首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superoxide dismutase (SOD) triggers activation of human platelets exposed to subthreshold concentrations of arachidonic acid and collagen. The subthreshold concentrations used are not able to activate platelets but "prime" platelets to be activated by SOD. The addition of SOD to arachidonic acid-or collagen-primed platelets induced aggregation, thromboxane A2 production, and release of [3H]serotonin. Superoxide dismutase does not have any effect on resting platelets and ADP-, thrombin-, calcium ionophore A23187-, PAF-, or U46619-stimulated platelets. Furthermore, superoxide dismutase-dependent platelet activation is fully prevented by catalase and/or aspirin, suggesting a role for H2O2 and the involvement of the cyclooxygenase pathway of arachidonic acid in such activation.  相似文献   

2.
The mechanisms involved in the effect of ethanol on Ca2+ entry and aggregability have been investigated in human platelets in order to shed new light on the pathogenesis of alcohol consumption. Ethanol (50 mM) induced H2O2 production in platelets by Ca2+-dependent and independent mechanisms. Ca2+ entry induced by ethanol was impaired by catalase. Ethanol reduced SOCE mediated by depletion of the 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ)-sensitive acidic stores but enhances SOCE regulated by the dense tubular system. This effect was abolished by treatment with catalase or the sulphydryl group reducing agent dithiotreitol (DTT). Similarly, the anti-aggregant effect of ethanol was prevented by platelet treatment with catalase or DTT. In conclusion we provide considerable evidence that ethanol alters Ca2+ entry and reduces thrombin-induced aggregation as a result of the generation of H2O2 and the oxidation of sulphydryl groups in human platelets.  相似文献   

3.
The aggregation and change in the intracellular Ca2+ concentration induced by thrombin (0.005-0.22 U/ml) in the presence of H2O2 (0.05-0.6 mM) was investigated. Under the chosen experimental conditions (incubation time of platelets with H2O2 not more than 15 sec), H2O2 neither accelerated nor inhibited the thrombin-induced platelet aggregation. However, platelet aggregates formed by the action of thrombin in the presence of H2O2 were unstable and disaggregated. Disaggregation was abolished by catalase added after thrombin. The disaggregation effect was dose-dependent; the process of disaggregation was confirmed by electron microscopy. Hydrogen peroxide did not influence thrombin-induced increase in the intracellular Ca2+ concentration, but dose-dependently accelerated Ca2+ extrusion from the platelet cytoplasm.  相似文献   

4.
The effects of lipid peroxidation on ADP-induced aggregation of washed rat platelets were examined using a oxygen-radical-generating system consisting of H2O2 and ferrous ion. Lipid peroxidation was assessed by measurement of thiobarbituric acid-reactive substances (TBARS). Incubation of the platelets with various concentrations of H2O2 (2-10 mM) in the presence of 10 microM Fe2+ resulted in a decrease of the aggregating capacity and an increase of TBARS value, depending on the concentrations of H2O2. Addition of catalase (0.1 mg/ml) to the incubation medium containing 10 microM Fe2+ and 10 mM H2O2 effectively protected the aggregating capacity, but superoxide dismutase (0.1 mg/ml) did not protect H2O2/Fe(2+)-induced inhibition of the platelet aggregation. The results of kinetic studies on the platelet aggregation with varying ADP and Ca2+ concentrations suggested that treatment of the platelets with H2O2/Fe2+ causes decreases in the binding affinities of ADP and Ca2+ for the platelets. On the basis of these results, change in the aggregating capacity of the platelets by treatment with H2O2/Fe2+ is discussed in relation to lipid peroxidation.  相似文献   

5.
Using aequorin-loaded rat platelets stimulated with collagen, we found two phases of Ca2+ mobilization, one coinciding with a shape change and the other with aggregation, which have not yet been detected in quin2-loaded platelets. U46619, a stable analogue of prostaglandin H2, induced only a shape change and a concomitant rapid rise in the cytoplasmic ionized calcium concentration ([Cai2+]). However, upon addition of U46619 to platelets previously stimulated with collagen in the presence of indomethacin, a rapid increase in [Cai2+] and a shape change occurred, and, after about 1 min, second increase in [Cai2+] and aggregation occurred. The actions of U46619 were inhibited by an antagonist for the thromboxane A2 (TXA2) receptor. These results suggest that the collagen-induced shape change is initiated by TXA2-induced Ca2+ mobilization, and aggregation is induced by the secondary Ca2+ mobilization induced by TXA2 and the occupation of the receptor by collagen.  相似文献   

