首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proteases of the genus Bacillus. I. Neutral proteases   总被引:9,自引:0,他引:9  
B. subtilis NRRL B3411 neutral protease has been extensively purified by solvent, and salt fractional ion, pigment removal with DEAE-cellulose followed by chromatography on hydroxylapatite, and a final passage through a Sephadex G-100 column. The neutral protease was shown to be homogeneous by disc gel and cellulose acetate electrophoresis, gel filtration chromatography, and ultra-centrifugation. The molecular weight was determined by osmometry and ultracentrifugation to be about 38–42,000 and the amino acid composition and zinc content determined. The general properties of the enzyme, pH-activity relationship, stability, effect of inhibitors, and specificity are discussed. Comparative studies were carried out on the B. subtilis NRRL B3411 and B. subtilis var. amylosacchariticus neutral proteases and these enzymes were found to be indistinguishable by the methods used, but quite distinct from the thermostable enzyme thermolysin from B. thermoprotcolyticus.  相似文献   

2.
This study is concerned with the co-production of alkaline proteases and thermostable α-amylase by some feather-degrading Bacillus strains: B. mojavensis A21, B. licheniformis NH1, B. subtilis A26, B. amyloliquefaciens An6 and B. pumilus A1. All strains produced both enzymes, except B. pumilus A1, which did not exhibit amylolytic activity. The best enzyme co-production was obtained by the NH1 strain when chicken feathers were used as nitrogen and carbon sources in the fermentation medium. The higher co-production of both enzymes by B. licheniformis NH1 strain was achieved in the presence of 7.5 g/l chicken feathers and 1 g/l yeast extract. Strong catabolic repression on protease and α-amylase production was observed with glucose. Addition of 0.5% glucose to the feather medium suppressed enzyme production by B. licheniformis NH1. The growth of B. licheniformis NH1 using chicken feathers as nitrogen and carbon sources resulted in its complete degradation after 24 h of incubation at 37°C. However, maximum protease and amylase activities were attained after 30 h and 48 h, respectively. Proteolytic activity profiles of NH1 enzymatic preparation grown on chicken feather or casein-based medium are different. As far as we know, this is the first contribution towards the co-production of α-amylase and proteases using keratinous waste. Strain NH1 shows potential use for biotechnological processes involving keratin hydrolysis and industrial α-amylase and proteases co-production. Thus, the utilization of chicken feathers may result in a cost-effective process suitable for large-scale production.  相似文献   

3.
Summary Effect of the cloned gene of Bacillus licheniformis on the extracellular proteolytic activities of B. subtilis was investigated. The gene was cloned onto the vector plasmid pUB110 (3.0 Md), and the introduction of the hybrid plasmid [pAN2 (5.4 Md)] into the cells of B. subtilis resulted in a marked increase of activities of the extracellular alkaline and neutral proteases, which had optimal pHs at 10.5 and 7.2, respectively. On DEAE-Sephadex column chromatography, the extracellular activity of B. subtilis with pAN2 was separated into two active fractions (a1 and b1). The activity in a1 was specifically inactivated by diisopropyl phosphorofluoridate (DFP) and tosyl fluoride (TSF), potent inhibitors of alkaline proteases, while, the activitiy in b1 was inhibited by ethylenediaminetetraacetate (EDTA), an inhibitor of neutral protease, but not by DEP or TSF.Sub-cloning with genes shortened to about 0.85 Md (pAN2-1) and 0.25 Md (pAN2-2) increased the activities of both alkaline and neutral proteases. The extracellular -amylase and ribonuclease production was also increased when the host strain was transformed with these hybrid plasmids (pAN2, pAN2-1, pAN2-2). The increase in activity of proteases by the cloning was discussed in relation to regulation of the production and/or secretion of the enzyme.  相似文献   

