首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catecholamine and metabolite excretion was studied in the cat after 6 h of 7.5% O2 hypoxia. Norepinephrine (NE) release from sympathetic nervous endings was strongly activated, whereas epinephrine (E) excretion was only slightly increased. A noteworthy result was the increase of dopamine (DA) and its metabolites [3-methoxytyramine (MT); 3,4-dihydroxyphenylacetic acid (DOPAC)] in urine samples. This increased release does not seem to originate from the central nervous system, but rather from peripheral dopaminergic structures; available knowledge on peripheral DA suggests that the hypoxia-induced DA release might be partly related to chemosensory or renal function. Indeed, in addition to enhanced DA and NE excretion, we observed an increase in sodium excretion that correlated with both DA and NE. Analysis of free and conjugated urinary metabolites showed that only free NE and both free and conjugated normetanephrine were increased in urine after hypoxic stress. Among DA metabolites, conjugated DOPAC was the main DA metabolite in the basal state and after hypoxia. Both the free and the conjugated forms of DA, MT, and DOPAC were increased by hypoxia.  相似文献   

2.
The urinary excretion of adipic acid, suberic acid and sebacic acid from two patients with the cerebrohepato-renal syndrome of Zellweger was studied. The patients had a complete lack of peroxisomes in the liver as judged by electron microscopy. In the non-ketotic state, the total excretion of free and conjugated adipic acid, suberic acid and sebacic acid was increased by about 100%, 200% and 350%, respectively, as compared to the corresponding excretion from six healthy infants of the same age. The excretion of free dicarboxylic acid was increased to a considerably lesser extent than the free + conjugated dicarboxylic acid. In view of the presence of adipic acid in urine of the Zellweger patients, it is concluded that peroxisomes are not obligatory for beta-oxidation of medium-chain dicarboxylic acids in vivo. The relative accumulation of suberic acid and sebacic acid as compared to adipic acid is, however, consistent with a relative block in the conversion of suberic acid and sebacic acid into adipic acid in patients with the Zellweger syndrome.  相似文献   

3.
Creatinine-corrected urine mercury measurements in spot urine samples are routinely used in monitoring workers exposed to inorganic mercury. However, mercury measurement in other non-invasive biological material has been used in some epidemiological studies. Dentists and dental nurses remain a group of workers with potential exposure to inorganic mercury through their handling of mercury-containing amalgam, although changes in work practices have reduced the current, likely exposure to mercury. Therefore, dental workers remain an occupational cohort in whom the value of using different biological media to identify exposure to low level inorganic mercury can be investigated. Samples of head hair, pubic hair, fingernails, toenails and urine were analysed for mercury content from a cohort of UK dentists (n=167) and a socioeconomically similar reference population (n=68) in whom any mercury exposure was primarily through diet. The mercury content in all biological material was significantly higher in the dental workers than in the control population (p<0.0001). The geometric mean and 90th percentile mercury concentrations in the urine samples from dentists were 1.7 and 7.3 micromol mol(-1) creatinine, respectively, with only one sample having a value at around the UK's Health and Safety Executive biological monitoring health guidance level of 20 micromol mol(-1) creatinine. Receiver operator characteristic analyses suggested that the ability of the biological material to discriminate between dentists and referents were fingernails>urine approximately equal to toenails>pubic hair approximately equal to head hair. Further investigation is warranted as to why fingernails appear to be such a good discriminator, possibly reflecting some contribution of direct finger contact with amalgam or contaminated surfaces rather than systemic incorporation of mercury into growing nails. Good correlation between head hair and pubic hair mercury levels in all subjects was obtained (r=0.832), which was significantly improved when hair samples weighing <10 mg were excluded (r=0.868). Therefore, under these exposure conditions and using the described pre-analytical washing steps, there is little influence from atmospheric contamination on the level of mercury content of head hair. The choice of non-invasive biological materials for mercury analysis depends on a number of considerations. These include the toxicokinetics of urinary mercury excretion, the growth rates of hair and nail, the nature and time-frame of exposure, and the fact that urine mercury may not reflect the body burden level from dietary methyl mercury. However, the data from this study suggests that urine mercury remains the most practical and sensitive means of monitoring low level occupational exposure to inorganic mercury.  相似文献   