6.
Reactive oxygen species, such as H2O2, have been recognized as intracellular messengers involved in several cell functions. Here we report the activation of the tyrosine kinase pp60(src) by H2O2, a mechanism required for the activation of store-mediated Ca2+ entry (SMCE) in human platelets. Treatment of platelets with H2O2 resulted in a time- and concentration-dependent activation of pp60(src). Incubation with GF 109203X, a protein kinase C (PKC) inhibitor, prevented H2O2-induced pp60(src) activation. In contrast, dimethyl-BAPTA loading did not affect this response, suggesting that activation of pp60(src) by H2O2 is independent of increases in [Ca2+](i). Cytochalasin D, an inhibitor of actin polymerization, significantly reduced H2O2-induced pp60(src) activation. We found that platelet stimulation with thapsigargin (TG) plus ionomycin (Iono) or thrombin induced rapid H2O2 production, a mechanism independent of elevations in [Ca2+](i). Treatment of platelets with catalase attenuated TG plus Iono- and thrombin-induced activation of pp60(src). In addition, catalase as well as the pp60(src) inhibitor, PP1, reduced both the activation of SMCE and the coupling between the hTrp1 and the IP(3)R type II without having any effect on the maintenance of SMCE. Consistent with the role of PKC in the activation of pp60(src) by H2O2, the PKC inhibitors GF 109202X and Ro-31-8220 were found to reduced SMCE in platelets. This study suggests that platelet activation with TG plus Iono or thrombin is associated with H2O2 production, which acts as a second messenger by stimulating pp60(src) by a PKC-dependent pathway and is involved in the activation of SMCE in these cells.  相似文献   

7.
When washed rat platelets (1.5 x 10(9)/ml) were stimulated by a threshold concentration of thrombin (0.3 unit/ml) or collagen (10 micrograms/ml), a lag period of about 10 or 30 s, respectively, was seen before the start of aggregation. During the lag period, [32P]phosphatidylinositol 4,5-bisphosphate was degraded as the earliest event within 5-10 s of addition of the stimulus. However, though the extent of phosphatidylinositol 4,5-bisphosphate degradation within 10 s of addition of collagen was greater than that within 20 s of addition of thrombin (0.3 unit/ml), a lag of about 20 s remained before the initiation of aggregation by collagen. This casts doubt on the hypothesis that the stimulus-dependent phosphatidylinositol 4,5-bisphosphate breakdown induces the aggregation of platelets. Phosphatidylinositol labeled with 32Pi or [1-14C]arachidonic acid was scarcely degraded during the lag period. As aggregation proceeded, [14C-arachidonic acid]phosphatidylinositol was degraded with generation of diacylglycerol, phosphatidic acid, arachidonic acid and its metabolites. The maximum aggregation by collagen of rat platelets in which arachidonic acid of phospholipids was replaced in vivo with eicosapentaenoic acid was reduced, but that by thrombin was not, though reduction of thromboxane A2 generation was caused by both stimuli. Indomethacin also fully inhibited the aggregation induced by collagen, but not that induced by thrombin. Hence, thromboxane A2 is required for full aggregation by collagen, but not that by thrombin. These results indicate that thrombin-induced phosphoinositide metabolism may proceed independently of aggregation.  相似文献   

8.
Aggregation and the activation of the granulocyte (PMN) superoxide (O2-) generating system occur when certain stimuli are added to resting cells. It had previously been postulated that PMN aggregation is essential for maximal O2- production. This study was undertaken to test the hypothesis that PMN aggregation is required for full expression of PMN O2- production. We examined aggregation and O2- production induced by four stimuli; concanavalin A (Con A), phorbol myristate acetate (PMA), N-formylmethionyl-leucyl-phenylalanine (FMLP), and ionophore A23187. Cytochalasin B enhanced aggregation by all four stimuli but only enhanced the rate of O2- production by Con A; 2-deoxyglucose inhibited aggregation by all stimuli. Dissociation of PMN aggregation and O2- production was achieved by using NEM, TPCK, and divalent cations. NEM and TPCK prevent Con A-induced O2- production but have no effect on Con A-induced aggregation. PMA-stimulated PMN generate O2- in the presence or absence of Ca++ and Mg++. In contrast, PMA stimulated maximum PMN aggregation only in the presence of both Ca++ and Mg++. Thus PMN can generate O2- without aggregating, and PMN can aggregate without producing O2-. PMN from patients with chronic granulomatous disease do not generate O2- or undergo membrane potential depolarization in response to PMA. These PMN aggregated when stimulated with PMA, providing evidence that depolarization is not required for PMN aggregation. We conclude that aggregation and the activation of the O2- generating system, though temporally related, are not necessarily causally related.  相似文献   

