首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indoleamine 2, 3-dioxygenase (IDO) catabolizes tryptophan, mediates immunomodulatory functions, and is released by stromal cells such as mesenchymal stem cells. The aims of this study were to investigate the effects of IDO silencing on immunosuppressive function of adipose-derived mesenchymal stem cells (ASCs), T cells phenotype, and the proliferation/migration of tumor cells. ASCs isolated from adipose tissues of healthy women were transfected with IDO-siRNA. Galectin-3, transforming growth factor-β1, hepatocyte growth factor, and interleukin-10 as immunomodulators were measured in ASCs using qRT-PCR. T cells phenotype, interferon-γ, and interleukin-17 expression were evaluated in peripheral blood lymphocytes (PBLs) cocultured with IDO silenced-ASCs by flow cytometry and qRT-PCR, respectively. Scratch assay was applied to assess the proliferation/migration of MDA-MB-231 cell line. Galectin-3 was upregulated (p ˂ 0.05) while hepatocyte growth factor was downregulated (p ˂ 0.05) in IDO-silenced ASCs compared to control groups. Regulatory T cells were inhibited in PBLs cocultured with IDO-silenced ASCs; also T helper2 was decreased in PBLs cocultured with IDO-silenced ASCs relative to the scramble group. IDO-silenced ASCs caused interferon-γ overexpression but interleukin-17 downregulation in PBLs. The proliferation/migration of MDA-MB-231 was suppressed after exposing to condition media of IDO-silenced ASCs compared with condition media of untransfected (p < 0.01) and scramble-transfected ASCs (p < 0.05). The results exhibited the weakened capacity of IDO-silenced ASCs for suppressing the immune cells and promoting the tumor cells' proliferation/migration. IDO suppression may be utilized as a strategy for cancer treatment. Simultaneous blocking of immunomodulators along with IDO inhibitors may show more effects on boosting the efficiency of immune-based cancer therapies.  相似文献   

2.
Indoleamine 2,3-dioxygenase 1 (IDO1) activity links to immune escape of cancers. Inhibition of IDO1 provides a new approach for cancer treatment. Most clinical IDO1 drugs show marginal efficacy as single agents. On basis of molecular docking and pharmacophore modelling, a novel inhibitor Roxyl-WL was discovered with a half maximal inhibitory concentration (IC50) value of 1?nM against IDO1 and 10–100-fold increased potent activity compared with IDO1 drugs in clinical trials. Roxyl-WL displayed excellent kinase spectrum selectivity with no activity out of the 337 protein kinases. In vitro, Roxyl-WL effectively augmented the proliferation of T cells and reduced the number of regulatory T cell (Tregs).When administered to melanoma (B16F10) tumor-bearing mice orally, Roxyl-WL significantly suppressed tumor growth and induced immune response.  相似文献   

3.
Melanoma is the most aggressive form of skin cancer, and its incidence has increased dramatically over the years. The murine B16F10 melanoma in syngeneic C57Bl/6 mice has been used as a highly aggressive model to investigate tumor development. Presently, we demonstrate in the B16F10-Nex2 subclone that silencing of SOCS-1, a negative regulator of Jak/Stat pathway, leads to reversal of the tumorigenic phenotype and inhibition of melanoma cell metastasis. SOCS-1 silencing with short hairpin RNA affected tumor growth and cell cycle regulation with arrest at the S phase with large-sized nuclei, reduced cell motility, and decreased melanoma cell invasion through Matrigel. A clonogenic assay showed that SOCS-1 acted as a modulator of resistance to anoikis. In addition, downregulation of SOCS-1 decreased the expression of epidermal growth factor receptor (mainly the phosphorylated-R), Ins-Rα, and fibroblast growth factor receptor. In vivo, silencing of SOCS-1 inhibited subcutaneous tumor growth and metastatic development in the lungs. Because SOCS-1 is expressed in most melanoma cell lines and bears a relation with tumor invasion, thickness, and stage of disease, the present results on the effects of SOCS-1 silencing in melanoma suggest that this regulating protein can be a target of cancer therapy.  相似文献   