4.
In spite of the wide literature describing the biological effects of phenolic compounds, scarce data are available on their absorption from diet. In the present work, we studied the absorption in humans of phenolic acids from beer, a common beverage rich in different phenolic acids with related chemical structures. Beer was analyzed for free and total (free+bound) phenolic acids. Ferulic, caffeic and sinapic acids were present in beer mainly as bound forms, while 4-hydroxyphenylacetic acid and p-coumaric acid were present mainly as free forms. Vanillic acid was present equally in the free and bound forms. Plasma samples were collected before and 30 and 60 min after beer administration and analyzed for free and conjugated phenolic acid content. A significant two- to fourfold increase in plasma levels of phenolic acids was detected with peak concentrations at 30 min after beer ingestion. 4-Hydroxyphenylacetic acid was present in plasma mainly as nonconjugated forms while p-coumaric acid was present equally as nonconjugated and conjugated forms. Ferulic, vanillic and caffeic acids were present in plasma predominantly as conjugated forms, with a slight prevalence of sulfates with respect to glucuronates. Our results indicate that phenolic acids from beer are absorbed from the gastrointestinal tract and are present in blood after being largely metabolized to the form of glucuronide and sulfate conjugates. The extent of conjugation is related to the chemical structure of phenolic acids: the monohydroxy derivatives showing the lowest conjugation degree and the dihydroxy derivatives showing the highest one.  相似文献   

5.
Urinary S-phenylmercapturic acid (SPMA) is a biomarker suggested by the American Conference of Governmental Industrial Hygienists (ACGIH) for assessing occupational exposure to benzene. A possible cause of the miscorrelation between environmental monitoring and biological monitoring for benzene exposure, which many authors complain about, is the existence of a urinary metabolite that turns into SPMA by acid hydrolysis. Forty urine samples were tested to determine which concentration value would correspond to the ACGIH Biological Exposure Index (BEI) of 25 µg g-1 creatinine if exposure assessment was based on the determination of SPMA after quantitative hydrolysis of its precursor. An aliquot of each sample was hydrolysed with 9 M H2SO4, a second one was brought to pH 2 and a third one was used as it was (free SPMA). SPMA was determined by high-performance liquid chromatography/tandem mass spectrometric technique (HPLC/MS/MS) using an internal standard. The analytical method was validated in the range 0.5-50 µg l-1. The average SPMA in pH 2 samples is 45-60% of the total, while free SPMA varies from 1% to 66%. The hydrolysis of pre-SPMA reduces the likelihood of variability in the results by reducing pH differences in urine samples and increasing the amount of measured SPMA. The BEI limit value would be about 50 µg g-1 creatinine.  相似文献   

6.
2-[(2H(9))Butoxy]acetic acid and 2-(3-methylbutoxy)acetic acid were synthesized, mixed with 2-butoxyacetic acid, and separated by capillary gas chromatography on a fused-silica column with a length of 50 m, inside diameter of 0.200 mm, and a "free fatty acid phase" wall coating of 0.3 microm film. 2-[(2H(9))Butoxy]acetic acid, 2-butoxyacetic acid, and 2-(3-methylbutoxy)acetic acid were baseline resolved at retention times of 13.55, 13.78, and 15.20 min; 2-(3-methylbutoxy)acetic acid having a peak efficiency of 360,000. Mass spectrometric detection using selected ion monitoring at m/z 66, 57, and 71 showed linear analytical responses from 0.04 ng to at least 200 ng with a limit of detection of 0.04 ng for 2-butoxyacetic acid.  相似文献   