9.
The catalytic oxidation of [14C]-formate to 14CO2 was adapted to measure H2O2 formation in cellfree system. Standard curves employing glucose-glucose oxidase and xanthine-xanthine oxidase demonstrated linearity between 14CO2 evolution and enzyme concentration. A particulate fraction from human neutrophils was capable of oxidizing [14C]-formate; this reaction was dependent upon the presence of catalase, reduced pyridine nucleotide, and cellular material. Reaction increased with time of incubation and protein concentration, although not in a strictly linear fashion. The pH optimum was approximately 5.5 NADPH was a significantly better substrate than NADH, although both were capable of generating H2O2. The particulate fraction derived from phagocytizing cells was more active than a corresponding fraction from resting cells with either substrate. H2O2 production was abnormal in particulate fractions derived from 2 patients with chronic granulomatous disease. H2O2 production was markedly inhibited by superoxide dismutase or cytochrome c (scavengers of superoxide anion) but not by scavengers of singlet oxygen or hydroxyl radical. Reaction was greatly stimulated by the addition of manganous ion. These results are consistent with the hypothesis that the respiratory burst in human neutrophils is initiated by an oxidase that can utilize either NADPH or NADH but exhibits a marked preference for the former. Further, the inhibitor studies strongly support a mechanism involving an initial enzymatic reaction followed by a self-sustaining free radical reaction involving superoxide anion.  相似文献   

10.
Endogenous antioxidant defense systems are enhanced by various physiological stimuli including sublethal oxidative challenges, which induce tolerance to subsequent lethal oxidative injuries. We sought to evaluate the contributions of catalase and the glutathione system to the adaptive tolerance to H2O2. For this purpose, H9c2 cells were stimulated with 100 microM H2O2, which was the maximal dose at which no significant acute cell damage was observed. Twenty-four hours after stimulation, control and pretreated cells were challenged with a lethal concentration of H2O2 (300 microM). Compared with the control cells, pretreated cells were significantly tolerant of H2O2, with reduced cell lysis and improved survival rate. In pretreated cells, glutathione content increased to 48.20 +/- 6.38 nmol/mg protein versus 27.59 +/- 2.55 nmol/mg protein in control cells, and catalase activity also increased to 30.82 +/- 2.64 versus 15.46 +/- 1.29 units/mg protein in control cells, whereas glutathione peroxidase activity was not affected. Increased glutathione content was attributed to increased gamma-glutamylcysteine synthetase activity, which is known as the rate-limiting enzyme of glutathione synthesis. To elucidate the relative contribution of the glutathione system and catalase to tolerance of H2O2, control and pretreated cells were incubated with specific inhibitors of gamma-glutamyl cysteine synthetase (L-buthionine sulfoximine) or catalase (3-amino-1,2,4-triazole), and challenged with H2O2. Cytoprotection by the low-dose H2O2 pretreatment was almost completely abolished by L-buthionine sulfoximine, while it was preserved after 3-amino-1,2,4-triazole treatment. From these results, it is concluded that both the glutathione system and catalase can be enhanced by H2O2 stimulation, but increased glutathione content rather than catalase activity was operative in the tolerance of lethal oxidative stress.  相似文献   

11.
Aggregation of activated platelets is considerably mediated by the autocrine action of thromboxane A2 (TxA2) which is formed in a prostaglandin endoperoxide H2 synthase-1 (PGHS-1 or COX-1)-dependent manner. The activity of PGHS-1 can be stimulated by peroxides, an effect termed "peroxide tone", that renders PGHS-1 the key regulatory enzyme in the formation of TxA2. Activated platelets release nitric oxide (*NO) and superoxide (O*2) but their interactions with the prostanoid pathway have been controversially discussed in platelet physiology and pathophysiology. The current study demonstrates that endogenously formed peroxynitrite at nanomolar concentrations, originating from the interaction of *NO and *O2, potently activated PGHS-1, which parallels TxA2 formation and aggregation in human platelets. Inhibition of the endogenous formation of either *NO or O*2 resulted in a concentration-dependent decline of PGHS-1 activity, TxA2 release, and aggregation. The concept of peroxynitrite as modulator of TxA2 formation and aggregation explains the interaction of *NO and O*2 with the PGHS pathway and suggests a mechanism by which antioxidants can regulate PGHS-1-dependent platelet aggregation. This may provide a molecular explanation for the clinically observed hyperreactivity of platelets in high-risk patients and serve as a basis for novel therapeutic interventions.  相似文献   

