首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrin beta subunits combine with specific sets of alpha subunits to form functional adhesion receptors. The structure and binding properties of integrins suggest the presence of domains controlling at least three major functions: subunit association, ligand binding, and cytoskeletal interactions. To more carefully define structure/function relationships, a cDNA construct consisting of the extracellular domain of the avian beta 1 subunit and the cytoplasmic and transmembrane domains of the human beta 3 subunit was prepared and expressed in murine 3T3 cells. The resulting chimeric beta 1/3 subunit formed heterodimers with alpha subunits from the beta 1 subfamily, could not interact with alpha IIb from the beta 3 subfamily, was targeted to focal contacts, and formed functional complexes within the focal contacts. A second cDNA construct was prepared that coded for an avian beta 1 subunit without a transmembrane or cytoplasmic domain. This subunit was not found in association with an accompanying alpha subunit, nor was it found expressed on the cell surface. Instead, it accumulated in vesicles within the cytoplasm and was eventually shed from the cell. The results from studies of the behavior of these two cDNA constructs demonstrate that the transmembrane and cytoplasmic domains play no role in alpha subunit selection, that the cytoplasmic domain of beta 3 is capable of functioning in the context of alpha subunits with which it is not normally paired, and that both integrin subunits must be membrane associated for normal assembly and transport to cell surface adhesive structures.  相似文献   

2.
We describe the expression of the beta 1 subunit of avian integrin in rodent cells with the purpose of examining the structure-function relationships of various domains within this subunit. The exogenous subunit is efficiently and stably expressed in 3T3 cells, and it forms hybrid heterodimers with endogenous murine alpha subunits, including alpha 3 and alpha 5. These heterodimers are exported to the cell surface and localize in focal contacts where both extracellular matrix and cytoskeleton associate with the plasma membrane. Hybrid heterodimers consisting of exogenous beta 1 and endogenous alpha subunits bind effectively and specifically to columns of cell-binding fragments of fibronectin. The exogenous avian beta 1 subunit appears to function as well as its endogenous murine equivalent, consistent with the high degree of conservation noted previously for integrins. In contrast, expression of a mutant form of avian integrin beta 1 subunit lacking the cytoplasmic domain produces hybrid heterodimers which, while efficiently exported to the cell surface and still capable of binding fibronectin, do not localize efficiently in focal contacts. This further implicates the cytoplasmic domain of the beta 1 subunit in interactions required for cytoskeletal organization.  相似文献   

3.
We have investigated the mechanisms of assembly and transport to the cell surface of the mouse muscle nicotinic acetylcholine receptor (AChR) in transiently transfected COS cells. In cells transfected with all four subunit cDNAs, AChR was expressed on the surface with properties resembling those seen in mouse muscle cells (Gu, Y., A. F. Franco, Jr., P.D. Gardner, J. B. Lansman, J. R. Forsayeth, and Z. W. Hall. 1990. Neuron. 5:147-157). When incomplete combinations of AChR subunits were expressed, surface binding of 125I-alpha-bungarotoxin was not detected except in the case of alpha beta gamma which expressed less than 15% of that seen with all four subunits. Immunoprecipitation and sucrose gradient sedimentation experiments showed that in cells expressing pairs of subunits, alpha delta and alpha gamma heterodimers were formed, but alpha beta was not. When three subunits were expressed, alpha delta beta and alpha gamma beta complexes were formed. Variation of the ratios of the four subunit cDNAs used in the transfection mixture showed that surface AChR expression was decreased by high concentrations of delta or gamma cDNAs in a mutually competitive manner. High expression of delta or gamma subunits also each inhibited formation of a heterodimer with alpha and the other subunit. These results are consistent with a defined pathway for AChR assembly in which alpha delta and alpha gamma heterodimers are formed first, followed by association with the beta subunit and with each other to form the complete AChR.  相似文献   

