首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of ribonucleic acid (RNA)-depolymerase-forming 5′-nucleotides (5′-nuclease) was investigated with the fungus Aspergillus quercinus in media containing 68, 10, 5, 3, 1, and 0.5 mg of phosphorus per 100 ml. Yields were maximal with 5 mg of phosphorus per 100 ml. RNA-depolymerase-forming 3′-nucleosides (3′-nuclease) and phosphomonoesterase were maximal in media containing 1 and 0.5 mg of phosphorus per 100 ml. The 5′-nuclease was purified approximately 530-fold with a recovery of 84% by column chromatography on diethylaminoethyl-cellulose and by gel filtration through Sephadex G-100. The purified enzyme was capable of acting on both deoxyribonucleic acid and RNA, and the 5′-mononucleotides produced were identified by paper chromatography. The enzyme 5′-nuclease appears to be one of the repressible exonucleases that are active in the production of 5′-mononucleotides.  相似文献   

2.
Purified recombinant human 5-lipoxygenase was used to investigate the catalytic properties of the protein in the presence and absence of leukocyte stimulatory factors. Recombinant human 5-lipoxygenase was purified to apparent homogeneity (95-99%) from a high expression baculovirus system by chromatography on ATP-agarose with a yield of 0.6 mg of protein per 100 ml of culture (2 x 10(8) cells) and a specific activity of 3-6 mumol of 5-hydroperoxyeicosatetraenoic acid (5-HPETE) per mg of protein in the presence of ATP, Ca2+, and phosphatidylcholine as the only factors. In the absence of leukocyte factors, the reaction catalyzed by the purified recombinant enzyme showed a half-time of maximal 5-HPETE formation of 0.5-0.7 min and was sensitive to the selective 5-lipoxygenase inhibitors BW755C (IC50 = 13 microM) and L-656,224 (IC50 = 0.8 microM). The reaction products of arachidonic acid oxidation were 5-HPETE and 6-trans- and 12-epi-6-trans-leukotriene B4, the nonenzymatic hydrolysis products of leukotriene A4 (LTA4), indicating that the purified protein expressed both the 5-oxygenase and leukotriene A4 synthase activities (ratio 6:1). The microsomal fraction and the 60-90% ammonium sulfate precipitate fraction from sonicated human leukocytes did not increase product formation by the isolated enzyme when assayed in the presence of ATP, Ca2+, and phosphatidylcholine. These factors were found to stabilize 5-lipoxygenase during preincubation of the enzyme at 37 degrees C with the assay mixture but they failed to stimulate enzymatic activity when added at the end of the preincubation period. The results demonstrate that human 5-lipoxygenase can be isolated in a catalytically active form and that protein factors from leukocytes protect against enzyme inactivation but are not essential for enzyme activity.  相似文献   

3.
Coleus forskohlii hairy root cultures were found to produce forskolin and rosmarinic acid (RA) as the main metabolites. The growth and RA production by C. forskohlii hairy root cultures in various liquid media were examined. The hairy root cultures showed good growth in hormone-free Murashige and Skoog medium containing 3% (w/v) sucrose (MS medium), and Gamborg B5 medium containing 2% (w/v) sucrose (B5 medium). RA yield reached 4.0 mg (MS medium) and 4.4 mg (B5 medium) after 5 weeks of culture in a 100 ml flask containing 20 ml of each medium. Hairy root growth and RA were also investigated after treatment with various concentrations of yeast extract (YE), salicylic acid (SA) and methyl jasmonic acid (MJA). RA production in a 100 ml flask containing 20 ml B5 medium reached 5.4 mg (1.9 times more than control) with treatment of 0.01 or 1% (w/v) YE, 5.5 mg (2.0 times more than control) with treatment of 0.1 mM SA, and the maximum RA content with 9.5 mg per flask (3.4 times more than control) was obtained in the hairy roots treated with 0.1 mM MJA. These results suggest that MJA is an effective elicitor for production of RA in C. forskohlii hairy root cultures.  相似文献   