7.
This article reviews the published studies on urinary 1-hydroxypyrene (1-OHP) as a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs) in work environments. Sampling and analysis strategies as well as a methodology for determining biological exposure indices (BEIs) of 1-OHP in urine for different work environments are proposed for the biological monitoring of occupational exposure to PAHs. Owing to the kinetics of absorption of pyrene by different exposure routes and excretion of 1-OHP in urine, in general, 1-OHP urinary excretion levels increase during the course of a workday, reaching maximum values 3-9 h after the end of work. When the contribution of dermal exposure is important, post-shift 1-OHP excretion can however be lower than pre-shift levels in the case where a worker has been exposed occupationally to PAHs on the day prior to sampling. In addition, 1-OHP excretion levels in either pre-shift, post-shift or evening samples increase during the course of a work-week, levelling off after three consecutive days of work. Consequently, ideally, for a first characterization of a work environment and for an indication of the major exposure route, considering a 5-day work-week (Monday to Friday), the best sampling strategy would be to collect all micturitions over 24 h starting on Monday morning. Alternatively, collection of pre-shift, post-shift and evening urine samples on the first day of the work-week and at the end of the work-week is recommended. For routine monitoring, pre-shift samples on Monday and post-shift samples on Friday should be collected when pulmonary exposure is the main route of exposure. On the other hand, pre-shift samples on Monday and Friday should be collected when the contribution of skin uptake is important. The difference between beginning and end of work-week excretion will give an indication of the average exposure over the workweek. Pre-shift samples on the first day of the work-week will indicate background values, and, hence, reflect general environment exposure and body burden of pyrene and/or its metabolites. On the other hand, since PAH profile can vary substantially in different work sites, a single BEI cannot apply to all workplaces. A simple equation was therefore developed to establish BEIs for workers exposed to PAHs in different work environments by using a BEI already established for a given work environment and by introducing a correction factor corresponding to the ratio of the airborne concentration of the sum of benzo(a)pyrene (BaP) equivalent to that of pyrene. The sum of BaP equivalent concentrations represents the sum of carcinogenic PAH concentrations expressed as BaP using toxic equivalent factors. Based on a previously estimated BEI of 2.3 μmol 1-OHP mol-1 creatinine for coke-oven workers, BEIs of 4.4, 8.0 and 9.8 μmol 1-OHP mol-1 creatinine were respectively calculated for vertical pin Söderberg workers, anode workers and pre-bake workers of aluminium plants and a BEI of 1.2 μmol 1-OHP mol-1 creatinine was estimated for iron foundry workers. This approach will allow the potential risk of cancer in individuals occupationally exposed to PAHs to be assessed better.  相似文献   

8.
A group of 50 workers exposed to coal tar pitch volatiles (CTPV) in an aluminum reduction plant and a group of 50 non-exposed workers were selected to evaluate the genotoxic effects of CTPV exposure. A battery of tests was performed on 3 different body fluids; urine, blood and semen. Urine samples were evaluated for mutagenic constituents using the Ames/Salmonella assay. Cultured lymphocytes from blood samples were used to perform cytogenetic analysis. Semen samples were used to measure sperm count, percent abnormal sperm morphology and frequency of sperm carrying double fluorescent bodies (2-F). 14 of 28 (50%) exposed workers and 7 of 36 (19.4%) non-exposed workers had mutagenic urine. This difference was significant (p less than 0.01). Among the non-smokers a significantly higher percentage of workers who were exposed had positive urine (36%) compared to the non-exposed workers (5%) (p less than 0.05). Among the exposed group, more mechanics had mutagenic urine than did other types of workers. Overall chromosome aberration rates were similar in both exposed and non-exposed workers. Among exposed workers a significant inverse correlation (p less than 0.05) between age and chromatid aberration rate was observed. Results of semen analysis failed to detect differences between exposed and non-exposed workers. Results of these tests lend support to a battery approach to genetic monitoring and suggest a link between exposure to CTPV and genotoxic effects. Detection of exposure to mutagens at an early time offers an opportunity for disease prevention by the reduction of exposure.  相似文献   