4.
Glycoproteins IIb (GPIIb) and IIIa (GPIIIa) form the Ca2(+)-dependent GPIIb/IIIa complex, which acts as the fibrinogen receptor on activated platelets. GPIIb and GPIIIa are synthesized as single peptide chains. The GPIIb precursor is processed proteolytically to yield two disulphide-bonded chains, GPIIb alpha and GPIIb beta. The GPIIb/IIIa complex has two membrane attachment sites located at the C-termini of GPIIb beta and GPIIIa. The short cytoplasmic tails of GPIIb beta and/or GPIIIa become most likely associated to the cytoskeleton of activated platelets. In the present work the C-terminal amino acid residues of platelet GPIIb beta and GPIIIa have been analyzed by protein-chemical methods and compared with those predicted from cDNA analysis. We were able to confirm the positions of the C-termini in both glycoproteins and the identity of the C-terminus predicted for GPIIIa, i.e. threonine. However, glutamine, not glutamic acid as predicted for GPIIb beta from the human erythroleukemic cell line and megakaryocyte cells, was found to be the C-terminal amino acid of GPIIb beta. This indicates that the glutamic acid in the GPIIb precursor is posttranslationally modified to glutamine.  相似文献   

5.
The non-covalent and Ca(2+)-dependent heterodimer GPIIb/IIIa, formed by platelet glycoproteins IIb (GPIIb) and IIIa (GPIIIa), also known as the integrin alpha IIb beta 3, is the inducible receptor for fibrinogen and other adhesive proteins on the surface of activated platelets. A fraction of the isolated GPIIb/IIIa in solution binds RGD or KQAGDV inhibitory peptides and, upon peptide removal, apparently acquires the capacity to bind fibrinogen ('activated' GPIIb/IIIa) [Du, X., Plow, E. F., Frelinger, A. L., III, O'Toole, T. E., Loftus, J. C. & Ginsberg, M. H. (1991) Cell 65, 409-416]. Photoaffinity labelling was used here to study the ligand binding site(s) of GPIIb/IIIa in solution, for which the peptides CKRKRKRKRRGDV (alpha 1), CGRGDF (alpha 2), CYHHLGGAKQAGDV (gamma 1) and CGAKQAGDV (gamma 2) were synthesized with a photoactivable cross-linker group and a fluorescent reporter group attached to the N-terminal cysteine residue. Contrary to the situation in activated platelets, both GPIIb and GPIIIa were equally labelled by the four peptides and the cross-linking sites were localized by protein chemical analyses of the fluorescently labelled tryptic peptides of both subunits. Thus, the localization of the cross-linking sites in GPIIb varies considerably with the peptide length and is very different from that localization observed in activated platelets: alpha 2 and gamma 2 were found cross-linked to the N-terminal of both the heavy (GPIIbH 42-73) and the light (GPIIbL2 30-75) chains of GPIIb; while the longer peptides alpha 1 and gamma 1 were cross-linked to the C-terminal of GPIIbH within the 696-724 and 752-768 peptide stretches, respectively. On the other hand, the cross-linking sites of the four inhibitory peptides in GPIIIa were found mainly within the proteolysis susceptible region, between the N-terminal (GPIIIa 1-52) and the core (GPIIb 423-622) highly disulphide-bonded domains, observing that the longer the peptide the closer the cross-linking site is to the N-terminal of GPIIIa: alpha 1 at GPIIIa 63-87 and 303-350; gamma 1 at GPIIIa 9-37; alpha 2 at GPIIIa 151-191; and gamma 2 at GPIIIa 303-350. These results led us to the following conclusions. (a) The GPIIIa 100-400 region contributes to the ligand-binding domain in GPIIb/IIIa both in solution and in activated platelets.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
7.
S Verrall  Z W Hall 《Cell》1992,68(1):23-31
Ligand-gated ion channels are oligomeric membrane proteins in which homologous subunits specifically recognize one another and assemble around an aqueous pore. To identify domains responsible for the specificity of subunit association, we used a dominant-negative assay in which truncated subunits of the mouse muscle acetylcholine receptor (AChR) were coexpressed with the four wild-type subunits in transfected COS cells. Fragments of the alpha, delta, and gamma subunits consisting solely of the extracellular N-terminal domain blocked surface expression of the AChR and the formation of alpha delta heterodimers, an early step in the assembly pathway of the AChR. Immunoprecipitation and sucrose gradient sedimentation experiments showed that an N-terminal fragment of the alpha subunit forms a specific complex with the intact delta subunit. Thus the extracellular N-terminal domain of the alpha, delta, and gamma subunits contains the information necessary for specific subunit association.  相似文献   

8.
The alpha and beta subunits of alpha/beta heterodimeric integrins function together to bind ligands in the extracellular region and transduce signals across cellular membranes. A possible function for the transmembrane regions in integrin signaling has been proposed from structural and computational data. We have analyzed the capacity of the integrin alpha(2), alpha(IIb), alpha(4), beta(1), beta(3), and beta(7) transmembrane domains to form homodimers and/or heterodimers. Our data suggest that the integrin transmembrane helices can help to stabilize heterodimeric integrins but that the interactions do not specifically associate particular pairs of alpha and beta subunits; rather, the alpha/beta subunit interaction constrains the extramembranous domains, facilitating signal transduction by a promiscuous transmembrane helix-helix association.  相似文献   

