首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Geophis sieboldi species group is composed of 16 currently recognized species distributed from Mexico to Colombia. Within this group, snakes of populations referred to the Geophis brachycephalus complex of lower Central America and Colombia display a remarkable polychromatism and the systematic status of these and other populations is problematic. The present study provides an analysis, including multivariate techniques, of variation in scalation, coloration, relative tail length and hemipenes to clarify the specific allocation of the populations belonging to this clade. Our results confirm the validity of three previously described taxa, namely G. brachycephalus , G. nigroalbus and G. talamancae , with reassignments of several populations previously referred to G. brachycephalus . In addition we recognize as a new species a suite of western Panama Geophis previously of uncertain status. We further provide a review of all other members of the G. sieboldi group in lower Central America and Colombia based on material obtained since the last revision of the group. Basic synonymies, diagnostics and known distributions are included for the treated taxa. Dietary guild, possible venomous coral snake mimicry and distributional anomalies for the group are discussed.  © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 153 , 561–599.  相似文献   

2.
3.
4.
Species richness varies widely across extant clades, but the causes of this variation remain poorly understood. We investigate the role of diversification rate heterogeneity in shaping patterns of diversity across families of extant bats. To provide a robust framework for macroevolutionary inference, we assemble a time‐calibrated, species‐level phylogeny using a supermatrix of mitochondrial and nuclear sequence data. We analyze the phylogeny using a Bayesian method for modeling complex evolutionary dynamics. Surprisingly, we find that variation in family richness can largely be explained without invoking heterogeneous diversification dynamics. We document only a single well‐supported shift in diversification dynamics across bats, occurring at the base of the subfamily Stenodermatinae. Bat diversity is phylogenetically imbalanced, but—contrary to previous hypotheses—this pattern is unexplained by any simple patterns of diversification rate heterogeneity. This discordance may indicate that diversification dynamics are more complex than can be captured using the statistical tools available for modeling data at this scale. We infer that bats as a whole are almost entirely united into one macroevolutionary cohort, with decelerating speciation through time. There is also a significant relationship between clade age and richness, suggesting that global bat diversity may still be expanding.  相似文献   

5.
6.
Arguments in favour of using Nothofagus alpina (Poepp. & Endl.) Oerst. (Fagaceae) rather than N. procera Oerst. or N. nervosa (Phil.) Krasser as the correct name for rauli are presented. We also refute suggestions that N. alpina is based on hybrid material. The hybrid of N. alpina with N. obliqua (Mirb.) Blume is formally described as N . ×  dodecaphleps Mike L. Grant & E. J. Clement and a key to the deciduous taxa of Nothofagus is provided.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 447–451.  相似文献   

7.
Plant cells do not have centrioles and their mitosis is frequently likened to the chromosome-based mechanism seen in acentriolar animal cells. However, this is a false analogy. Although plants can use this mechanism, they generally divide by a method that uses bipolar mitotic caps, which is more similar to the canonical centrosome-based method of animals.  相似文献   

8.
Not so Fas: Re-evaluating the mechanisms of immune privilege and tumor escape   总被引:27,自引:0,他引:27  
  相似文献   

9.
Nothofagus holds a premier position in the study of Southern Hemisphere plant evolution and biogeography, and many have attempted to reconstruct its history. A recent surge of research on both living and fossil species has added valuable data to the debate, but has also introduced complications, including the now less certain familial relationships of the genus. The vast quantity of fossil evidence provides an extremely firm base for reconstruction of the past distribution of Nothofagus, and allows informed speculation on the time and places of origin and major speciation events.  相似文献   

10.

Background

Evolutionary studies of insular biotas are based mainly on extant taxa, although such biotas represent artificial subsets of original faunas because of human-caused extinctions of indigenous species augmented by introduced exotic taxa. This makes it difficult to obtain a full understanding of the history of ecological interactions between extant sympatric species. Morphological bill variation of Fringilla coelebs and F. teydea (common and blue chaffinches) has been previously studied in the North Atlantic Macaronesian archipelagos. Character displacement between both species has been argued to explain bill sizes in sympatry. However, this explanation is incomplete, as similar patterns of bill size have been recorded in F. coelebs populations from islands with and without F. teydea.

Methodology/Principal Findings

The discovery of a new extinct species in Tenerife (Canary Islands), here named Carduelis aurelioi n. sp. (slender-billed greenfinch), provides the opportunity to study ancient ecological interactions among Macaronesian finches. To help understand the evolutionary histories of forest granivores in space and time, we have performed a multidisciplinary study combining: (1) morphological analyses and radiocarbon dating (11,460±60 yr BP) of the new taxon and, (2) molecular divergence among the extant finch species and populations in order to infer colonization times (1.99 and 1.09 My for F. teydea and F. coelebs respectively).