9.
Benzene is a common toxic volatile substance associated with many industrial processes. Benzene exposure is of particular concern because recent research indicates that it can result in chronic toxicity and thousands of workers in industrial plants experience ongoing exposure. Therefore, the determination and control of benzene exposure among at-risk workers is very important. Urinary trans,trans-muconic acid (ttMA) determination is a helpful test for monitoring groups of at-risk workers for exposure to benzene. In this study, 103 urine samples were obtained from 60 controls and 43 occupational exposed press workers in a press factory in Bangkok. All samples were analysed for ttMA using a previously reported method. The average urinary ttMA levels for the control and exposed groups were 0.08+/-0.03 mg g(-1) creatinine and 0.56+/-0.65 mg g(-1) creatinine, respectively. Significantly higher urinary ttMA levels were observed among the press workers (p=0.03). The introduction of public health policies concerning the prevention of exposure to benzene among at-risk workers is recommended, and more widespread use of biological monitoring for the assessment and control of occupational exposure to industrial chemicals is encouraged.  相似文献   

10.
Urinary benzene is used as biomarker of exposure to evaluate the uptake of this solvent both in non-occupationally exposed population and in benzene-exposed workers. The quantitative determination of benzene in urine is carried out in a three steps procedure: urine collection, sample analysis by head space/solid phase microextraction/gas chromatography/mass spectrometry and analyte quantification. The adopted quantification method influences the initial step, hence the whole procedure. Two quantification approaches were compared as regards precision and accuracy: the calibration curves and the standard addition method. Even if calibration curves obtained by using urine samples from different subjects were always linear, their slopes and intercepts showed noteworthy variations, attributable to the influence of the biological matrix on benzene recovery. The standard addition method showed to be more suitable for compensating matrix effects, and a three-point standard addition protocol was used to quantify benzene in urine samples of 11 benzene-exposed workers (smokers and non-smokers). Urine from occupationally exposed workers was collected before and after work-shift. Besides urinary benzene, the applicability of the method was verified by measuring the urinary concentration of the S-phenylmercapturic acid, a specific benzene metabolite, generally adopted as biomarker in biological monitoring procedures. A similar trend of concentration levels of both analytes measured in urine samples collected before work-shift with respect to the after work-shift ones was found, showing the actual applicability of the standard addition method for biological monitoring purposes.  相似文献   

11.
Organic nitrocompounds are the most frequently used constituents of explosives and some of them have been evaluated to be highly toxic or even carcinogenic. Human contact with explosives may originate from a variety of sources, including occupational exposure during the production of ammunition as well as environmental exposure due to the contamination of soil and ground water reservoirs on former military production sites and training areas. This paper describes two gas chromatography–mass spectrometry–selected ion monitoring methods for the determination of twelve nitroaromatic compounds in urine (nitrobenzene, 1,2-dinitrobenzene, 1,3-dinitrobenzene, 1,3,5-trinitrobenzene, 2-nitrotoluene, 3-nitrotoluene, 4-nitrotoluene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2,4,6-trinitrotoluene, 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene). The analytes are detectable in the lowest μg/l range, with imprecisions of 3–22% within series and 5–29% between series, depending on the compound of interest. Both procedures are rapid and relatively easy to perform and, therefore, are advantageous for the screening of occupationally or environmentally exposed persons. We analysed urine samples obtained from nine workers from an ammunition dismantling workshop and from twelve control persons. 2,4,6-Trinitrotoluene was detected in six samples at concentrations between 4 and 43 μg/l. The main metabolites of 2,4,6-trinitrotoluene, 4-amino-2,6-dinitrotoluene and 2-amino-4,6-dinitrotoluene, were found in a concentration range from 143 to 16 832 μg/l and from 24 to 5787 μg/l, respectively. Nonconjugated aminodinitrotoluenes were present as varying percentages of the total amount. 2,4-Dinitrotoluene and 2,6-dinitrotoluene were found in two samples (2–9 μg/l). Nitroaromatics were not detectable in urine specimens from control persons.  相似文献   