9.
The alpha1beta1 and alpha2beta1 integrins, extracellular matrix receptors for collagens and/or laminins, have similarities in structure and ligand binding. Recent studies suggest that the two receptors mediate distinct post-ligand binding events and are not simply redundant receptors. To discern the mechanisms by which the two receptors differ, we focused on the roles of the cytoplasmic domains of the alpha subunits. We expressed either full-length alpha1 integrin subunit cDNA (X1C1), full-length alpha2 integrin subunit cDNA (X2C2), chimeric cDNA composed of the extracellular and transmembrane domains of alpha2 subunit and the cytoplasmic domain of alpha1 (X2C1), chimeric cDNA composed of the extracellular and transmembrane domains of alpha1 subunit and the cytoplasmic domain of alpha2 (X1C2), alpha1 cDNA truncated after the GFFKR sequence (X1C0) or alpha2 cDNA truncated after the GFFKR sequence (X2C0) in K562 cells. Although the cytoplasmic domains of the alpha1 and alpha2 subunits were not required for adhesion, the extent of adhesion at low substrate density was enhanced by the presence of either the alpha1 or alpha2 cytoplasmic tail. Spreading was also influenced by the presence of an alpha subunit cytoplasmic tail. Activation of the protein kinase C pathway with phorbol dibutyrate-stimulated motility that was dependent upon the presence of the alpha2 cytoplasmic tail. Both the phosphatidylinosotide-3-OH kinase and the mitogen-activated protein kinase pathways were required for phorbol-activated, alpha2-cytoplasmic tail-dependent migration.  相似文献   

10.
We describe here the expression of deletion mutants of the cytoplasmic domain of the avian integrin beta 1 subunit. These mutants, which contain termination codons at positions 767, 776, 791, and 800, were transfected into mouse 3T3 cells to determine which sequences were essential for localization of integrins into focal contact sites. In all cases, high-level expression of the truncated avian integrins was obtained. Heterodimers were formed between the exogenous truncated avian beta 1 subunits and endogenous mouse alpha subunits, and these heterodimers were efficiently exported to the cell surface. The longest truncated beta 1 subunit tested, which is only four amino acids shorter than the wild type, does localize to focal contacts. In contrast, beta 1 subunits with moderately long truncations of the cytoplasmic domain failed to localize to focal contacts, including one which contains the consensus sequence for tyrosine phosphorylation. Surprisingly, a mutant subunit in which the bulk of the cytoplasmic domain was missing (but the segment nearest the membrane including the dibasic residues (RR) remained) did localize weakly to focal contacts. These results implicate the peptide segment nearest to the transmembrane region in focal contact localization. In addition, mutant subunits that included this segment together with a larger portion of the cytoplasmic domain did not localize as well as the shorter form, suggesting that these cytoplasmic domain segments are defective, presumably because of abnormal folding.  相似文献   

11.
The precursor of platelet membrane glycoprotein IIb (GPIIb) undergoes endoproteolytic cleavage into heavy and light chains post-translation. Endoproteolysis occurs within a 17-amino acid stretch of the precursor that contains 4 arginine residues, 3 in dibasic sequences [Lys-Arg (855-856) and Arg-Arg (858-859)] and a single arginine at 871. To determine the site of GPIIb cleavage and its role in the function of the glycoprotein IIb/IIIa heterodimer, we mutated arginine 856, the di-arginine sequence 858-859, and arginine 871 and coexpressed the mutants with glycoprotein IIIa (GPIIIa) in COS-1 cells. Each GPIIb mutant formed recombinant GPIIb-IIIa heterodimers, but mutants lacking arginine at 856 or 858-859 failed to undergo cleavage. Nevertheless, heterodimers containing the uncleaved GPIIb were expressed on the cell surface. Because endoproteolysis most often occurs after arginines in dibasic sequences, we next expressed GPIIb mutants containing lysine at 856 or aspartic acid at 855 with GPIIIa. Both mutants were cleaved and surface-expressed, indicating that the dibasic sequence at 858-859, but not at 855-856, is required for GPIIb cleavage. Lastly, we tested the function of GPIIb-IIIa containing uncleaved GPIIb by measuring adhesion of transfected cells to immobilized fibrinogen. We found no difference in the adhesion of cells expressing either wild-type or mutant GPIIb, indicating GPIIb-IIIa heterodimers containing uncleaved GPIIb maintain their ability to interact with fibrinogen.  相似文献   