4.
Purification and characterization of the amylase of B. subtilis NRRL B3411   总被引:4,自引:0,他引:4  
The amylase of Bacillus subtilis NRRL B3411 has been purified and partially characterized. The specific activity can be increased from 300,000 units/g to 6,000,000 units/g with a 60% recovery of total units. The purified material consists of one major and one trace anodic component as determined by disc gel electrophoresis. The molecular weight was 48,000 as determined by bio-gel filtration; the molecular weight was 44,900 ± 2400 as determined by sedimentation equilibrium methods. This purified enzyme is stable at, 70°C in the presence of 0.01 M Ca++ and 0.1 M NaCl over a broad pH range from 5.5–9.5. The pH activity profile indicates optimum activity at pH 6.0. This amylase exhibits maximum activity at 60°C. The enzyme is a liquefying α-amylase as determined by analysis of hydrolysis products and immunological studies.  相似文献   

5.
The stability of the neutral and alkaline proteases in a Bacillus subtilis enzyme mixture was studied in aqueous solutions at room temperature. Stabilization of the proteases in solution for periods up to 25 days was achieved by the addition of various protein preparations including casein and soya protein. The degree of stabilization by casein was concentration dependent to about 2% protein. The instability of the neutral protease in solutions of the B. subtilis enzyme mixture was shown to be due primarily to proteolysis by the alkaline protease since the diisopropylfluorophosphate-treated enzyme was quite stable. Formulation of such enzyme solutions at low pH gave greater stability as did solutions containing an alkaline protease inhibitor from potatoes. A Conceptual approach to the formulation of enzyme solutions containing proteolytic enzyme to ensure maximum stability is proposed.  相似文献   

6.
Summary Alkaliphilic Bacillus sp. no. AH-101 produces an extremely thermostable alkaline serine protease that has a high optimum pH (pH 12–13) and shows keratinolytic activity. The gene encoding this protease was cloned in Escherichia coli and expressed in B. subtilis. The cloned protease was identical to the AH-101 protease in its optimum pH and thermostability at high alkaline pH. An open reading frame of 1083 bases, identified as the protease gene, was preceded by a putative Shine-Dalgarno sequence (AAAGGAGG) with a spacing of 11 bases. The deduced amino acid sequence revealed a pre-pro-peptide of 93 residues followed by the mature protease comprising 268 residues. AH-101 protease showed slightly higher homology to alkaline proteases from alkaliphilic bacilli (61.2% and 65.3%) than to those from neutrophilic bacilli (54.9–56.7%). Also AH-101 protease and other proteases from alkaliphilic bacilli shared common amino acid changes and a four amino acid deletion when compared to the proteases from neutrophilic bacilli. AH-101 protease, however, was distinct among the proteases from alkaliphilic bacilli in showing the lowest homology to the others.Correspondence to: H. Takami  相似文献   

7.
【背景】碱性蛋白酶是工业用酶中占比最大的酶类,广泛应用于清洁、食品、医疗等行业。近期研究发现碱性蛋白酶在生产生物活性肽方面有巨大潜力,这将进一步拓宽其在保健食品领域中的应用。【目的】利用枯草芽孢杆菌异源表达地衣芽孢杆菌来源的碱性蛋白酶SubC。【方法】通过筛选3种枯草芽孢杆菌宿主菌株(Bacillus subtilis 1A751、MA07、MA08)和6种信号肽(AmyE、AprE、NprE、Pel、YddT、YoqM),同时优化诱导剂浓度、发酵培养基和发酵时长,最终得到最优重组菌株MA08-AmyE-subCopt。【结果】重组菌株MA08-AmyE-subCopt的胞外酶活力为3.33×103 AU/mL,胞外蛋白分泌量为胞内可溶蛋白表达量的4倍,与携带野生型信号肽的对照组菌株WT相比,酶活提高了73.4%。【结论】异源碱性蛋白酶SubC在枯草芽孢杆菌中成功表达,为碱性蛋白酶SubC的表达和在保健食品领域的工业化应用提供了理论基础。  相似文献   