12.
Abstract

Urinary S-phenylmercapturic acid (SPMA) is a biomarker suggested by the American Conference of Governmental Industrial Hygienists (ACGIH) for assessing occupational exposure to benzene. A possible cause of the miscorrelation between environmental monitoring and biological monitoring for benzene exposure, which many authors complain about, is the existence of a urinary metabolite that turns into SPMA by acid hydrolysis. Forty urine samples were tested to determine which concentration value would correspond to the ACGIH Biological Exposure Index (BEI) of 25 µg g?1 creatinine if exposure assessment was based on the determination of SPMA after quantitative hydrolysis of its precursor. An aliquot of each sample was hydrolysed with 9 M H2SO4, a second one was brought to pH 2 and a third one was used as it was (free SPMA). SPMA was determined by high-performance liquid chromatography/tandem mass spectrometric technique (HPLC/MS/MS) using an internal standard. The analytical method was validated in the range 0.5–50 µg l?1. The average SPMA in pH 2 samples is 45–60% of the total, while free SPMA varies from 1% to 66%. The hydrolysis of pre-SPMA reduces the likelihood of variability in the results by reducing pH differences in urine samples and increasing the amount of measured SPMA. The BEI limit value would be about 50 µg g?1 creatinine.  相似文献   

13.
The control of subterranean termites in Australia is predominantly through the application of chemical barriers in the soil beneath and surrounding buildings. The chemicals used to repel or kill termites are the organophosphorus insecticide, chlorpyrifos, and the synthetic pyrethroid, bifenthrin. These are applied through surface sprays and subfloor injection by licensed pest control operators. To determine the exposure of these personnel to these pesticides it is most usual to measure airborne concentrations or dermal deposition rates. However, to support information obtained from these methods it is often appropriate to determine the amount of the chemicals absorbed, using biological monitoring techniques including measurement of the chemicals or their metabolites in urine. While there are effective techniques for the monitoring of chlorpyrifos exposure by measuring either the alkyl phosphate or trichloropyridinol metabolites, there have been no published reports of suitable methods to measure bifenthrin metabolites in urine. This paper describes an extraction and HPLC-UV method used to simultaneously measure the urinary excretion of 2-methyl-3-phenylbenzoic acid (MPA), a metabolite of bifenthrin, and 3-phenoxybenzoic acid (PBA), a metabolite of several other common pyrethroid insecticides, with a detection limit for each of 2.5 ng/ml. The paper also describes the pilot application of this method to a study of South Australian pest control operators handling bifenthrin. MPA ranged from 1.8 to 31.9 microg/g creatinine and PBA from 1.3 to 30.0 microg/g in the urine of pest control workers. MPA was detected in urine of control workers without bifenthrin exposure only at low levels (1.0-1.4 microg/g creatinine), but PBA was found in both at higher levels (1.2-61.1 microg/g creatinine).  相似文献   

14.
For workers exposed to 4-chloronitrobenzene (4CNB), the major metabolites were determined. Urine were analysed before and after acid hydrolysis to qualify the free and conjugated metabolites of 4CNB. Three conjugated metabolites were identified in exposed workers: the mercapturic acid N-acetyl-S-(4-nitrophenyl)-L-cysteine (NANPC) was the only metabolite detected in non-hydrolysed urine, and accounted for approximately 51% of the total metabolites detected. The two remaining metabolites 4-chloroaniline (4CA) and 2-chloro-5-nitrophenol (CNP) were identified as cleavage products in hydrolysed urine, and accounted for approximately 18 and 30% of the total metabolites detected, respectively. No metabolites were found in factory controls within the limits of quantitation (LOQ) of the assay. There is a moderate correlation between NANPC and both 4CA and CNP. The correlation between 4CA and CNP is minor. The correlation between the total metabolites and both 4CA and CNP are good. The best correlation was found between the total metabolites and NANPC. There is a moderate inverse correlation between age and the creatinine levels. The raw metabolite levels CNP and NANPC decrease with age. 4CA, NANPC and the total metabolite levels correlate with the haemoglobin adduct levels . The urine metabolites increase and correlate significantly with the creatinine levels. NANPC is the most appropriate biomarker in the urine for a recent absorbed dose of 4CNB, since NANPC reflects the levels of 4CA and CNP and is the most prevalent metabolite detected in all the exposed workers.  相似文献   