12.
The T-cell antigen receptor (TcR) complex present on most T-cells is formed by a clone-specific disulfide-linked alpha/beta heterodimer noncovalently associated to the CD3 complex, the latter composed of five invariant polypeptides: gamma, delta, epsilon, zeta/zeta, or zeta/eta. The presence of conserved, oppositely charged, amino acids in the predicted transmembrane domains of all the subunits of the TcR.CD3 complex suggests that these residues may have a critical function in the assembly and/or stabilization of the complex. In order to analyze the role of the transmembrane-charged amino acids in the association and cell surface expression of the TcR.CD3 complex, we have carried out site-directed mutagenesis of Lys271 in the transmembrane domain of the TcR beta chain and analyzed the capacity of the altered chain to assemble in a TcR beta-negative T-cell line. Here we show that substitution of this positively charged residue by alanine or glutamine does not prevent cytoplasmic association of alpha and beta chains to form disulfide-linked heterodimers, but does abolish formation of an alpha/beta.CD3 complex and, consequently, its expression on the cell surface.  相似文献   

13.
Integrin beta subunits contain a highly conserved I-like domain that is known to be important for ligand binding. Unlike integrin I domains, the I-like domain requires integrin alpha and beta subunit association for optimal folding. Pactolus is a novel gene product that is highly homologous to integrin beta subunits but lacks associating alpha subunits [Chen, Y., Garrison, S., Weis, J. J., and Weis, J. H. (1998) J. Biol. Chem. 273, 8711-8718] and a approximately 30 amino acid segment corresponding to the specificity-determining loop (SDL) in the I-like domain. We find that the SDL is responsible for the defects in integrin beta subunit expression and folding in the absence of alpha subunits. When transfected in the absence of alpha subunits into cells, extracellular domains of mutant beta subunits lacking SDL, but not wild-type beta subunits, were well secreted and contained immunoreactive I-like domains. The purified recombinant soluble beta1 subunit with the SDL deletion showed an elongated shape in electron microscopy, consistent with its structure in alphabeta complexes. The SDL segment is not required for formation of alpha5beta1, alpha4beta1, alphaVbeta3, and alpha6beta4 heterodimers, but is essential for fomation of alpha6beta1, alphaVbeta1, and alphaLbeta2 heterodimers, suggesting that usage of subunit interface residues is variable among integrins. The beta1 SDL is required for ligand binding and for the formation of the epitope for the alpha5 monoclonal antibody 16 that maps to loop segments connecting blades 2 and 3 of beta-propeller domain of alpha5, but is not essential for nearby beta-propeller epitopes.  相似文献   

14.
Integrin heterodimers mediate a variety of adhesive interactions, including neuronal attachment to and process outgrowth on laminin. We report here the cloning and primary sequence of an M-200 kD integrin alpha subunit that associates with the integrin beta 1 subunit to form a receptor for both laminin and collagen. Similarities in ligand-binding specificity, relative molecular mass and NH2-terminal sequence make this a strong candidate for the rat homologue of the alpha subunit of the human integrin VLA-1. The full-length rat alpha 1 cDNAs encode a protein containing a purative signal sequence and a mature polypeptide of 1,152 amino acids, with extracellular, transmembrane and cytoplasmic domains. Several structural features are conserved with other integrin alpha chains, including (a) a sequence motif repeated seven times in the NH2-terminal half; (b) potential Ca2+/Mg2+ binding sites in repeats 5, 6, and 7, and (c) alignment of at least 14 of 23 cysteine residues. This rat alpha 1 sequence also contains a 206-amino acid I domain, inserted between repeats 2 and 3, that is homologous to I domains found in the same position in the alpha subunits of several integrins (VLA-2, Mac-1, LFA-1, p150). The rat alpha 1 and human VLA-2 apha subunits share greater than 50% sequence identity in the seven repeats and I domain, suggesting that these sequence identities may underlie some of their similar ligand-binding specificities. However, the rat integrin alpha 1 subunit has several unique features, including a 38-residue insert between two Ca2+/Mg2+ binding domains, and a divergent 15-residue cytoplasmic sequence, that may potentially account for unique functions of this integrin.  相似文献   