8.
Summary We constructed a secretion plasmid in which a truncated penicillinase gene of Bacillus licheniformis was introduced at the end of the signal peptide coding region of a Bacillus amyloliquefaciens neutral protease gene. A Bacillus subtilis recombinant secreted about 140 mg/liter of the penicillinase into the medium. Analysis of the purified product revealed that it was a mixture of two penicillinases containing one or two additional amino acids at the NH2-terminus of B. licheniformis exo-small penicillinase.  相似文献   

9.
Bacillus licheniformis PWD-1, the parent strain, and B. subtilis FDB-29, a recombinant strain. In both strains, keratinase was induced by proteinaceous media, and repressed by carbohydrates. A seed culture of B. licheniformis PWD-1 at early age, 6–10 h, is crucial to keratinase production during fermentation, but B. subtilis FDB-29 is insensitive to the seed culture age. During the batch fermentation by both strains, the pH changed from 7.0 to 8.5 while the keratinase activity and productivity stayed at high levels. Control of pH, therefore, is not necessary. The temperature for maximum keratinase production is 37°C for both strains, though B. licheniformis is thermophilic and grows best at 50°C. Optimal levels of dissolved oxygen are 10% and 20% for B. licheniformis and B. subtilis respectively. A scale-up procedure using constant temperature at 37°C was adopted for B. subtilis. On the other hand, a temperature-shift procedure by which an 8-h fermentation at 50°C for growth followed by a shift to 37°C for enzyme production was used for B. licheniformis to shorten the fermentation time and increase enzyme productivity. Production of keratinase by B. licheniformis increased by ten-fold following this new procedure. After respective optimization of fermentation conditions, keratinase production by B. licheniformis PWD-1 is approximately 40% higher than that by B. subtilis FDB-29. Received 16 July 1998/ Accepted in revised form 07 March 1999  相似文献   

10.
Bacillus subtilis 1A20 transformed with a hybrid plasmid, pNP150, to which a DNA fragment from Bacillus amyloliquefaciens F was attached, produced a large amount of a neutral protease. To identify the origin of the gene specifying this neutral protease, neutral proteases from B. amyloliquefaciens F, B. subtilis NP58 (a derivative of Marburg 6160), and B. subtilis 1A20 transformed with pNP150 were purified. We investigated their immunological properties and primary structures.

The proteases from these two species were indistinguishable by chromatography, but they were distinguishable from each other by SDS-polyacrylamide gel electrophoresis and double immunodiffusion. Amino acid sequencing of these two proteases by Edman degradation showed that there were four substitutions in the 20-residue amino acid sequence from the N-termini.

Neutral protease from the transformant had the same immunological characteristics and N-terminal amino acid sequence as that from B. amyloliquefaciens. These results meant that the gene in question was derived from a gene specifying the neutral protease in this bacterium.  相似文献   

11.
While about 80% of the cell-bound intracellular serine protease of Bacillus subtilis A-50 have been recovered in the soluble fraction upon disruption of cells, the rest of the enzyme was found to be associated with the membrane fraction. Soluble cytoplasmic intracellular serine protease, as well as membrane-bound serine protease liberated by nonionic detergent treatment, have been isolated in a pure state and shown to be identical. The same protease might also be found extracellularly, due presumably to cell lysis or altered membrane permeability. Intracellular serine protease of Bacillus subtilis A-50 was clearly related to Bacillus subtilis serine proteases W1 and bacillopeptidase F described as extracellular enzymes.Abbreviations ISP intracellular serine protease - ISP-A-Bsu A-50 and ISP-B-Bsu A-50 molecular forms A and B of B. subtilis A-50 intracellular serine protease, respectively - SDS sodium dodecyl sulfate - PMSF phenylmethyl sulfonylfluoride - pNA p-nitroanilide - Buffer A 50 mM Tris-(hydroxymethyl)aminomethane-1 mM CaCl2 adjusted to pH 8.5 with HCl  相似文献   

