首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of expanded beds of STREAMLINE ion exchange adsorbents for the direct extraction of an intracellular enzyme glucose-6-phosphate dehydrogenase (G6PDH) from unclarified yeast cell homogenates has been investigated. It has been demonstrated that such crude feedstocks can be applied to the bed without prior clarification steps. The purification of G6PDH from an unclarified yeast homogenate was chosen as a model system containing the typical features of a direct extraction technique. Optimal conditions for the purification were determined in small scale, packed bed experiments conducted with clarified homogenates. Results from these experiments were used to develop a preparative scale separation of G6PDH in a STREAMLINE 50 EBA apparatus. The use of an on-line rotameter for measuring and controlling the height of the expanded bed when operated in highly turbid feedstocks was demonstrated. STREAMLINE DEAE has been shown to be successful in achieving isolation of G6PDH from an unclarified homogenate with a purification factor of 12 and yield of 98% in a single step process. This ion exchange adsorbent is readily cleaned using simple cleaning-in-place procedures without affecting either adsorption or the bed expansion properties of the adsorbent after many cycles of operation. The ability of combining clarification, capture, and purification in a single step will greatly simplify downstream processing flowsheets and reduce the costs of protein purification. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
A comparison between expanded bed adsorption and conventional packed bed Protein A Fast Flow to purify the anti-rHBsAg mAbs from feedstock is presented in this work. Direct capture by STREAMLINE expanded bed adsorption chromatography resulted in 92% product recovery and sevenfold more concentrated product with similar purity levels compared to that obtained by the standard packed method. The process time and buffer consumption were reduced in the expanded bed adsorption method not only with the binding-elution conditions but also with the use of NaOH during the cleaning-in-place step. The latter is the most widely accepted agent in downstream processing, being a cost effective technique that provides not only efficient cleaning but also sanitizes complete column systems and destroys pirogens.  相似文献   

3.
The use of an expanded bed of STREAMLINE Red H-7B for the purification of the intracellular glycolytic enzyme glucose 6-phosphate dehydrogenase (G6PDH) directly from untreated preparations of disrupted yeast cells has been investigated. Small-scale experiments, carried out in packed beds, have shown that the optimal pH for adsorption is 6.0 and have enabled optimization of elution conditions using a series of eluents. The dynamic capacity of the adsorbent for G6PDH was determined in a small expanded bed to be 28 units/mL. These results were used to develop a preparative scale separation of G6PDH in a STREAMLINE 50 expanded bed column. G6PDH was purified directly from an unclarified yeast homogenate in 99% yield with an average purification factor in the eluted fraction of 103. Cleaning-in-place (CIP) procedures using 0.5 M NaOH and 4M urea in 60% (v/v) ethanol have demonstrated that the adsorbent can be regenerated with no loss of adsorption capacity of alteration of bed expansion characteristics after many cycles of operation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
In the course of developing a cost-effective, scaleable process for the purification of a recombinant protein from Chinese hamster ovary (CHO) suspension cell culture, we investigated direct capture of this molecule using expanded bed adsorption (EBA). EBA combines clarification, purification, and concentration of the product into a single step. The unclarified bioreactor material was directly applied to a STREAMLINE 25 column containing an affinity STREAMLINE adsorbent. This work focused on simplifying the EBA operations and minimizing the overall processing time by running the EBA column unidirectionally, eluting in the expanded bed mode, and coupling the EBA column directly with ion exchange or hydrophobic interaction chromatography. Unidirectional EBA was clearly a simpler unit operation and did not require the use of specialized equipment. The increase in the elution pool volume was insignificant, especially when the EBA column was eluted directly onto the downstream column. Scale-down was simple and could be automated. Coupling of unidirectional EBA with a downstream purification step reduced processing time, equipment requirements and cost.  相似文献   