15.
The mast cell receptor with high affinity for IgE consists of four transmembrane polypeptides which are held together by detergent-sensitive interactions: an IgE-binding alpha chain, a single beta chain, and a disulfide-linked dimer of gamma chains. Now that the cDNAs that code for each of the subunits have been isolated, it should be possible to probe by site-specific mutations, which portions of the receptor are critical for transmembrane signaling. One prerequisite for such studies is that the mutant receptors be expressible on the cell surface. We have explored this issue by transiently transfecting COS 7 cells with mutant subunits and assessing surface expression by IgE binding. Removal of any single cytoplasmic domain of the receptor's subunits had little influence on surface expression, and even receptors missing all five cytoplasmic domains were expressed, albeit less efficiently. Minor changes within the transmembrane domains (TMs) sometimes produced major effects and more drastic changes in the TMs ablated surface expression entirely. These data suggest that the TMs are critical loci for receptor display. Cys7 (residue 2 in the gamma TM) was shown to form the inter-gamma disulfide bond and to be nonessential for surface expression. By localizing this bond, residues in the TM of gamma that are buried in the interface between the gamma subunits could be predicted. Consistent with observations on other membrane proteins (Rees, D. C., DeAntonio, L., and Eisenberg, D. (1989) Science 245, 510-513), maximal interspecies conservation was observed for those residues in the gamma TM predicted to be buried. This was also true for those residues in the alpha and beta TMs predicted to be buried by analysis of the TM hydrophobic moments.  相似文献   

16.
Objective To amplify the cDNA genes of GPIIb, GPIIIa, then construct the eukaryotic expression carriers of GPIIb and GPIIIa respectively, finally establish CHO cell lines stably expressing GPIIb and GPIIIa. Methods Human erythroleukemia (HEL) cells were cultured for total RNA extraction. RT-PCR was accomplished using the specific GPIIb, GPIIIa primers designed according to Genbank by Primer 5, then each of cDNAs were obtained. The expressive vector pcDNA3.1(+) and PCR products were cut by NheI and HindIII, and then the fragements were directly cloned to pcDNA3.1(+) because of having the same adhesive ends. Then pcDNA3.1(+)IIb and pcDNA3.1(+)IIIa were transfected into CHO cells respectively by Lipofectamine 2000. The cell lines expressing GPIIb, GPIIIa were screened by G418. Then the Chinese hamster ovary (CHO) cell lines were examed through flow cytometry (FCM) and RT-PCR to detect the expression of GPIIb, GPIIIa in CHO cells. Results The cDNAs of GPIIb and GPIIIa were amplidied by RT-PCR, and the pcDNA3.1(+)IIb and pcDNA3.1(+)IIIa were constructed respectively. By sequencing and double digestion, pcDNA3.1(+)IIb and pcDNA3.1(+)IIIa were all correct. Expression of GPIIb and GPIIIa were detected on transfected CHO cells by FCM and RT-PCR. Conclusions (1) Succeeded in constructing pcDNA3.1(+)IIb, pcDNA3.1(+)IIIa. (2) Succeeded in getting the cell lines expressing GPIIb, GPIIIa.  相似文献   

17.
Several integrin alpha subunits have structural variants that are identical in their extracellular and transmembrane domains but that differ in their cytoplasmic domains. The functional significance of these variants, however, is unknown. In the present study, we examined the possibility that the A and B variants of the alpha 6 beta 1 integrin laminin receptor differ in function. For this purpose, we expressed the alpha 6A and alpha 6B cDNAs, as well as a truncated alpha 6 cDNA (alpha 6-delta CYT) in which the cytoplasmic domain sequence was deleted after the GFFKR pentapeptide, in P388D1 cells, an alpha 6 deficient macrophage cell line. Populations of stable alpha 6A, alpha 6B, and alpha 6-delta CYT transfectants that expressed equivalent levels of cell surface alpha 6 were obtained by fluorescence-activated cell sorter and shown to form heterodimers with endogenous beta 1 subunits. Upon attachment to laminin, the alpha 6A transfectants extended numerous pseudopodia. In contrast, the alpha 6B transfectants remained rounded and extended few processes. The transfectants were also examined for their ability to migrate toward a laminin substratum using Transwell chambers. The alpha 6A transfectants were three- to fourfold more migratory than the alpha 6B transfectants. The alpha 6-delta CYT transfectants did not attach to laminin in normal culture medium, but they did attach in the presence of Mn2+. The alpha 6-delta CYT transfectants migrated to a lesser extent than either the alpha 6A or alpha 6B transfectants in the presence of Mn2+. The alpha 6 transfectants differed significantly in the concentration of substratum bound laminin required for half-maximal adhesion in the presence of Mn2+:alpha 6A (2.1 micrograms/ml), alpha 6B (6.3 micrograms/ml), and alpha 6-delta CYT (8.8 micrograms/ml). Divalent cation titration studies revealed that these transfectants also differed significantly in both the [Ca2+] and [Mn2+] required to obtain half-maximal adhesion to laminin. These data demonstrate that the A and B variants of the alpha 6 cytoplasmic domain can differentially modulate the function of the alpha 6 beta 1 extracellular domain.  相似文献   