15.
BackgroundHumans are exposed to inorganic and organic arsenic. The total arsenic (As) concentration in urine is a commonly used biomarker of exposure. However, little is known about variability of As in biological fluids and the diurnal variation of As excretion.ObjectivesMain objectives were to assess the variability of As in urine, plasma (P-As), whole blood (B-As), and the blood cell fraction (C-As), and to assess diurnal variation of As excretion.MethodsSix urine samples were collected at fixed times during 24 h on two different days around one week apart among 29 men and 31 women. Blood samples were collected when the morning urine samples were delivered. The intra-class correlation coefficient (ICC) was calculated as the ratio of the between-individuals variance to the total observed variance.ResultsGeometric mean (GM) 24 h urinary excretions of As (U-As24 h) were 41 and 39 µg/24 h on the two days of sampling. Concentrations of B-As, P-As and C-As were highly correlated with U-As24 h and As in first void morning urine. No statistically significant differences were observed for the urinary As excretion rate between the different sampling times. A high ICC was observed for As in the cellular blood fraction (0.803), while ICC for first morning urine corrected for creatine was low (0.316).ConclusionsThe study suggests that C-As is the most reliable biomarker for use in exposure assessment of individual exposure. Morning urine samples have low reliability for such use. No apparent diurnal variation was observed in the urinary As excretion rate.  相似文献   

16.
Benzene is a common toxic volatile substance associated with many industrial processes. Benzene exposure is of particular concern because recent research indicates that it can result in chronic toxicity and thousands of workers in industrial plants experience ongoing exposure. Therefore, the determination and control of benzene exposure among at-risk workers is very important. Urinary trans,trans-muconic acid (ttMA) determination is a helpful test for monitoring groups of at-risk workers for exposure to benzene. In this study, 103 urine samples were obtained from 60 controls and 43 occupational exposed press workers in a press factory in Bangkok. All samples were analysed for ttMA using a previously reported method. The average urinary ttMA levels for the control and exposed groups were 0.08±0.03 mg g-1 creatinine and 0.56±0.65 mg g-1 creatinine, respectively. Significantly higher urinary ttMA levels were observed among the press workers (p=0.03). The introduction of public health policies concerning the prevention of exposure to benzene among at-risk workers is recommended, and more widespread use of biological monitoring for the assessment and control of occupational exposure to industrial chemicals is encouraged.  相似文献   

17.
New analytical methods based on liquid chromatography with electrospray tandem mass spectrometry (LC-MS/MS) have been developed and validated for assessing the exposure of greenhouse workers to acetamiprid. Both ambient (potential inhalation and dermal exposure) and internal dose (biological monitoring of urine samples) measurements were carried out. Potential inhalation exposure was assessed using Chromosorb 102 cartridges connected to air personal samplers. Potential dermal exposure was estimated by using whole body dosimetry. The measurement of actual exposure was done by analyzing the parent compound in urine samples of the applicators, after a solid-phase extraction (SPE) step. The methods showed a good accuracy (72-92%), precision (2-13%) and lower limits (few microg l(-1)). The validated approaches have been applied to assess potential and actual exposure of agricultural workers spraying acetamiprid in greenhouses. The results shown the need to wear personal protective equipment (suits) in order to reduce the absorbed dose of acetamiprid.  相似文献   