4.
Active immunotherapy and cancer vaccines that promote host antitumor immune responses promise to be effective and less toxic alternatives to current cytotoxic drugs for the treatment of cancer. However, the success of tumor immunotherapeutics and vaccines is dependent on identifying approaches for circumventing the immunosuppressive effects of regulatory T (Treg) cells induced by the growing tumor and by immunotherapeutic molecules, including Toll-like receptor (TLR) agonists. Here, we show that tumors secrete high concentrations of active TGF-β1, a cytokine that can convert naive T cells into Foxp3+ Treg cells. Silencing TGF-β1 mRNA using small interfering RNA (siRNA) in tumor cells inhibited active TGF-β1 production in vitro and restrained their growth in vivo. Prophylactic but not therapeutic administration of TGF-β1 siRNA reduced the growth of CT26 tumors in vivo. Furthermore, suppressing TGF-β1 expression at the site of a tumor, using siRNA before, during and after therapeutic administration of a TLR-activated antigen-pulsed dendritic cell vaccine significantly reduced the growth of B16 melanoma in mice. The protective effect of co-administering TGF-β1 siRNA with the DC vaccine was associated with suppression of CD25+Foxp3+ and CD25+IL-10+ T cells and enhancement of tumor infiltrating CD4 and CD8 T cells. Our findings suggest that transient suppression of TGF-β1 may be a promising approach for enhancing the efficacy of tumor vaccines in humans.  相似文献   

5.
Persistent activation of STAT3 plays a major role in cancer progression and immune escape. Therefore, targeting STAT3 in tumors is essential to enhance/reactivate antitumor immune response. In our previous studies, we demonstrated the efficacy of stearic acid-modified polyethylenimine (PEI-StA) in promoting small interfering RNA (siRNA) silencing of STAT3 in B16.F10 melanoma in vitro and in vivo. In the current study, we examine the immunologic impact of this intervention. Toward this goal, the infiltration and activation of lymphocytes and dendritic cells (DCs) in the tumor mass were assessed using flow cytometry. Moreover, the levels of IFN-γ, IL-12, and TNF-α in homogenized tumor supernatants were determined. Moreover, mixed lymphocytes reaction using splenocytes of tumor-bearing mice was used to assess DC functionality on siRNA/lipopolyplexes intervention. Our results demonstrated up to an approximately fivefold induction in the infiltration of CD3(+) cells in tumor mass on STAT3 knockdown with high levels of CD4(+), CD8(+), and NKT cells. Consistently, DC infiltration in tumor milieu increased up to approximately fourfold. Those DCs were activated, in an otherwise suppressive microenvironment, as evidenced by a high expression of costimulatory molecules CD86 and CD40. ELISA analysis revealed a significant increase in IFN-γ, IL-12, and TNF-α. Moreover, mixed lymphocytes reaction demonstrated alloreactivity of these DCs as assessed by high T-cell proliferation and IL-2 production. Our results suggest a bystander immune response after local STAT3 silencing by siRNA. This strategy could be beneficial as an adjuvant therapy along with current cancer vaccine formulations.  相似文献   

6.
Substantial evidence indicates that immune activation at stroma can be rerouted in a tumor-promoting direction. CD69 is an immunoregulatory molecule expressed by early-activated leukocytes at sites of chronic inflammation, and CD69(+) T cells have been found to promote human tumor progression. In this study, we showed that, upon encountering autologous CD69(+) T cells, tumor macrophages (MΦs) acquired the ability to produce much greater amounts of IDO protein in cancer nests. The T cells isolated from the hepatocellular carcinoma tissues expressed significantly more CD69 molecules than did those on paired circulating and nontumor-infiltrating T cells; these tumor-derived CD69(+) T cells could induce considerable IDO in monocytes. Interestingly, the tumor-associated monocytes/MΦs isolated from hepatocellular carcinoma tissues or generated by in vitro culture effectively activated circulating T cells to express CD69. IL-12 derived from tumor MΦs was required for early T cell activation and subsequent IDO expression. Moreover, we found that conditioned medium from IDO(+) MΦs effectively suppressed T cell responses in vitro, an effect that could be reversed by adding extrinsic IDO substrate tryptophan or by pretreating MΦs with an IDO inhibitor 1-methyl-DL-tryptophan. These data revealed a fine-tuned collaborative action between different types of immune cells to counteract T cell responses in tumor microenvironment. Such an active induction of immune tolerance should be considered for the rational design of effective immune-based anticancer therapies.  相似文献   