4.
A ribonuclease that hydrolyzes either linear duplex or single-stranded RNA in an exonucleolytic manner has been partially purified from Ehrlich ascites tumor cell nucleoli and is free from other ribonucleases. The enzyme will also degrade the RNA complement of an RNA X DNA duplex; however, no nuclease activity is observed on linear duplex or single-stranded DNA. The exonuclease acts on RNA nonprocessively from the 3' end releasing 5'-mononucleotides. The enzyme has a broad pH optimum around pH 8.0, requires Mg2+ or Mn2+ (0.06 mM) for optimum activity, and is sensitive to ethylenediaminetetraacetic acid and N-ethylmaleimide inhibition. Monovalent cations including K+, Na+, and NH4+ are inhibitory. Gel filtration studies of this enzyme gave a Stokes radius of 40 A. Sedimentation velocity measurements in glycerol gradients yield a S20,W of 6.0 S. From these values a native molecular weight of 100 000 was calculated. Copurification of the single- and double-stranded activities, identical reaction requirements, and identical heat-inactivation curves strongly suggest that both activities reside with the same enzyme.  相似文献   

5.
6.
alpha-Amylase produced by Bacillus licheniformis CUMC305 was purified 212-fold with a 42% yield through a series of four steps. The purified enzyme was homogeneous as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme showed maximal activity at 90 degrees C and pH 9.0, and 91% of this activity remained at 100 degrees C. The enzyme retained 91, 79, and 71% maximal activity after 3 h of treatment at 60 degrees C, 3 h at 70 degrees C, and 90 min at 80 degrees C, respectively, in the absence of substrate. On the contrary, in the presence of substrate (soluble starch), the alpha-amylase enzyme was fully stable after a 4-h incubation at 100 degrees C. The enzyme showed 100% stability in the pH range 7 to 9; 95% stability at pH 10; and 84, 74, 68, and 50% stability at pH values of 6, 5, 4, and 3, respectively, after 18 h of treatment. The activation energy for this enzyme was calculated as 5.1 x 10 J/mol. The molecular weight was estimated to be 28,000 by sodium dodecyl sulfate-gel electrophoresis. The relative rates of hydrolysis of soluble starch, amylose, amylopectin, and glycogen were 1.27, 1.8, 1.94, and 2.28 mg/ml, respectively. V(max) values for hydrolysis of these substrates were calculated as 0.738, 1.08, 0.8, and 0.5 mg of maltose/ml per min, respectively. Of the cations, Na, Ca, and Mg, showed stimulatory effect, whereas Hg, Cu, Ni, Zn, Ag, Fe, Co, Cd, Al, and Mn were inhibitory. Of the anions, azide, F, SO(3), SO(4), S(2)O(3), MoO(4), and Wo(4) showed an excitant effect. p-Chloromercuribenzoic acid and sodium iodoacetate were inhibitory, whereas cysteine, reduced glutathione, thiourea, beta-mercaptoethanol, and sodium glycerophosphate afforded protection to enzyme activity. alpha-Amylase was fairly resistant to EDTA treatment at 30 degrees C, but heating at 90 degrees C in presence of EDTA resulted in the complete loss of enzyme activity, which could be recovered partially by the addition of Cu and Fe but not by the addition of Ca or any other divalent ions.  相似文献   

7.
Ralstonia sp. Ba-0323, a wild strain isolated from soil, produced catechol from benzoate and accumulated it outside the cells. The bacterium produced a maximal amount of catechol (1.6 mg/ml) from 3 mg/ml of sodium benzoate in a 20-h growing culture. The conversion rate of benzoate to catechol was 70% on a molar basis. The catechol production by the resting cells increased in the presence of glycerol, and the maximal amount of catechol produced from 3 mg/ml of sodium benzoate reached 1.9 mg/ml at the conversion rate of 83% after 8 h of incubation. Catechol 1,2-dioxygenase, which catalyzed the ring cleavage of catechol, was purified to homogeneity from a cell extract of Ralstonia sp. Ba-0323 growing on benzoate and characterized. The specific activity of the purified enzyme was much lower than those of the dioxygenases from other microorganisms reported. The Km for catechol of the purified enzyme was much higher than those of other dioxygenases. In addition, the NH2-terminal amino acid sequence of the enzyme was less similar to the other catechol 1,2-dioxygenases than they are to each other.  相似文献   