12.
Hydrogen peroxide is involved in hamster sperm capacitation in vitro   总被引:4,自引:0,他引:4  
We have investigated the possibility that the generation of hydrogen peroxide (H2O2) by spermatozoa plays a physiological role during capacitation. Capacitation is defined as the incubation period required for fertilization in mammals. Capacitation culminates in an exocytotic event, the acrosome reaction (AR). Mammalian sperm generate H2O2 during aerobic incubation and do not contain catalase, the enzyme that promotes scavenging of H2O2. In the present work we show that added catalase inhibited the AR, while glucose oxidase (GO), an enzyme that generates H2O2, accelerated the onset of the AR. Direct addition of H2O2 also stimulated the AR; catalase inhibited both the stimulation by GO and by H2O2. The onset of the AR was always preceded by the appearance of hyperactivated motility. The stimulation of the AR by H2O2 was manifest 1-2 h after the addition of H2O2. Catalase added at 3 h of incubation was less effective in inhibiting the AR than catalase added at the beginning. Incubation of sperm with catalase prevented the induction of the AR by the membrane-perturbing lipid, lysophosphatidyl choline. Taken together, these results suggest that H2O2 produced by hamster sperm plays a significant role during capacitation, possibly in membrane reorganization to facilitate the fusion that takes place during exocytosis of the acrosomal contents.  相似文献   

13.
We have investigated the mechanisms by which transforming growth factor-beta (TGF-beta) increased intracellular H2O2 in Swiss 3T3 fibroblasts. Increase of intracellular H2O2 by TGF-beta was maximal at 30 min and blocked by catalase from Aspergillus niger. Scrape-loading of C3 transferase, which down-regulated RhoA, inhibited the production of H2O2 in response to TGF-beta. TGF-beta stimulated release of arachidonic acid, which was completely inhibited by mepacrine, a phospholipase A2 inhibitor. Mepacrine also blocked the increase of H2O2 by TGF-beta. In addition, arachidonic acid increased intracellular H2O2. Furthermore, TGF-beta stimulated stress fibre formation, which was blocked by catalase, without membrane ruffling. Catalase also inhibited stimulation of thymidine incorporation by TGF-beta. These results suggested that TGF-beta increased intracellular H2O2 through RhoA and phospholipase A2, and also suggested that intracellular H2O2 was required for the stimulation of stress fibre formation and DNA synthesis in response to TGF-beta.  相似文献   

14.
Insulin stimulation of hydrogen peroxide production by rat epididymal fat cells was investigated by studying the oxidation of formate to CO2 by endogenous catalase. Under optimal concentrations of formate (0.1 to 1 mM) and glucose (0.275 mM), insulin stimulated formate oxidation 1.5- to 2.0-fold. Inhibitors of catalase activity, including nitrite and azide, inhibited both basal and insulin-stimulated formate oxidation at concentrations that did not interfere with insulin effects on glucose C-1 oxidation or glucose H-3 incorporation into lipids. The addition of exogenous catalase increased formate oxidation only slightly, while exogenous H2O2 (0.5 mM) stimulated formate oxidation by endogenous catalase strongly. These data indicate that the insulin-stimulated H2O2 production was intracellular. Insulin dose-response curves for formate oxidation were identical with those for glucose H-3 incorporation into lipids. The dependence of relative insulin effects on the logarithm of the glucose concentration was bell-shaped for formate oxidation and correlated highly with the coresponding dependences of glucose C-1 oxidation and glucose H-3 incorporation into lipids. This suggests that insulin stimulation of intracellular H2O2 production is linked to glucose metabolism. Since it is known that extracellular H2O2 can mimic insulin in several respects, these observations suggest that H2O2 may act as a "second messenger" for the observed effects of insulin.  相似文献   

15.
Using simultaneous recording of aggregation and chemiluminescence, responses of human polymorphonuclear leukocytes, blood platelets and their mixture were investigated after stimulation by specific as well as non-specific stimuli for each cell. In our experimental settings, aggregation of platelets and PMN leukocytes was increased in the following order of stimuli: PMA相似文献   

