this strain belongs to the genus Thauera. The 16S rRNA gene sequence was found to show high similarity (97.5%) to that of Thauera chlorobenzoica 3CB-1T, with lesser similarity to other recognised Thauera strains. The G+C content of the DNA of the strain was determined to be 67.8 mol%. The DNA–DNA hybridization value between K11T and Thauera aromatica DSM6984T was 10.4 ± 4.5%. The genomic OrthoANI values of K11T with the other nine type strains of genus Thauera were less than 81.1%. Chemotaxonomic analysis of strain K11T revealed that Q-8 is the predominant quinone; the polar lipids contain phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and five uncharacterised lipids; the major cellular fatty acid was identified as summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH; 45.9%), followed by C16:0 (20.5%) and C18:1 ω7c (15.8%). Based on the phenotypic and phylogenetic evidence, DNA–DNA hybridisation, OrthoANI, chemotaxonomic analysis and results of the physiological and biochemical tests, a new species named Thauera sinica sp. nov. is proposed with strain K11T (= CGMCC 1.15731T = KACC 19216T) designated as the type strain.  相似文献   

18.
The taxonomic positions of five Gram-negative, non-spore-forming and non-motile bacterial strains isolated from the rhizosphere of sand dune plants were examined using a polyphasic approach. The analysis of the 16S rRNA gene sequence indicated that all of the isolates fell into four distinct phylogenetic clusters belonging to the genus Chryseobacterium of the family Flavobacteriaceae. The 16S rRNA gene sequence similarities of isolates to mostly related type strains of Chryseobacterium ranged from 97.5% to 98.5%. All strains contained MK-6 as the predominant menaquinone, and iso-C15:0, iso-C17:0 3-OH and a summed feature of iso-C15:0 2-OH and/or C16:1 ω7c as the dominant fatty acids. Combined phenotypic, genotypic and chemotaxonomic data supported that they represented four novel species in the genus Chryseobacterium, for which the names Chryseobacterium hagamense sp. nov. (type strain RHA2-9T=KCTC 22545T=NBRC 105253T), Chryseobacterium elymi sp. nov. (type strain RHA3-1T=KCTC 22547T=NBRC 105251T), Chryseobacterium lathyri sp. nov. (type strain RBA2-6T=KCTC 22544T=NBRC 105250T), and Chryseobacterium rhizosphaerae sp. nov. (type strain RSB3-1T=KCTC 22548T=NBRC 105248T) are proposed.  相似文献   

19.
Four anaerobic syntrophic acetate-oxidizing bacteria, the thermotolerant strains Re1T, Re2, T1 and T2, were isolated from two different mesophilic methanogenic systems. The strains originate from sludge of a continuously stirred laboratory-scale reactor containing high levels of ammonium and from a high ammonium enrichment culture. Comparative 16S rRNA gene sequence analysis confirmed that the strains belong to the Firmicutes-Clostridia class. The most closely related species to strains Re1T, Re2, T1 and T2 was Tepidanaerobacter syntrophicus, with a 16S rRNA gene sequence identity of 96%. The DNA-DNA relatedness of strains Re2, T1 and T2 to strain Re1T was 92, 102, 81%, respectively. The gene encoding the acetogen key enzyme formyltetrahydrofolate synthetase (FTHFS) was detected and partly sequenced from the strains. In pure culture the bacteria used different organic compounds as carbon and energy source, such as organic acids, alcohols, sugars and amino acids. Furthermore, acetate-oxidizing ability was observed during co-cultivation with a hydrogen-consuming Methanoculleus sp. The bacteria were found to be spore-forming, rod-shaped and motile, and possessed Gram-positive cell walls. The four strains were thermotolerant and grew at temperatures between 25 and 55 °C. Strain Re1T had a DNA G + C content of 38.4% and the major fatty acids were C18:1 w7c, C18:1 w9c, anteiso-C17:0, C16:1 w7c and C18:0. The genetic and phenotypic properties of strains Re1T, Re2, T1 and T2 suggest classification as representatives of a novel species of the genus Tepidanaerobacter; the name Tepidanaerobacter acetatoxydans sp. nov. is suggested. The type strain of T. acetatoxydans is Re1T (=DSM 21804T = JCM 16047T).  相似文献   

20.
Four bacterial strains designated 410T, 441, 695T and 736 were isolated from maize root in Beijing, P. R. China. Based on 16S rRNA gene phylogeny, the four strains formed two clusters in the genus Caulobacter. Since strain 441 was a clonal variety of strain 410T, only three strains were selected for further taxonomic studies. The whole genome average nucleotide identity (ANI) value between strains 410T and 695T was 94.65%, and both strains shared less than 92.10% ANI values with their close phylogenetic neighbors Caulobacter vibrioides DSM 9893T, Caulobacter segnis ATCC 21756T and Caulobacter flavus CGMCC 1.15093T. Strains 410T and 695T contained Q-10 as the sole ubiquinone and their major fatty acids were C16:0, 11-methyl C18:1ω 0, 11-methyl C18: 1ω7c, summed feature 3 (C16:1ω7c and/or C16:1ω 1ω7c and/or C16: 1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω 1ω7c and/or C18: 1ω6c). Their major polar lipids consisted of glycolipids and phosphatidylglycerol, and phenotypic tests differentiated them from their closest phylogenetic neighbors. Based on the results obtained, it is proposed that the three strains represent two novel species, for which the names Caulobacter zeae sp. nov. (type strain 410T = CGMCC 1.15991 = DSM 104304) and Caulobacter radicis sp. nov. (type strain 695T = CGMCC 1.16556 = DSM 106792) are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号