12.
We demonstrate for the first time, an expression system mimicking serine alkaline protease synthesis and secretion, producing native form of human growth hormone (hGH) from Bacillus subtilis. A hybrid‐gene of two DNA fragments, i.e., signal (pre‐) DNA sequence of B. licheniformis serine alkaline protease gene (subC) and cDNA encoding hGH, were cloned into pMK4 and expressed under deg‐promoter in B. subtilis. Recombinant‐hGH (rhGH) produced by B. subtilis carrying pMK4::pre(subC)::hGH was secreted. N‐terminal sequence and mass spectrometry analyses of rhGH confirm the mature hGH sequence, and indicate that the signal peptide was properly processed by B. subtilis signal‐peptidase. The highest rhGH concentration was obtained at t = 32 h as CrhGH = 70 mg L?1 with a product yield on substrate YrhGH/S = 9 g kg?1, in a glucose based defined medium. Fermentation characteristics and influence of hGH gene on the rhGH production were investigated by comparing B. subtilis carrying pMK4::pre(subC)::hGH with that of carrying merely pMK4. Excreted organic‐acid concentrations were higher by B. subtilis carrying pMK4::pre(subC)::hGH, whereas excreted amino‐acid concentrations were higher by B. subtilis carrying pMK4. The approach developed is expected to be applicable to the design of expression systems for heterologous protein production from Bacillus species. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

13.
Heng C  Chen Z  Du L  Lu F 《Biotechnology letters》2005,27(21):1731-1737
Alpha amylase gene from Bacillus licheniformis was mutated by site-directed mutagenesis to improve its acid stability. The mutant gene was expression in Bacillus subtilis under the control of the promoter of sacB gene which was followed by either the α-amylase leader peptide of Bacillus licheniformis or the signal peptide sequence of sacB gene of Bacillus subtilis. Both peptides efficiently directed the secretion of α-amylase from the recombinant B. subtilis cells. The extracellular α-amylase activities in two recombinants were 1001 and 2012 U ml−1, respectively. The purity of the recombinant product was confirmed by SDS-PAGE.  相似文献   

14.
Bacillus licheniformis (B. licheniformis) CH3-17, an isolate from cheonggukjang, a traditional Korean fermented soyfood, secretes several fibrinolytic enzymes into the culture medium, showing strong fibrinolytic activity. A gene homologous to aprE of Bacillus subtilis (B. subtilis), aprE3-17, was cloned by PCR. DNA sequencing showed that aprE3-17 encodes a prepro-type serine protease consisting of 382 amino acids. The mature enzyme was 27 kDa in size. The aprE3-17 gene was overexpressed in B. subtilis WB600 using pHY300PLK, an Escherichia coli (E. coli)-Bacillus shuttle vector, and the 27 kDa enzyme was purified from the culture supernatant. The optimum pH for activity was 6.0. Purified enzyme quickly degraded the Aα and Bβ chains of fibrinogen but could not degrade the γ-chain.  相似文献   

15.
This study explores a novel concept of coproduction of uricase and alkaline protease by Bacillus licheniformis using single substrate in single step. Seven local bacterial strains were screened for uricase production, amongst which B. licheniformis is found to produce highest uricase along with alkaline protease. Optimization of various factors influencing maximum enzyme coproduction by B. licheniformis is performed. Maximum enzyme productivity of 0.386?U/mL uricase and 0.507?U/mL alkaline protease is obtained at 8?hr of incubation period, 1% (v/v) inoculum, and at 0.2% (w/v) uric acid when the organism is cultivated at 25°C, 180?rpm, in a media containing xylose as a carbon source, urea as a nitrogen source, and initial pH of 9.5. The statistical experimental design method of Box–Behnken was further applied to obtain optimal concentration of significant parameters such as pH (9.5), uric acid concentration (0.1%), and urea concentration (0.05%). The maximum uricase and alkaline protease production by B. licheniformis using Box–Behnken design was 0.616 and 0.582?U/mL, respectively, with 1.6- and 1.13-fold increase as compared to one factor at a time optimized media. This study will be useful to develop an economic, commercially viable, and scalable process for simultaneous production of uricase and protease enzymes.  相似文献   