Conclusion/Significance

C. aurelioi, F. coelebs and F. teydea co-habited in Tenerife for at least one million years. The unique anatomical trends of the new species, namely chaffinch-like beak and modified hind and forelimbs, reveal that there was a process of divergence of resource competition traits among the three sympatric finches. The results of our study, combined with the presence of more extinct greenfinches in other Macaronesian islands with significant variation in their beak sizes, suggests that the character displacement has influenced patterns of divergence in bill size and shape on other Macaronesian islands as well.  相似文献   

11.
Although temporal calibration is widely recognized as critical for obtaining accurate divergence-time estimates using molecular dating methods, few studies have evaluated the variation resulting from different calibration strategies. Depending on the information available, researchers have often used primary calibrations from the fossil record or secondary calibrations from previous molecular dating studies. In analyses of flowering plants, primary calibration data can be obtained from macro- and mesofossils (e.g., leaves, flowers, and fruits) or microfossils (e.g., pollen). Fossil data can vary substantially in accuracy and precision, presenting a difficult choice when selecting appropriate calibrations. Here, we test the impact of eight plausible calibration scenarios for Nothofagus (Nothofagaceae, Fagales), a plant genus with a particularly rich and well-studied fossil record. To do so, we reviewed the phylogenetic placement and geochronology of 38 fossil taxa of Nothofagus and other Fagales, and we identified minimum age constraints for up to 18 nodes of the phylogeny of Fagales. Molecular dating analyses were conducted for each scenario using maximum likelihood (RAxML + r8s) and Bayesian (BEAST) approaches on sequence data from six regions of the chloroplast and nuclear genomes. Using either ingroup or outgroup constraints, or both, led to similar age estimates, except near strongly influential calibration nodes. Using "early but risky" fossil constraints in addition to "safe but late" constraints, or using assumptions of vicariance instead of fossil constraints, led to older age estimates. In contrast, using secondary calibration points yielded drastically younger age estimates. This empirical study highlights the critical influence of calibration on molecular dating analyses. Even in a best-case situation, with many thoroughly vetted fossils available, substantial uncertainties can remain in the estimates of divergence times. For example, our estimates for the crown group age of Nothofagus varied from 13 to 113 Ma across our full range of calibration scenarios. We suggest that increased background research should be made at all stages of the calibration process to reduce errors wherever possible, from verifying the geochronological data on the fossils to critical reassessment of their phylogenetic position.  相似文献   

12.
Many organisms are characterized by strikingly contrasting black and white coloration, but the function of such contrasts has been inadequately studied. In this article, we tested the function of black and white contrasting plumage in white stork Ciconia ciconia chicks. We found greater abundance and diversity of microorganisms on black compared with adjacent white feathers. In addition, nest size was positively correlated with the abundance and diversity of microorganisms on white feathers. Flight initiation distance (FID), defined as the distance at which adult white storks took flight when approached by a human, was negatively correlated with most measurements of microorganism abundance. Breeding success was generally positively correlated with the abundance and diversity of microorganisms on black feathers. The feather growth rate was positively correlated with some and negatively correlated with other measurements of microbial abundance and diversity. Finally, chick growth was negatively correlated with the number of microbial species on black feathers and positively with the abundance and diversity of microorganisms on white feathers. These findings are consistent not only with the role of microorganisms in the maintenance of a benign microbial environment which differs between black and white feathers, but also with the hypothesis that several taxa of microorganisms found in black and white plumage are virulent, with negative effects on the fitness of their hosts.  相似文献   

13.
Metal ions provide considerable functionality across biological systems, and their utilization within biomolecules has adapted through changes in the chemical environment to maintain the activity they facilitate. While ancient earth''s atmosphere was rich in iron and manganese and low in oxygen, periods of atmospheric oxygenation significantly altered the availability of certain metal ions, resulting in ion replacement within biomolecules. This adaptation mechanism has given rise to the phenomenon of metal cofactor interchangeability, whereby contemporary proteins and nucleic acids interact with multiple metal ions interchangeably, with different coordinated metals influencing biological activity, stability, and toxic potential. The ability of extant organisms to adapt to fluctuating metal availability remains relevant in a number of crucial biomolecules, including the superoxide dismutases of the antioxidant defense systems and ribonucleotide reductases. These well-studied and ancient enzymes illustrate the potential for metal interchangeability and adaptive utilization. More recently, the ribosome has also been demonstrated to exhibit interchangeable interactions with metal ions with impacts on function, stability, and stress adaptation. Using these and other examples, here we review the biological significance of interchangeable metal ions from a new angle that combines both biochemical and evolutionary viewpoints. The geochemical pressures and chemical properties that underlie biological metal utilization are discussed in the context of their impact on modern disease states and treatments.  相似文献   