7.
Tumor-targeted delivery of immune stimulatory genes, such as pro-inflammatory cytokines and suicide genes, has shown to cure mouse models of cancer. Total tumor eradication was also found to occur despite subtotal tumor engineering; a phenomenon coined the "bystander effect". The bystander effect in immune competent animals arises mostly from recruitment of a cancer lytic cell-mediated immune response to local and distant tumor cells which escaped gene modification. We have previously described a Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Interleukin 2 (IL2) fusokine (aka GIFT2) which serves as a potent anticancer cytokine and it here served as a means to understand the mechanistic underpinnings to the immune bystander effect in an immune competent model of B16 melanoma. As expected, we observed that GIFT2 secreted by genetically engineered B16 tumor cells induces a bystander effect on non modified B16 cells, when admixed in a 1:1 ratio. However, despite keeping the 1:1 ratio constant, the immune bystander effect was completely lost as the total B16 cell number was increased from 10(4) to 10(6) which correlated with a sharp reduction in the number of tumor-infiltrating NK cells. We found that B16 secrete biologically active TGFbeta which in turn inhibited GIFT2 dependent immune cell proliferation in vitro and downregulated IL-2R beta expression and IFN gamma secretion by NK cells. In vivo blockade of B16 originating TGFbeta significantly improved the immune bystander effect arising from GIFT2. We propose that cancer gene immunotherapy of pre-established tumors will be enhanced by blockade of tumor-derived TGFbeta.  相似文献   

8.
Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting tumor cell immunotherapies have demonstrated long-lasting, and specific anti-tumor immune responses in animal models. The studies reported here specifically evaluate two aspects of the immune response generated by such immunotherapies: the persistence of irradiated tumor cells at the immunization site, and the breadth of the immune response elicited to tumor associated antigens (TAA) derived from the immunotherapy. To further define the mechanism of GM-CSF-secreting cancer immunotherapies, immunohistochemistry studies were performed using the B16F10 melanoma tumor model. In contrast to previous reports, our data revealed that the irradiated tumor cells persisted and secreted high levels of GM-CSF at the injection site for more than 21 days. Furthermore, dense infiltrates of dendritic cells were observed only in mice treated with GM-CSF-secreting B16F10 cells, and not in mice treated with unmodified B16F10 cells with or without concurrent injection of rGM-CSF. In addition, histological studies also revealed enhanced neutrophil and CD4+ T cell infiltration, as well as the presence of apoptotic cells, at the injection site of mice treated with GM-CSF-secreting tumor cells. To evaluate the scope of the immune response generated by GM-CSF-secreting cancer immunotherapies, several related B16 melanoma tumor cell subclones that exist as a result of genetic drift in the original cell line were used to challenge mice previously immunized with GM-CSF-secreting B16F10 cells. These studies revealed that GM-CSF-secreting cancer immunotherapies elicit T cell responses that effectively control growth of related but antigenically distinct tumors. Taken together, these studies provide important new insights into the mechanism of action of this promising novel cancer immunotherapy. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The tumor microenvironment is complex and creates an immunosuppressive network to tolerize tumor-specific immune responses; however, little information is available regarding the response against non-tumor antigens in tumor-bearing individuals. The goal of the present study was to evaluate if tumor burden could influence a CD4+ T cell response against a soluble protein, not expressed by the tumor, in the absence of in vitro stimulation. Using an experimental system in which we can compare CD4+ T cell responses to the Ea antigen when it is either expressed by B16F10 melanoma cells (B16EaRFP cells) or is an exogenous, non-tumor antigen (soluble EaRFP protein), in immunizations of B16F10 tumor-bearing mice, we observed that the tumor can modulate the CD4+ T cell-specific response to the antigen when it is expressed by the tumor cells. TEa cells proliferated poorly and produced less IFN-γ in mice bearing B16F10 melanoma expressing Ea peptide, and tumor growth was impervious to this response. However, in mice bearing 7 days B16F10 tumors, not expressing the Ea antigen, priming of TEa cells was similar to that observed in tumor-free mice, based on the total number of cells recovered and proliferation assessed by CFSE dilution after EaRFP immunization. We also investigated if tumor burden could influence recall responses of already differentiated effector cells. We immunized mice with EaRFP antigen and after a few days injected B16F10 cells. After 10 days of tumor growth, we challenged the mice with the non-tumor antigen. We found that the number of TEa cells producing IFN-γ in tumor-bearing mice was not different compared to tumor-free mice. No differences in antigen presentation, assessed by YAe antibody staining, were verified in the draining lymph node of these two groups. Collectively, our data indicate that tumor burden does not affect immune responses to non-tumor antigens. These results have important implications in the design of anti-cancer therapy.  相似文献   