16.
We have compared various mitogenic stimuli for their ability to induce hydrogen peroxide (H2O2) and superoxide anion (O2-) production by PBMC and the effect of these reactive oxygen species and hydroxyl radical (OH.) has been assessed on proliferation. Our results show that pokeweed mitogen (PWM) stimulated PBMC to release H2O2 which interfered with proliferation since inclusion of catalase enhanced PBMC thymidine uptake. In contrast, phytohemagglutinin (PHA) and monoclonal antibody to CD3 (alpha CD3) did not induce PBMC to generate H2O2. O2- release by PBMC, which is readily induced by phorbol myristate acetate (PMA), did not occur when the cells were stimulated with PWM, PHA, or alpha CD3. In correlation, the O2- scavenger enzyme superoxide dismutase (SOD) had no effect on the proliferative response of the cells to the same mitogens, whereas it impaired the thymidine uptake of PMA-stimulated PBMC. A regulatory role for OH. was implied by studies using a battery of OH scavengers known to inhibit PMA-stimulated PBMC proliferation. OH. scavengers markedly inhibited the lymphoblastic transformation of alpha CD3-stimulated cells but had little or no effect on PHA- and PWM-stimulated PBMC. Thus, one manner by which PBMC proliferation is regulated is through oxygen free radical production which varies depending on the type of mitogenic stimulus.  相似文献   

17.
Transforming growth factor beta 1 (TGF-beta 1) and H2O2 both inhibited DNA synthesis of mouse osteoblastic (MC3T3) cells in the late G1 phase of the cell cycle. TGF-beta 1 stimulated cells to release H2O2 in the late G1 phase, but not in the G0 phase, even though TGF-beta 1 receptors were present in both phases. The inhibition of DNA synthesis caused by TGF-beta 1 was partly decreased by the addition of catalase. TGF-beta 1 and H2O2 increased the phosphorylation of the same proteins with a molecular weight of 30,000 in cells in the late G1 phase, and the increase by TGF-beta 1 was abolished at least partly by catalase. The results suggest that H2O2 is one of the mediators of inhibition of DNA synthesis by TGF-beta 1.  相似文献   

18.
HepG2 cells were transfected with vectors containing human catalase cDNA and catalase cDNA with a mitochondrial leader sequence to allow comparison of the effectiveness of catalase overexpressed in the cytosolic or mitochondrial compartments to protect against oxidant-induced injury. Overexpression of catalase in cytosol and in mitochondria was confirmed by Western blot, and activity measurement and stable cell lines were established. The intracellular level of H(2)O(2) induced by exogenously added H(2)O(2) or antimycin A was lower in C33 cell lines overexpressing catalase in the cytosol and mC5 cell lines overexpressing catalase in the mitochondria as compared with Hp cell lines transfected with empty vector. Cell death caused by H(2)O(2), antimycin A, and menadione was considerably suppressed in both the mC5 and C33 cell lines. C33 and mC5 cells were also more resistant to apoptosis induced by H(2)O(2) and to the loss of mitochondrial membrane potential induced by H(2)O(2) and antimycin A. In view of the comparable protection by catalase overexpressed in the cytosol versus the mitochondria, catalase produced in both cellular compartments might act as a sink to decompose H(2)O(2) and move diffusable H(2)O(2) down its concentration gradient. The present study suggests that catalase in cytosol and catalase in mitochondria are capable of protecting HepG2 cells against cytotoxicity or apoptosis induced by oxidative stress.  相似文献   

19.
The secretion of H(2)O(2) by Mycoplasma pneumoniae and M. gallisepticum was measured with the new catalase-aminotriazole method. Peroxide secretion by the mycoplasmas was stimulated by glucose. When catalase and aminotriazole were omitted and exogenous H(2)O(2) was added to the mycoplasmas, a loss in H(2)O(2) was noted with time; the addition of glucose speeded the disappearance of H(2)O(2). The presence of this peroxidase-like activity in the mycoplasmas explains an observed failure of H(2)O(2) to accumulate freely in the suspension medium.  相似文献   

20.
The production of free radicals, superoxide anions (O2-), and hydrogen peroxide (H2O2) was histochemically investigated in human neutrophils that were stimulated by either phagocytosis or the calcium ionophore A23187. To demonstrate O2-, peripheral neutrophils from healthy donors were incubated at 37 degrees C in a medium containing nitroblue tetrazolium and glucose in the presence of either opsonized zymosan A and/or A23187. To demonstrate H2O2, neutrophils pretreated with a stimulant for 10 min were washed and incubated in a cerium medium containing CeCl3 and glucose in a Tris-maleate buffer. In cells engaged in phagocytosis, diformazan (for O2-) and cerium perhydroxide deposits (for H2O2) were restricted to the neutrophil-particle interface and on the inner surface of phagosomes. The remaining free surface of the plasma membrane was devoid of reaction products. In the case of neutrophils stimulated with A23187, the production of O2- and H2O2 was visualized over the whole surface of the plasma membrane. These histochemical reactions were inhibited by p-benzoquinone, superoxide dismutase, ferricytochrome c or catalase, and p-diazobenzenesulfonate (a membrane-impermeable protein denaturant). The results showed that human neutrophils produce free radicals exocellularly and that the site of production varies with different stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号