14.
15.
Coffea canephora (robusta coffee) is the most heat‐tolerant and ‘robust’ coffee species and therefore considered more resistant to climate change than other types of coffee production. However, the optimum production range of robusta has never been quantified, with current estimates of its optimal mean annual temperature range (22–30°C) based solely on the climatic conditions of its native range in the Congo basin, Central Africa. Using 10 years of yield observations from 798 farms across South East Asia coupled with high‐resolution precipitation and temperature data, we used hierarchical Bayesian modeling to quantify robusta's optimal temperature range for production. Our climate‐based models explained yield variation well across the study area with a cross‐validated mean R2 = .51. We demonstrate that robusta has an optimal temperature below 20.5°C (or a mean minimum/maximum of ≤16.2/24.1°C), which is markedly lower, by 1.5–9°C than current estimates. In the middle of robusta's currently assumed optimal range (mean annual temperatures over 25.1°C), coffee yields are 50% lower compared to the optimal mean of ≤20.5°C found here. During the growing season, every 1°C increase in mean minimum/maximum temperatures above 16.2/24.1°C corresponded to yield declines of ~14% or 350–460 kg/ha (95% credible interval). Our results suggest that robusta coffee is far more sensitive to temperature than previously thought. Current assessments, based on robusta having an optimal temperature range over 22°C, are likely overestimating its suitable production range and its ability to contribute to coffee production as temperatures increase under climate change. Robusta supplies 40% of the world's coffee, but its production potential could decline considerably as temperatures increase under climate change, jeopardizing a multi‐billion dollar coffee industry and the livelihoods of millions of farmers.  相似文献   

16.
17.
Leaves come in many sizes and shapes, and the relationships between leaf traits and the environments they occur in are better understood every day. However we still know very little about the ecological consequences of plants having either compound or simple leaves. We attempted to address this knowledge gap by comparing chemical and physical characteristics (leaf area, length:width ratio, water content, leaf mass per area, ‘toughness’ and C:N ratio), as well as rates of herbivory between compound and simple leaves across 34 species in adjacent rainforest, open woodland and wet sclerophyll (tall open forest) vegetation in northeastern Australia. We found C:N ratio to be lower in simple leaves, but this was the only leaf trait that differed significantly between leaf types and did not stand up under phylogenetic analysis. Overall, we found no differences in herbivory between simple and compound leaves. While it remains unclear what the advantages of having one leaf type over another might be, the differences do not seem to lie in construction, or in vulnerability to herbivores, at least in the Australian Wet Tropics.  相似文献   

18.
We consider three approaches for estimating the rates of nonsynonymous and synonymous changes at each site in a sequence alignment in order to identify sites under positive or negative selection: (1) a suite of fast likelihood-based "counting methods" that employ either a single most likely ancestral reconstruction, weighting across all possible ancestral reconstructions, or sampling from ancestral reconstructions; (2) a random effects likelihood (REL) approach, which models variation in nonsynonymous and synonymous rates across sites according to a predefined distribution, with the selection pressure at an individual site inferred using an empirical Bayes approach; and (3) a fixed effects likelihood (FEL) method that directly estimates nonsynonymous and synonymous substitution rates at each site. All three methods incorporate flexible models of nucleotide substitution bias and variation in both nonsynonymous and synonymous substitution rates across sites, facilitating the comparison between the methods. We demonstrate that the results obtained using these approaches show broad agreement in levels of Type I and Type II error and in estimates of substitution rates. Counting methods are well suited for large alignments, for which there is high power to detect positive and negative selection, but appear to underestimate the substitution rate. A REL approach, which is more computationally intensive than counting methods, has higher power than counting methods to detect selection in data sets of intermediate size but may suffer from higher rates of false positives for small data sets. A FEL approach appears to capture the pattern of rate variation better than counting methods or random effects models, does not suffer from as many false positives as random effects models for data sets comprising few sequences, and can be efficiently parallelized. Our results suggest that previously reported differences between results obtained by counting methods and random effects models arise due to a combination of the conservative nature of counting-based methods, the failure of current random effects models to allow for variation in synonymous substitution rates, and the naive application of random effects models to extremely sparse data sets. We demonstrate our methods on sequence data from the human immunodeficiency virus type 1 env and pol genes and simulated alignments.  相似文献   

19.
20.
The current diversity of life on earth is the product of macroevolutionary processes that have shaped the dynamics of diversification. Although the tempo of diversification has been studied extensively in macroorganisms, much less is known about the rates of diversification in the exceedingly diverse and species-rich microbiota. Decreases in diversification rates over time, a signature of explosive radiations, are commonly observed in plant and animal lineages. However, the few existing analyses of microbial lineages suggest that the tempo of diversification in prokaryotes may be fundamentally different. Here, we use multilocus and genomic sequence data to test hypotheses about the rate of diversification in a well-studied pathogenic bacterial lineage, Borrelia burgdorferi sensu lato (sl). Our analyses support the hypothesis that an explosive radiation of lineages occurred near the origin of the clade, followed by a sharp decay in diversification rates. These results suggest that explosive radiations may be a general feature of evolutionary history across the tree of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号