10.
Genetic and pharmacological studies of indoleamine 2,3-dioxygenase (IDO) have established this tryptophan catabolic enzyme as a central driver of malignant development and progression. IDO acts in tumor, stromal and immune cells to support pathogenic inflammatory processes that engender immune tolerance to tumor antigens. The multifaceted effects of IDO activation in cancer include the suppression of T and NK cells, the generation and activation of T regulatory cells and myeloid-derived suppressor cells, and the promotion of tumor angiogenesis. Mechanistic investigations have defined the aryl hydrocarbon receptor, the master metabolic regulator mTORC1 and the stress kinase Gcn2 as key effector signaling elements for IDO, which also exerts a non-catalytic role in TGF-β signaling. Small-molecule inhibitors of IDO exhibit anticancer activity and cooperate with immunotherapy, radiotherapy or chemotherapy to trigger rapid regression of aggressive tumors otherwise resistant to treatment. Notably, the dramatic antitumor activity of certain targeted therapeutics such as imatinib (Gleevec) in gastrointestinal stromal tumors has been traced in part to IDO downregulation. Further, antitumor responses to immune checkpoint inhibitors can be heightened safely by a clinical lead inhibitor of the IDO pathway that relieves IDO-mediated suppression of mTORC1 in T cells. In this personal perspective on IDO as a nodal mediator of pathogenic inflammation and immune escape in cancer, we provide a conceptual foundation for the clinical development of IDO inhibitors as a novel class of immunomodulators with broad application in the treatment of advanced human cancer.  相似文献   

11.
IL-21 is a key factor in the transition between innate and adaptive immune responses. We have used the cytokine gene therapy approach to study the antitumor responses mediated by IL-21 in the B16F1 melanoma and MethA fibrosarcoma tumor models in mice. Retrovirally transduced tumor cells secreting biologically functional IL-21 have growth patterns in vitro similar to that of control green fluorescent protein-transduced cells, but are completely rejected in vivo. We show that IL-21 activates NK and CD8(+) T cells in vivo, thus mediating complete rejection of poorly immunogenic tumors. Rejection of IL-21-secreting tumors requires the presence of cognate IL-21R and does not depend on CD4(+) T cell help. Interestingly, perforin, but not IFN-gamma or other major Th1 and Th2 cytokines (IL-12, IL-4, or IL-10), is required for the IL-21-mediated antitumor response. Moreover, IL-21 results in 50% protection and 70% cure of nonimmunogenic tumors when given before and after tumor challenge, respectively, in C57BL/6 mice. We conclude that IL-21 immunotherapy warrants clinical evaluation as a potential treatment for cancer.  相似文献   