5.
Human epidermal growth factor is a polypeptide hormone having many diverse biological functions. This paper first presents the recovery results of human epidermal growth factor (hEGF) immediately from the fermentation broth of recombinant Escherichia coli by using an expanded bed system (a couple of STREAMLINE25 and ÄKTA explorer 100). The influences of operational conditions such as linear flow rate, gradient length of NaCl concentration, pH and sample concentration on the purification performances of hEGF in expanded and packed bed modes with STREAMLINE DEAE resin were systematically evaluated. After optimization, the practical recovery procedure in the expanded bed mode was carried out on a scaled-up system under the conditions of linear flow rates of 183 cm/h (upward) and 37 cm/h (downward), sample volume of 300 ml and column bed height of 13.8 cm which yielded a primary product of hEGF from the cell-free supernatant containing hEGF after centrifugation at 4000 rev/min for 15 min. As a result, the hEGF concentration in the product was higher than 20% (w/v), the concentration factor was greater than 4.3 and the total yield was higher than 80%, respectively. At the same time, the results of hEGF recovery by using expanded bed adsorption (EBA), packed bed chromatography (PBC) and salting out were compared. The results show that the procedure of hEGF recovery in expanded bed adsorption has some advantages over the other two procedures, because of its higher concentration factor, recovery yield, productivity, hEGF concentration in the primary product and shorter duration of purification run.  相似文献   

6.
7.
This presentation compares three different expanded bed matrices. STREAMLINE rProtein A, STREAMLINE SP-XL and STREAMLINE Chelating were monitored in respect to their ability to clarify the broth, to concentrate and to purify the distinct target protein. The capture of a mouse IgG1 and a recombinant prothrombin (PT) was carried out in pilot scale using a 100-l bioreactor and STREAMLINE 100 and 200 columns, respectively. The robustness of the process was also estimated monitoring the expansion behaviour and the cell and debris concentrations during the load and in the eluat. In all cases the capture of the target proteins was comparable to conventional chromatographic systems. The purification success was mainly dependent on the selectivity of the ligand used. The affinity process resulted in a highly purified product. The ion exchanger and chelating material mainly concentrated the product. In all three cases 100 l of cell broth were successfully processed in one run. The robustness of the ion exchanger process was poor, because of strong cell matrix interaction. However, for the chelating and especially for the affinity matrix a highly reproducible process was obtained.  相似文献   

8.
扩张柱床吸附层析回收纯化灌流培养生产的单克隆抗体   总被引:1,自引:0,他引:1  
用扩张柱床吸附层析技术,一步回收纯化连续灌流培养的单克隆抗体。用Streamline SP阳离子交换介质在固定床柱XK16/20上进行条件摸索,扩张床柱Streamline25和50分别用于小规模条件优化和中试规模放大。培养液中的低浓度单抗经此步处理,浓缩10倍以上,纯度提高5~7倍,回收率>90%,制备周期比固定柱床层析缩短一半以上。 根据培养液中单抗浓度的不同,一次处理量为18~50L,纯化规模由实验室水平(400mg)扩大至中试水平(2g),生产成本和工艺复杂性大为降低。应用扩张柱床吸附层析技术,建立单克隆抗体回收纯化工艺,具有经济、简便、高效实用和良好的可放大性。  相似文献   

9.
Buoyancy-induced mixing occurs during expanded bed adsorption processes when the feed stream entering the bottom of the system has a lower density than that of the fluid above it. In the absence of a headspace, mixing in the expanded bed can be modeled as a single, well-mixed vessel, with first-order dynamics. In the presence of a headspace, the system exhibits second-order dynamics for the densities typically encountered in protein chromatography, and can be modeled as two well-mixed vessels (the expanded bed and the headspace) arranged in series. In this paper, the mixing dynamics of the expanded bed are described and a mathematical model of the system is presented. Experimental measurements of density changes during the dilution of sucrose and salt solutions in a STREAMLINE 25 column are presented. These show excellent agreement with predictions using the model. A number of strategies for wash and elution in expanded mode, both in the presence and absence of headspace, are discussed.  相似文献   

10.
STREAMLINE Phenyl is a new hydrophobic interaction chromatography support designed for use in expanded bed adsorption. The phenyl groups are linked to STREAMLINE matrix via highly stable ether linkages. Within this development project the chemical and chromatographic stability as well as the breakthrough capacity for human IgG has been studied. The chemical stability was monitored as the carbon leakage from the matrix to the storage solution, pH 1–14 at 20 and 40 °C. The carbon content in the supernatant was determined with Total Organic Carbon (TOC) technique. In the chromatographic stability study STREAMLINE Phenyl was stored in eight different storage solutions under ambient conditions for 12 weeks and then tested in a chromatographic function test. The results show that the adsorbent is chemically stable and that the chromatographic properties are retained under the tested conditions. The breakthrough capacity study demonstrates the importance of the bed height for obtaining maximal dynamic capacity. Further, there is a good correlation between breakthrough data generated from packed bed and expanded bed runs.  相似文献   