18.
B Bossy  L F Reichardt 《Biochemistry》1990,29(44):10191-10198
We have cloned and characterized a chick homologue of the human vitronectin receptor alpha subunit (alpha v) whose primary sequence is 83% identical with its human counterpart but less than 40% identical with any other known integrin alpha subunit. Comparison of the chick and human sequences reveals several highly conserved regions, including the cytoplasmic domain. The putative ligand binding domain contains alpha v-specific residues that may contribute to ligand binding specificity. These are concentrated in three regions that are located before and between the first three Ca2+ binding domains. Polyclonal antibodies raised against two peptides deduced from the putative cytoplasmic and extracellular domains of the chick alpha v sequence recognize specifically integrin heterodimers in chick embryo fibroblasts. At least three putative beta subunits coimmunoprecipitate with the chick alpha v subunit. In addition to a protein with the same molecular weight as beta 3 (94K), protein bands of Mr 84K and 110K are also coprecipitated. By successive immunodepletions, we demonstrate that this latter Mr 110K subunit is beta 1, which appears to be one of the alpha v-associated subunits in chick embryo fibroblasts.  相似文献   

19.
Platelet membrane glycoprotein IIb-IIIa forms a calcium-dependent heterodimer and constitutes the fibrinogen receptor on stimulated platelets. GPIIb is a two-chain protein containing disulfide-linked alpha and beta subunits. GPIIIa is a single chain protein. These proteins are synthesized in the bone marrow by megakaryocytes, but the study of their synthesis has been hampered by the difficulty in obtaining enriched population of megakaryocytes in large numbers. To examine the biosynthesis and processing of GPIIb-IIIa, purified human megakaryocytes were isolated from liquid cultures of cryopreserved leukocytes stem cell concentrates from patients with chronic myelogenous leukemia. Immunoprecipitation of [35S]methionine pulse-chase-labeled cell extracts by antibodies specific for the alpha or beta subunits of GPIIb indicated that GPIIb was derived from a precursor of Mr 130,000 that contains the alpha and beta subunits. This precursor was converted to GPIIb with a half-life of 4-5 h. No precursor form of GPIIIa was detected. The glycosylation of GPIIb-IIIa was examined in megakaryocytes by metabolic labeling in the presence of tunicamycin, monensin, or treatment with endoglycosidase H. The polypeptide backbones of the GPIIb and the GPIIIa have molecular masses of 120 and 90 kD, respectively. High-mannose oligosaccharides are added to these polypeptide backbones co-translationally. The GPIIb precursor is then processed with conversion of high-mannose to complex type carbohydrates yielding the mature subunits GPIIb alpha (Mr 116,000) and GPIIb beta (Mr 25,000). No posttranslational processing of GPIIIa was detected.  相似文献   

20.
The ability of cDNAs encoding the human platelet glycoprotein IIbIIIa to be expressed and assembled into a functional integrin receptor was assessed by transient transfection into a human cell line. Transfection of full length cDNAs resulted in synthesis of high levels of integrin subunits which appear to be stable within the cell for several days. Coexpression of both subunits resulted in a proteolytically processed form of GPIIb that associated with GPIIIa as a heterodimeric complex as the cell surface. Transport to the cell surface required association of these subunits with each other or with endogenous integrin subunits. When expressed alone, the GPIIb subunit remained intracellular, while the GPIIIa subunit was found to complex with endogenous proteins and was mobilized to the cell surface. The GPIIbIIIa receptor complex facilitated attachment of cells to known ligands for GPIIbIIIa: fibrinogen, vitronectin, and von Willebrand factor. This adhesion was sensitive to inhibition by the peptide GRGDV and the monoclonal antibody AP2, known inhibitors of platelet aggregation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号