16.
Summary Biochemical and sensory changes of Nigerian melon seeds fermented with fourBacillus strains isolated from African locust beans were studied. In all fermentations, the reducing sugar content doubled from a starting value of 45 mg/g. The total free amino acid content decreased for the first 40 h and then increased. WithB. licheniformis, B. subtilis andB. pumilis, there was a subsequent large increase in free amino acid content. The extracted oils in the fermentation product increased in saponification number and free acid content but decreased in iodine number. The sensory properties of theB. licheniformis product was similar to that of ogiri and that ofB. subtiis to Iru.  相似文献   

17.
Microbiological spoilage of mayonnaise and salad dressings   总被引:4,自引:1,他引:3       下载免费PDF全文
Saccharomyces bailii was isolated from two-thirds of the spoiled mayonnaise and salad dressing samples examined. Most of the rest were spoiled by Lactobacillus fructivorans. However, one sample contained large numbers of both S. bailii and L. plantarum. Two of the spoiled samples also contained small numbers of bacilli. Bacillus subtilis, B. pumilis, B. polymyxa, B. megaterium, and B. licheniformis were found in one sample and B. subtilis and B. pumilis in another. Small numbers of B. subtilis and B. licheniformis were also present in one unspoiled sample. Several media were evaluated for the isolation of L. fructivorans. S. bailii and L. fructivorans vigorously fermented glucose. The concentration of glucose in the spoiled samples ranged from 0 to 38.5 g/kg and from 1.3 to 17.8 g/kg for the unspoiled samples.  相似文献   

18.
We functionally analysed the two-component regulatory system DegSU (historically SacU) in Bacillus megaterium DSM319 by generating a genetic knock out as well as a sacU32 mutation. The latter—known to cause a hypersecretion phenotype in Bacillus subtilis—had no influence on extracellular protease and amylase activity in B. megaterium. Since the B. megaterium DegU complemented a Bacillus licheniformisdegSU mutant, functionality of the protein was proven. Expression of the sacB encoded levansucrase was found to be dependent on DegSU in B. megaterium. Consistently, the fusion of the sacB promoter to gfp revealed a strong increase in GFP-expression in the sacU32 strain. On 2 D-gels of the secretome, a large number of intracellular proteins was seen. The culture medium contained only 42 secreted proteins which can be assigned to polypeptides involved in the metabolism of the cell wall, polypeptides with proteolytic activities and those with unknown functions. Though overall protease activity matches with the wild type, two proteolytic enzymes (Vpr and YwaD) are missing in the secretome of the ∆degSU strain, while other degradative enzymes are not affected. In line with such findings, no increase of proteolytic or other degradative enzymes was seen in the sacU32 mutant. Thus, compared to B. subtilis and B. licheniformis, the number of extracellular proteins influenced by DegSU is surprisingly low in B. megaterium, a feature, probably advantageous as to the use of the sacU32 mutant for production of secreted proteins.  相似文献   

19.
Summary Bacillus subtilis DB104, a double mutant which does not synthesize neutral or alkaline proteases, was shown to exhibit some residual proteolytic activity when grown in both batch and continuous cultures. A major protein component responsible for about 70% of extracellular residual protease activity was reversibly deactivated by removal of calcium.  相似文献   

20.
The neutral protease of Bacillus subtilis var. amylosacchariticus was cleaved chemically or digested with proteolytic enzymes, and the resultant peptides were separated and purified by high performance liquid chromatography. The sequence analyses of these peptides by the manual Edman procedure established the complete amino acid sequence of the enzyme. The neutral protease consisted of 300 amino acid residues with Ala and Leu as its amino- and carboxyl-termini, respectively, and the molecular weight was calculated to be 32,633. The sequence was found to be identical to that of B. subtilis 1A72 neutral protease, which was deduced from nucleotide sequencing. Comparison of the sequence with those of other Bacillus proteases revealed that the putative active site amino acid residues, Zn-binding ligands, and two Ca-binding sites were well conserved among them, as compared with those of thermolysin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号