8.
Ralstonia sp. Ba-0323, a wild strain isolated from soil, produced catechol from benzoate and accumulated it outside the cells. The bacterium produced a maximal amount of catechol (1.6 mg/ml) from 3 mg/ml of sodium benzoate in a 20-h growing culture. The conversion rate of benzoate to catechol was 70% on a molar basis. The catechol production by the resting cells increased in the presence of glycerol, and the maximal amount of catechol produced from 3 mg/ml of sodium benzoate reached 1.9 mg/ml at the conversion rate of 83% after 8 h of incubation. Catechol 1,2-dioxygenase, which catalyzed the ring cleavage of catechol, was purified to homogeneity from a cell extract of Ralstonia sp. Ba-0323 growing on benzoate and characterized. The specific activity of the purified enzyme was much lower than those of the dioxygenases from other microorganisms reported. The Km for catechol of the purified enzyme was much higher than those of other dioxygenases. In addition, the NH2-terminal amino acid sequence of the enzyme was less similar to the other catechol 1,2-dioxygenases than they are to each other.  相似文献   

9.
Two molecular species of repressible extracellular phosphodiesterases showing cyclic 2',3'- and cyclic 3',5'-nucleotide phosphodiesterase activities were detected in mycelial culture media of wild-type Neurospora crassa and purified. The two molecular species were found to be monomeric and polymeric forms of an enzyme constituted of identical subunits having molecular weights of 50,000. This enzyme had the same electrophoretic mobility as repressible acid phosphatase. The enzyme designated repressible cyclic phosphodiesterase showed pH optima of 3.2 to 4.0 with a cyclic 3',5'-AMP substrate and 5.0 to 5.6 with a cyclic 2',3'-AMP substrate. Repressible cyclic phosphodiesterase was activated by MnCl2 and CoCl2 with cyclic 2',3'-AMP as substrate and was slightly activated by MnCl2 with cyclic 3',5'-AMP. The enzyme hydrolyzed cyclic 3',5'- and cyclic 2',3'-nucleotides, in addition to bis-rho-nitrophenyl phosphate, but not certain 5' -and 3'-nucleotides. 3'-GMP and 3'-CMP were hydrolyzed less efficiently. Mutant strains A1 (nuc-1) and B1 (nuc-2), which cannot utilize RNA or DNA as a sole source of phosphorus, were unable to produce repressible cyclic phosphodiesterase. The wild type (74A) and a heterocaryon between strains A1 and B1 produced the enzyme and showed growth on orthophosphate-free media containing cyclic 2',3'-AMP or cyclic 3',5'-AMP, whereas both mutants showed little or no growth on these media.  相似文献   

10.
An endoribonuclease existing as a complex with inhibitor in the cytosol of rat liver has been purified about 128,000-fold after inactivation of the inhibitor with CdCl2. The enzyme had a molecular weight of 16,000 and produced 3'-CMP via 2',3'-cyclic phosphate of cytidine from poly(C). The breakdown of poly(U) by the enzyme was less than 5% of poly(C) breakdown. Poly(A) was not hydrolyzed by the enzyme. The enzyme had a pH optimum of 7.5-8, was heat-stable and had a Km of 952 micrograms yeast RNA and a Km of 198 micrograms poly(C) per ml. The maximal velocities for yeast RNA and poly(C) degradation were 3,970 A260/min/mg protein and 1,890 A260/min/mg protein, respectively. The enzyme was slightly stimulated by polyamines or monovalent and divalent cations except Mn2+, but was inhibited by nucleoside triphosphate, poly(G) and rat liver RNase inhibitor. Inhibition of the enzyme by rat liver RNase inhibitor was not prevented by monovalent and divalent cations or polyamines, although inhibition by poly(G) was prevented by these ions.  相似文献   

11.
Summary In vitro proliferated sentang shoots were cultured onto half-strength Murashige and Skoog (MS) medium containing combinations of 1-naphthyleneacetic acid (NAA) and indole-3-butyric acid (IBA). Sentang shoots were unable to root in the absence of both auxins. A combination of 0.5 mg NAA per and 1 mg IBA per 1 induced the most shoots to form roots. With the addition of 2.5 g activated charcoal per 1 into half-strength MS medium containing 0.5 mg NAA per 1 and 1 mg IBA per 1, roots were more numerous and longer. Substances like gelrite and phloroglucinol and sugar content which would commonly influence in vitro rooting were inhibitory to adventitious root formation of sentang. Maximal rooting of 100% was achieved in “Culture Pack,” made of fluorocarbon polymer film containing charcoal-free medium with 0.5 mg NAA per 1 and 1 mg IBA per 1. Rooted shoots were acclimatized for 4 wk. Overall survival was 80%. These findings suggest the use of Culture Pack as the culture vessels, with 0.5 mg NAA per 1 and 1 mg IBA per 1 in half-stength MS media to effectively induce roots in sentang shoots.  相似文献   