12.
13.
Ou  Jinqing  Lei  Pingguang  Yang  Zhenling  Yang  Man  Luo  Lingmin  Mo  Hongdan  Luo  Guijin  He  Junhui 《Journal of molecular histology》2021,52(3):611-620

This study aimed to annotate the role of long intergenic non-coding RNA 152 (LINC00152) in CD8+ T cells mediated immune responses in gastric cancer (GC) and the underlying mechanism. LINC00152 expression levels were detected through RT-PCR. For tumor engraftment, HGC-27 cells that received LINC00152 shRNA, LINC00152 overexpression vectors, enhancer of zeste homolog 2 (EZH2) shRNA or combination transfection were injected into mice. Chromatin immunoprecipitation (ChIP) assay was used to explore the interaction between LINC00152, Cys-X-cys ligand 9 (CXCL9) and Cys-X-cys ligand 10 (CXCL10). Flow cytometry was adopted to measure the CD8+ T-cell infiltration in tumor issue. In this study, we found increased LINC00152 expression levels are positively associated with the poor prognosis of GC patients and negatively associated with the CD8 levels. ChIP assay verified that LINC00152 recruits EZH2 to the promoters of CXCL9 and CXCL10, thus the silencing of LINC00152 promoted the production of CXCL9 and CXCL10. Knockdown of LINC00152 suppressed tumor cells growth in vivo and in vitro, increased tumor-infiltrating CD8+ T cells numbers and promoted the expression of CXCL9, CXCL10 and C-X-C Motif Chemokine Receptor 3 (CXCR3) in xenograft tumors. While CD8+ T cell depletion reversed the tumor suppression effect of LINC00152 silence. Besides, the silencing of EZH2 partly inhibited the promotion effect LINC00152 on tumor growth. Our study indicated that LINC00152 inhibition suppressed the tumor progress may through promoting CD8+ T-cell infiltration.

  相似文献   

14.
Immune escape is a crucial feature of cancer progression about which little is known. Elevation of the immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO) in tumor cells can facilitate immune escape. Not known is how IDO becomes elevated or whether IDO inhibitors will be useful for cancer treatment. Here we show that IDO is under genetic control of Bin1, which is attenuated in many human malignancies. Mouse knockout studies indicate that Bin1 loss elevates the STAT1- and NF-kappaB-dependent expression of IDO, driving escape of oncogenically transformed cells from T cell-dependent antitumor immunity. In MMTV-Neu mice, an established breast cancer model, we show that small-molecule inhibitors of IDO cooperate with cytotoxic agents to elicit regression of established tumors refractory to single-agent therapy. Our findings suggest that Bin1 loss promotes immune escape in cancer by deregulating IDO and that IDO inhibitors may improve responses to cancer chemotherapy.  相似文献   

15.
Although the incidence of cancer rises with age, tumor growth is often slowed in older hosts. The B16/F10 melanoma cell line is commonly used in murine models of age-related tumor growth suppression. We wished to determine if the growth pattern and gene expression of B16/10 tumors grown in aged mice could be simulated in 3D collagen matrices derived from aged mice. Outcome measures were tumor size in vitro and gene expression of the key growth regulatory molecules: growth hormone receptor (GHR), IL-10Rβ, IL-4Rα, and IL-6. B16/F10 tumors were grown in 20–25-mo-old C57/BL6 male mice. Tumor sizes ranged from 30 to 4,910 mg in vivo. Tumors from a subset of mice were removed after euthanasia, and equivalent amounts of each tumor were placed in aged 3D collagen and grown for 5 d. Tumor sizes in aged 3D collagen correlated highly with their original tumor size in vivo. Gene expression changes noted in vivo were also maintained during tumor growth in aged 3D collagen in vitro. The relative expression of GHR was increased, IL-10Rβ was unchanged, and IL-4Rα and IL-6 were decreased in the larger tumors relative to the smaller tumors in vitro, in a pattern similar to that noted in vivo. We propose that 3D matrices from aged mice provide an in vitro model of tumor growth that correlates highly with tumor size and expression of key regulatory molecules in vivo.  相似文献   