11.
Bruce LJ  Ghose S  Chase HA 《Bioseparation》1999,8(1-5):69-75
The effect of column verticality on liquid dispersion and separation efficiency in expanded bed adsorption columns was investigated using 1 and 5 cm diameter columns. Column misalignment of only 0.15° resulted in the reduction of the Bodenstein number from 140 to 50 for the 1 cm dia. column and from 75 to 45 for the 5 cm dia. column. This degree of misalignment was not detectable by visual assessment of adsorbent particle movement within the column. Depending on the relative importance of transport limitations, kinetic limitations and dispersion to any specific separation, this increase in dispersion with column alignment can significantly affect separation efficiency. Pure protein breakthrough profiles resulting from the application of bovine serum albumin onto STREAMLINE Q XL demonstrated that, at 10% breakthrough, 7.8% more protein could be applied to a vertical 1 cm dia. column compared to the same column misaligned by 0.15°. When an unclarified yeast homogenate was applied to a 1 cm dia. vertical column packed with STREAMLINE DEAE, 10% breakthrough of glucose-6-phosphate dehydrogenase (G6PDH) corresponded to a load 55% greater compared to the same column aligned 0.185° off-vertical. The G6PDH breakthrough curves for vertical and 0.15° off-vertical runs performed using a 5 cm column were essentially indistinguishable.  相似文献   

12.
A refolding strategy was described for on-column refolding of recombinant human interferon-gamma (rhIFN-gamma) inclusion bodies by expanded bed adsorption (EBA) chromatography. After the denatured rhIFN-gamma protein bound onto the cation exchanger of STREAMLINE SP, the refolding process was performed in expanded bed by gradually decreasing the concentration of urea in the buffer and the refolded rhIFN-gamma protein was recovered by the elution in packed bed mode. It was demonstrated that the denatured rhIFN-gamma protein could be efficiently refolded by this method with high yield. Under appropriate experimental conditions, the protein yield and specific activity of rhIFN-gamma was up to 52.7% and 8.18 x 10(6) IU/mg, respectively.  相似文献   

13.
The use of a rapid chromatographic assay to monitor the level of a specific protein during its downstream processing by expanded bed adsorption is described. An expanded bed column (5 cm diameter) has been modified to allow the abstraction of liquid samples at various heights along the bed, in an automated, semi-continuous manner throughout the separation. The withdrawn samples were filtered in-line and the level of the target protein assayed by a rapid on-line chromatographic method. Using this technique it was possible to monitor the development of adsorbate profiles during the loading, washing and elution phases of the application of an unclarified feedstock. The potential of the technique is demonstrated using the separation of histidine tagged glutathione s-transferase (GST-(His)6) from an unclarified Escherichia coli homogenate using an expanded bed of Ni2+ loaded STREAMLINE ChelatingTM. The level of GST-(His)6 in the abstracted homogenate samples was measured using Zn2+ loaded NTA-silica as an affinity chromatographic sensor. The approach described demonstrates potential for the on-line monitoring and control of expanded bed separations and for providing a greater understanding of adsorption/desorption and hydrodynamic processes occurring within the bed.  相似文献   