18.
Benzene is a common toxic volatile substance associated with many industrial processes. Benzene exposure is of particular concern because recent research indicates that it can result in chronic toxicity and thousands of workers in industrial plants experience ongoing exposure. Therefore, the determination and control of benzene exposure among at-risk workers is very important. Urinary trans,trans-muconic acid (ttMA) determination is a helpful test for monitoring groups of at-risk workers for exposure to benzene. In this study, 103 urine samples were obtained from 60 controls and 43 occupational exposed press workers in a press factory in Bangkok. All samples were analysed for ttMA using a previously reported method. The average urinary ttMA levels for the control and exposed groups were 0.08±0.03 mg g?1 creatinine and 0.56±0.65 mg g?1 creatinine, respectively. Significantly higher urinary ttMA levels were observed among the press workers (p=0.03). The introduction of public health policies concerning the prevention of exposure to benzene among at-risk workers is recommended, and more widespread use of biological monitoring for the assessment and control of occupational exposure to industrial chemicals is encouraged.  相似文献   

19.
French maritime pine (Pinus maritima) bark extract (PBE) is a polyphenol-rich food supplement patented under the name of Pycnogenol and known to have strong antioxidant activity and different beneficial effects on human health. Although its biological properties have begun to be extensively studied both in vitro, in laboratory animals and more recently in humans, little is known about its bioavailability. The present study investigated the urinary excretion of free and conjugated ferulic acid, present in quantitatively detectable amounts in PBE, after oral PBE administration to human subjects. Eleven healthy adult subjects (4 women and 7men) consumed either a single dose (200 mg PBE) or two doses of PBE (100 and 200 mg, respectively) within a 48-h interval. Two days before the oral administration of PBE and during the urine sample collection period volunteers adhered to a diet low in polyphenols. Aliquots of all urine production were collected over 24 h. Free and conjugated ferulic acid was assessed in urine by HPLC using diode array detection. A close association between the dietary intake of PBE and the urinary excretion of ferulic acid was detected. Moreover, the results indicate that a considerable proportion of ferulic acid is excreted as glucuronide or sulfate after PBE consumption, varying over the range 2 to 20% between individuals. The kinetics of excretion associated with the administration of 100 mg PBE was quite similar to that obtained after 200 mg PBE. A a biphasic trend was evident in a number of subjects. All subjects studied here displayed a significant, although variable level of excretion of ferulic acid after supplementation with PBE, Thus, the data provide evidence that at least a part of the phenolic components of PBE are absorbed, metabolized, and eliminated by humans.  相似文献   

20.
A new sensitive and specific HPLC–MS/MS method for the determination of α-fluoro-β-alanine (FBAL), the main metabolite of the antineoplastic drug 5-fluorouracil (5-FU), in urine for the biological monitoring survey of health care workers exposed to 5-FU is described. This procedure is characterized by a pre-column FBAL derivatization by 2,4-dinitrofluorobenzene followed by solid phase extraction sample clean-up. The chromatographic separation was achieved by hydrophilic interaction chromatography (HILIC) on a ZIC HILIC column (Sequant) and the quantification was performed by tandem mass spectrometry. The method offers high sensitivity with a quantification limit of 1 μg/l, which is an improvement on those previously reported. The within- and between-day precisions were less than 13% and 15% respectively at the LOQ and no significant relative matrix effect was observed for FBAL. The validated method was applied to the biological monitoring of occupational exposure to 5-FU in a French hospital. Pre- and post-shift urine samples were collected from 19 workers in a hospital pharmacy and an oncology ward over a period of 5 days. On a total of 121 analysed samples, measurable amounts of FBAL were detected in up to 29%, the concentrations range from LOQ to 22.7 μg/l, yielding evidence of occupational exposure to 5-FU. Such data are scarce and represent a step forward in assessing the occupational health risks associated with handling antineoplastic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号