16.
Many tumor cells shed specialized membrane vesicles known as exosomes. In this study, we show that pretreatment of mice with exosomes produced by TS/A or 4T.1 murine mammary tumor cells resulted in accelerated growth of implanted tumor cells in both syngeneic BALB/c mice and nude mice. As implanted TS/A tumor cells grew more rapidly in mice that had been depleted of NK cells, we analyzed the effects of the tumor-derived exosomes on NK cells. The tumor-derived exosomes inhibit NK cell cytotoxic activity ex vivo and in vitro as demonstrated by chromium release assays. The treatment of mice with TS/A tumor exosomes also led to a reduction in the percentages of NK cells, as determined by FACS analysis, in the lungs and spleens. Key features of NK cell activity were inhibited, including release of perforin but not granzyme B, as well as the expression of cyclin D3 and activation of the Jak3-mediated pathways. Human tumor cell lines also were found to produce exosomes that were capable of inhibiting IL-2-stimulated NK cell proliferation. Exosomes produced by dendritic cells or B cells did not. The presentation of tumor Ags by exosomes is under consideration as a cancer vaccine strategy; however, we found that pretreatment of mice with tumor exosomes blunted the protective effect of syngeneic dendritic cells pulsed ex vivo with tumor exosomes. We propose that tumor exosomes contribute to the growth of tumors by blocking IL-2-mediated activation of NK cells and their cytotoxic response to tumor cells.  相似文献   

17.
The roles of helper and suppressor T cells in the development and expression of antibody responses to GAT were studied in (responder X responder)F1 mice immunized with parental GAT-M phi. Spleen cells from (B10 X B10.D2)F1 mice primed in vivo with B10 or B10.D2 GAT-M phi developed secondary in vitro plaque-forming cell (PFC) responses only when stimulated by GAT-M phi syngeneic with the GAT-M phi used for in vivo priming. By contrast, virgin F1 spleen cells developed comparable primary PFC responses to both parental GAT-M phi Co-culture of T cells from (B10 X B10.D2)F1 mice primed in vivo by B10 GAT-M phi with virgin (B10 X B10.D2)F1 spleen cells demonstrated the presence of suppressor cells that inhibited the primary response of virgin spleen cells stimulated by B10.D2 GAT-M phi. Spleen cells from (B10 X B10.D2)F1 mice primed in vivo with B10.D2 GAT-M phi had suppressor T cells that suppressed primary responses stimulated by B10 GAT-M phi. The suppressor T cell mechanism was composed of at least two regulatory T cell subsets. Suppressor-inducer T cells were Lyt-2-, I-J+ and must be derived from immune spleen cells. Suppressor-effector T cells can be derived from virgin or immune spleens and were Lyt-2+ cells. When the suppressor mechanism was disabled by treatment with 1000 rad gamma irradiation or removal of Lyt-2+ cells, Lyt-2-helper T cells from (B10 X B10.D2)F1 mice primed with B10 GAT-M phi provided radioresistant help to virgin F1 B cells stimulated by B10 but not B10.D2 GAT-M phi. Suppressor inducer Lyt-2-,I-J+ cells from B10 GAT-M phi-primed (B10 X B10.D2)F1 mice were separated from the primed Lyt-2-,I-J-helper T cells. In the presence of Lyt-2+ suppressor effector cells, the Lyt-2-,I-J+ suppressor-inducer suppressed the primary response of virgin spleen or virgin T plus B cells stimulated by both B10 and B10.D2 GAT-M phi. Therefore, suppressor T cells were able to suppress primary but not secondary GAT-specific PFC responses stimulated by either parental GAT-M phi. These results showed that immunization of (responder X responder)F1 mice with parental GAT-M phi results in the development of antigen-specific helper and suppressor T cells. The primed helper T cells were radioresistant and were genetically restricted to interact with GAT in association with the major histocompatibility complex antigens of the M phi used for in vivo priming.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses   总被引:34,自引:0,他引:34  
Pharmacological inhibition of indoleamine 2,3-dioxygenase (IDO) activity during murine gestation results in fetal allograft rejection and blocks the ability of murine CD8(+) dendritic cells to suppress delayed-type hypersensitivity responses to tumor-associated peptide Ags. These observations suggest that cells expressing IDO inhibit T cell responses in vivo. To directly evaluate the hypothesis that cells expressing IDO inhibit T cell responses, we prepared IDO-transfected cell lines and transgenic mice overexpressing IDO and assessed allogeneic T cell responses in vitro and in vivo. T cells cocultured with IDO-transfected cells did not proliferate but expressed activation markers. The potency of allogeneic T cell responses was reduced significantly when mice were preimmunized with IDO-transfected cells. In addition, adoptive transfer of alloreactive donor T cells yielded reduced numbers of donor T cells when injected into IDO-transgenic recipient mice. These outcomes suggest that genetically enhanced IDO activity inhibited T cell proliferation in vitro and in vivo. Genetic manipulation of IDO activity may be of therapeutic utility in suppressing undesirable T cell responses.  相似文献   