14.
The influences of the fluid superficial velocity, sample concentration, loading volume, and wash cycle on the recovery and corresponding purification factors for α1-antitrypsin [syn. α1-proteinase inhibitor (α1-PI) ] from crude mixtures of human plasma proteins were investigated using packed and expanded beds of DEAE-Spherodex LS. As part of this study, the effect of fluid superficial velocity on the bed dispersion number (D v) and dispersion coefficient (D) for this adsorbent in expanded beds was determined with feedstocks containing human serum albumin (HSA), the most abundant of the contaminating proteins in human plasma protein preparations used for the isolation of α1-PI. When multicomponent protein feedstocks prepared from human plasma were examined with DEAE-Spherodex LS, reduced chromatographic productivity was observed for α1-PI as the extent of column utilization and the superficial velocity were increased, yet the opposite trend was evident for HSA. In particular, higher adsorption capacities and recoveries were obtained for α1-PI at lower fluid superficial velocities with both packed and expanded bed conditions. These findings indicate that for process scale purifications of α1-PI from multicomponent feedstocks with expanded beds containing this silica-based ion-exchange adsorbent, the optimal range of superficial velocities to achieve the highest bed productivity will not be synonymous with maximally fluidized modes of operation. Rather, the results confirm that the adsorbent has an optimum operational performance when fluidization procedures corresponding to plug flow expansion are employed for the capture of α1-PI. These findings also indicate that advantage can be taken of displacement effects between closely related protein species with packed and expanded bed systems containing the DEAE-Spherodex LS type of ion-exchange porous silicas.  相似文献   

15.
A novel flow injection biosensor system for monitoring fermentation processes has been developed using an expanded micro bed as the enzyme reactor. An expanded bed reactor is capable of handling a mobile phase containing suspended matter like cells and cell debris. Thus, while the analyte is free to interact with the adsorbent, the suspended particulate matter passes through unhindered. With the use of a scaled down expanded bed in the flow injection analysis (FIA) system, it was possible to analyse samples directly from a fermentor without the pretreatment otherwise required to extract the analyte or remove the suspended cells. This technique, therefore, provides a means to determine the true concentrations of the metabolites in a fermentor, with more ease than possible with other techniques.Glucose oxidase immobilised on STREAMLINE was used to measure glucose concentration in a suspension of dead yeast cells. There was no interference from the cell particles even at high cell densities such as 15 gm dry weight per litre. The assay time was about 6 min. Accuracy and reproducibility of the system was found to be good. In another scheme, lactate oxidase was covalently coupled to STREAMLINE for expanded bed operation. With the on-line expanded micro bed FIA it was possible to follow the fermentation with Lactobacillus casei.  相似文献   

16.
Formate dehydrogenase (FDH) is an enzyme of industrial interest, which is recombinantly expressed as an intracellular protein in Escherichia coli. In order to establish an efficient and reliable purification protocol, an expanded bed adsorption (EBA) process was developed, starting from the crude bacterial homogenate. EBA process design was performed with the goal of finding operating conditions which, on one hand, allow efficient adsorption of the target protein and which, on the other hand, support the formation of a perfectly classified fluidised bed (expanded bed) in the crude feed solution. A pseudo-affinity ligand (Procion Red HE3B) was used to bind the FDH with high selectivity and reasonable capacity (maximum equilibrium capacity of 30 U/ml). Additionally, a simplified modelling approach, involving small packed beds for generation of process parameters, was employed for defining the operating conditions during sample application. In combination with extended elution studies, a process was set up, which could be scaled up to 7.5 l of adsorbent volume yielding a total amount of 100,000 U of 94% pure FDH per run. On this scale, 19 l of a benzonase-treated E. coli homogenate of 15% wet-weight (pH 7.5, 9 mS/cm conductivity) were loaded to the pseudo-affinity adsorbent (0.25 m sed. bed height, 5 x 10(-4) m/s fluid velocity). After a series of two wash steps, a particle-free eluate pool was obtained with 85% yield of FDH. This excellently demonstrates the suitability of expanded bed adsorption for efficient isolation of proteins by combining solid-liquid separation with adsorptive purification in a single unit operation.  相似文献   

17.
The facilitated downstream processing of an intracellular, polyhistidine-tagged protein, glutathione S-transferase [GST-(His)(6)], direct from unclarified E. coli homogenates using expanded beds of STREAMLINE chelating, has been investigated. A series of pilot experiments were used to develop preparative-scale separations of GST-(His)(6), initially in packed and then in expanded beds. Packed beds of Ni(2+)-loaded STREAMLINE chelating proved to have the highest 5% dynamic capacity for GST-(His)(6), of 357 U mL(-1) (36 mg mL(-1)). When using immobilized Cu(2+) or Zn(2+), metal ion transfer was observed from the iminodiacetate ligands to the high-affinity chelator, GST-(His)(6). The subsequent metal affinity precipitation of this homodimer resulted in operational problems. An equilibrium adsorption isotherm demonstrated the high affinity of GST-(His)(6) for immobilized Ni(2+), with a q(m) of 695 U mL(-1) (70 mg mL(-1)) and a K(d) of 0.089 U mL(-1) (0.0089 mg mL(-1)). Ni(2+)-loaded STREAMLINE chelating was therefore selected to purify GST-(His)(6) from unclarified E. coli homogenate, resulting in an eluted yield of 80% and a 3.34-fold purification. The high dynamic capacity in the expanded mode of 357 U mL(-1) (36 mg mL(-1)) demonstrates that this specific interaction was not affected by the presence of E. coli cell debris.  相似文献   