12.
Demineralized water was seeded with controlled numbers of oocysts of Cryptosporidium parvum purified from fresh calf feces and subjected to different treatments with ozone or chlorine dioxide. The disinfectants were neutralized by sodium thiosulfate, and neonatal mice were inoculated intragastrically and sacrificed 7 days later for enumeration of oocyst production. Preliminary trials indicated that a minimum infection level of 1,000 oocysts (0.1-ml inoculum) per mouse was necessary to induce 100% infection. Treatment of water containing 10(4) oocysts per ml with 1.11 mg of ozone per liter (concentration at time zero [C0]) for 6 min totally eliminated the infectivity of the oocysts for neonatal mice. A level of 2.27 mg of ozone per liter (C0) was necessary to inactivate water containing 5 x 10(5) oocysts per ml within 8 min. Also, 0.4 mg of chlorine dioxide per liter (C0) significantly reduced infectivity within 15 min of contact, although some oocysts remained viable.  相似文献   

13.
Demineralized water was seeded with controlled numbers of oocysts of Cryptosporidium parvum purified from fresh calf feces and subjected to different treatments with ozone or chlorine dioxide. The disinfectants were neutralized by sodium thiosulfate, and neonatal mice were inoculated intragastrically and sacrificed 7 days later for enumeration of oocyst production. Preliminary trials indicated that a minimum infection level of 1,000 oocysts (0.1-ml inoculum) per mouse was necessary to induce 100% infection. Treatment of water containing 10(4) oocysts per ml with 1.11 mg of ozone per liter (concentration at time zero [C0]) for 6 min totally eliminated the infectivity of the oocysts for neonatal mice. A level of 2.27 mg of ozone per liter (C0) was necessary to inactivate water containing 5 x 10(5) oocysts per ml within 8 min. Also, 0.4 mg of chlorine dioxide per liter (C0) significantly reduced infectivity within 15 min of contact, although some oocysts remained viable.  相似文献   

14.
We have isolated mutants resistant to acidomycin, a biotin analog, from Serratia marcescens Sr41. Strain SB304, resistant to 0.5 mg of acidomycin (frequently called actithiazic acid) per ml, produced 5 mg of d-biotin per liter of a medium containing sucrose and urea. Strain SB412, which was isolated from SB304 on a minimal agar plate containing 2 mg of acidomycin per ml and 0.1 mg of 5-(2-thienyl)-valeric acid per ml, produced 20 mg of d-biotin per ml. The two enzymes related to biotin synthesis were found to be released from biotin-mediated feedback repression in these mutants. Transductional analysis revealed that SB412 had acquired at least two mutations, one in the biotin operon locus and the other in an unknown locus distant from the biotin operon locus.  相似文献   

15.
Cytosol 5'-nucleotidase (EC 3.1.3.5) has been purified near homogeneity from Artemia embryos. The enzyme cleaves preferentially IMP and GMP, and to a lesser extent other 5'-mononucleotides. The substrate-velocity plot was hyperbolic with GMP and sigmoidal with AMP. The hydrolysis of GMP is stimulated both by ATP and beta, gamma-methyleneadenosine 5'-triphosphate with the same activation constant of around 0.6 mM. Both nucleotides decreased S0.5 without affecting V. The molecular mass of the native purified enzyme was 165 kDa, and one major band of 42 kDa was detected after sodium dodecyl sulphate polyacrylamide gel electrophoresis.  相似文献   

16.
Acid pretreatment of cellulosic wastes improved their susceptibility to Fusarium acuminatum enzymes. The effectiveness of acid pretreatment was demonstrated with an increase in both fungal growth and enzyme activities. A growth yield of 0.15 g/100 ml was achieved on medium containing 5% acid pretreated pods of bean for 60 minutes. Avicelase (C1), carboxymethylcellulase (Cx) and B-glucosidase (C2) reached their maximal biosynthesis on acid pretreated wheat bran, sugar-cane bagasse and sawdust-containing media, respectively. Xylanase and pectinase attained their highest accumulation on pretreated pods of bean media. A mixture of free sugars has been released by acid pretreatment. O.199 g dry mycelium was obtained when the fungus was grown on 100 ml of medium containing hydrolysate of 10% H2SO4 pretreated pods of bean for 30 min. No cellulase enzymes could be detected on hydrolysate medium at the time that low contents of both xylanase and pectinase were accumulated.  相似文献   