19.
There is a significant body of evidence demonstrating that radiation therapy (XRT) enhances the effect of immune therapy. However, the precise mechanisms by which XRT potentiates the immunotherapy of cancer remain elusive. Here, we report that XRT potentiates the effect of immune therapy via induction of autophagy and resultant trafficking of mannose-6-phopsphate receptor (MPR) to the cell surface. Irradiation of different tumor cells caused substantial up-regulation of MPR on the cell surface in vitro and in vivo. Down-regulation of MPR in tumor cells with shRNA completely abrogated the combined effect of XRT and immunotherapy (CTLA4 antibody) in B16F10-bearing mice without changes in the tumor-specific responses of T cells. Radiation-induced MPR up-regulation was the result of redistribution of the receptor to the cell surface. This effect was caused by autophagy with redirection of MPR to autophagosomes in a clathrin-dependent manner. In autophagosomes, MPR lost its natural ligands, which resulted in subsequent trafficking of empty receptor(s) back to the surface. Together, our data demonstrated a novel mechanism by which XRT can enhance the effect of immunotherapy and the molecular mechanism of this process.  相似文献   

20.
Intralesional (IL) injection of PV-10 has shown to induce regression of both injected and non-injected lesions in patients with melanoma. To determine an underlying immune mechanism, the murine B16 melanoma model and the MT-901 breast cancer model were utilized. In BALB/c mice bearing MT-901 breast cancer, injection of PV-10 led to regression of injected and untreated contralateral subcutaneous lesions. In a murine model of melanoma, B16 cells were injected into C57BL/6 mice to establish one subcutaneous tumor and multiple lung lesions. Treatment of the subcutaneous lesion with a single injection of IL PV-10 led to regression of the injected lesion as well as the distant B16 melanoma lung metastases. Anti-tumor immune responses were measured in splenocytes collected from mice treated with IL PBS or PV-10. Splenocytes isolated from tumor bearing mice treated with IL PV-10 demonstrated enhanced tumor-specific IFN-gamma production compared to splenocytes from PBS-treated mice in both models. In addition, a significant increase in lysis of B16 cells by T cells isolated after PV-10 treatment was observed. Transfer of T cells isolated from tumor-bearing mice treated with IL PV-10 led to tumor regression in mice bearing B16 melanoma. These studies establish that IL PV-10 therapy induces tumor-specific T cell-mediated immunity in multiple histologic subtypes and support the concept of combining IL PV10 with immunotherapy for advanced malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号