18.
C-phycocyanin was purified on a large scale by a combination of expanded bed adsorption, anion-exchange chromatography and hydroxyapatite chromatography from inferior Spirulina platensis that cannot be used for human consumption. First, phycobiliproteins were extracted by a simple, scaleable method and then were recovered by Phenyl-Sepharose chromatography in an expanded bed column. The purity (the A(620)/A(280) ratio) of C-phycocyanin isolated with STREAMLINE column was up to 2.87, and the yield was as high as 31 mg/g of dried S. platensis. After the first step, we used conventional anion-exchange chromatography for the purification steps, with a yield of 7.7 mg/g of dried S. platensis at a purity greater than 3.2 and with an A(620)/A(650) index higher than 5.0. The fractions from anion-exchange chromatography with a level of purity that did not conform to the above standard were subjected to hydroxyapatite chromatography, with a C-PC yield of 4.45 mg/g of dried S. platensis with a purity greater than 3.2. The protein from both purification methods showed one absolute absorption peak at 620 nm and a fluorescence maximum at 650 nm, which is consistent with the typical spectrum of C-phycocyanin. SDS-PAGE gave two bands corresponding to 21 and 18 kDa. In-gel digestion and LC-ESI-MS showed that the protein is C-phycocyanin.  相似文献   

19.
We show that expanded bed protein A affinity chromatography using Streamline rProtein A media is an efficient method for purifying a recombinant humanized monoclonal antibody from unclarified Chinese hamster ovary cell culture fluid and that it provides purification performance comparable to using a packed bed. We determined that the dynamic capacity of the expanded bed media is related to flow rate (measured in column volumes per hour) by a power function, which allows a high capacity at a low flow rate. At 250 cm h-1 with a 25 cm bed height (10 column volumes h-1), the dynamic capacity is 30 g l-1. The yield and purity (measured by the amount of host cell proteins, DNA, SDS-PAGE, and turbidity) of the antibody purified by expanded bed is comparable to the yield and purity obtained on a standard packed bed method using Prosep A media.  相似文献   

20.
In this paper a large and scaleable method for purification of C-phycocyanin (C-PC) from the cyanobacteria Synechocystis aquatilis has been developed. Phycobiliproteins are extracted from the cells by osmotic shock and separated by passing the centrifuged cell suspension through an expanded bed adsorption chromatography (EBAC) column using Streamline-DEAE as adsorbent. The eluted C-PC rich solution is finally purified by packed-bed chromatography using DEAE-cellulose. Optimal extraction is achieved using phosphate 0.05 M buffer pH 7.0 twice. The operation of EBAC is optimized on a small scale using a column of 15 mm internal diameter (I.D.). The optimal conditions are a sample load of 4.9 mg C-PC/mL adsorbent, an expanded bed volume twice the settled bed volume and a sample viscosity of 1.020 mP. The EBAC process is then scaled up by increasing the column I.D. (15, 25, 40, 60 and 90 mm) and the success of the scale-up process is verified by determining the protein breakthrough capacity and product recovery. The yield of the EBAC step is in the range of 90-93% for every column diameter. To obtain pure C-PC, conventional ion-exchange chromatography with DEAE-cellulose is utilized and a yield of 74% is obtained. The overall yield of the process, comprising all steps, is 69%. The purification steps are monitored using SDS-PAGE and the purity of recovered C-PC is confirmed by absorption and emission spectroscopy and RP-HPLC. Results show that EBAC method is a scalable technology that allows large quantities of C-PC to be obtained without product loss, maintaining a high protein recovery while reducing both processing cost and time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号