17.
L S Lasater  D C Eichler 《Biochemistry》1984,23(19):4367-4373
A single-strand-specific, nucleolar exoribonuclease from Ehrlich ascites tumor cells has been isolated and purified free from other nucleases. The exonuclease degraded single-stranded RNA processively from either a 5'-hydroxyl or a 5'-phosphorylated end and released 5'-mononucleotides. The enzyme digested single-strand poly(C), poly(U), and poly(A) equally well but did not degrade duplex poly(C).poly(I) or poly(A).poly(U). Less than 0.2% of duplex DNA or 1.5% of heat-denatured DNA was degraded under the conditions which resulted in greater than 26% degradation of RNA. The ribonuclease required Mg2+ (0.2 mM) for optimum activity and was inhibited by ethylenediaminetetraacetic acid but not by human placental RNase inhibitor. The native enzyme had a Stokes radius of 42 A and a sedimentation coefficient (S20,w) of 4.3 S. From these values, an apparent molecular weight of 76 000 was derived by using the Svedberg equation. The localization and unique mode of degradation suggest a role for the 5'----3' exoribonuclease in ribosomal RNA processing.  相似文献   

18.
Lactobacillus plantarum produced extracellular polygalacturonase in a medium containing 1.5% low methyl-pectin (w/v) and 0.5% glucose (w/v) as inducers. The enzyme was purified (approximately 70-fold) by ammonium sulphate fractionation, Sephadex G-100 gel filtration and DEAE-cellulose ion exchange chromatography. Two peaks (PG I and PG II) of enzymic activity were obtained from the DEAE-cellulose column. The molecular mass of PG I was similar to that of PG II (32 000 Da). The K m values of PG I and PG II for sodium polypectate were calculated to be 1.63 mg/ml and 1.78 mg/ml respectively. Their isoelectric points were about pH 5.5. The pH optimum was 4.5, while the optimum temperature was 35°C for both PG I and PG II. The two purified enzymes had similar endo modes of action on polygalacturonic acid, as determined by comparison of viscosity reduction and reducing group release.  相似文献   

19.
In the present study, the optimization of production and reaction conditions of polygalacturonase produced by a fungus Byssochlamys fulva MTCC 505 was achieved. The production of polygalacturonase with a considerable activity of 1.28 IU/ml was found when the culture was shaken at 30°C for 5 days in 100 ml of medium containing (w/v) 10 g/l pectin, 2 g/l NaNO?, 1 g/l KH?PO?, 0.5 g/l KCl, 0.5 g/l MgSO?. 7H?O, 0.001 g/l FeSO?. 7H?O, 0.001 g/l CaCl?. The best carbon and nitrogen source for this enzyme were pectin (1%) and Ca(NO?)? (0.1%), respectively. The enzyme gave maximum activity at incubation time of 72 h, temperature of 30°C and pH 4.5. During the optimization of reaction conditions, the enzyme showed maximum activity in sodium citrate buffer (50 mM) of pH 5.5 at 50°C reaction temperature for 15 minutes of incubation. The enzyme showed greater affinity for polygalacturonic acid as substrate (0.5%). Km and Vmax values were 0.15 mg/ml and 4.58 μmol/ml/min. The effect of various phenolics, thiols, protein inhibitors and metal ions on the enzyme activity was investigated. The enzyme was quite stable at 4°C and 30°C. At 40°C the half life of the enzyme was 6 h and at 60°C it was 2 h.  相似文献   

20.
Pseudomonas sp. Ba-0511 was isolated from soil by enrichment cultivation on a medium containing 6 mg/ml of sodium benzoate. The bacterium could grow on a medium containing 20 mg/ml of sodium benzoate by a successive enrichment culture. One hundred and twelve transpositional mutants of the bacterium produced catechol from benzoate and accumulated it outside of the cells. Among the mutants, strain BA+63 produced a maximal amount of catechol (2.3 mg/ml) from 6 mg/ml of sodium benzoate after growing for 10.5 h. The conversion rate of benzoate to catechol was 50% on a molar basis. The catechol production by the resting cells increased in the presence of glycerol, and the maximal amount of catechol produced from 6 mg/ml of sodium benzoate reached 3.3 mg/ml at the conversion rate of 72% after 5 h of incubation. The resting cells converted m-methylbenzoic acid to 3- and 4-methylcatechol and m-chlorobenzoic acid to 3- and 4-chlorocatechol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号