首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes culture conditions for a plant regeneration system via a combined pathway of somatic embryogenesis and organogenesis in root explant cultures of the commercial rose cultivar 'Charming'. Root explants formed white calluses at a frequency of 30% after 6 weeks of culture on Schenk and Hildebrandt (SH) medium supplemented with 11 mg l−1 2,4-dichlorophenoxyacetic acid. After 6 weeks of transfer to SH medium without growth regulators, initial white calluses gave rise to globular somatic embryos at a frequency of 2.8%, which were subsequently dedifferentiated to embryonic tissues. Somatic embryos or embryonic tissues initially derived from root explants did not undergo development beyond cotyledonary stage. To produce adventitious shoots, embryonic tissues were sliced and cultured on SH medium with 0.5 mg l−1 6-benzyladenine. After 4 weeks of culture, 28% of embryonic tissue explants formed adventitious shoots. Regenerated shoots were rooted on half strength SH medium with 0.1 mg l−1 α-naphthalaneacetic acid and subsequently grown to maturity. Root-derived embryonic tissues were proliferated by subculture, while retaining the capacity for shoot production for a few years.  相似文献   

2.
Efficient plant regeneration through somatic embryogenesis was achieved in Polyscias filicifolia. Embryogenic calluses were induced on Murashige and Skoog (MS) basal medium supplemented with 0.5 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l−1 benzylaminopurine (BAP; type I callus) and on MS medium with 2.0 mg l−1 2,4-D and 0.01 mg l−1 kinetin (type II callus) from leaf explants of a 2-yr-old plant. Primary somatic embryos (PSEs) developed after four passages of suspension culture established from embryogenic callus when cultured in liquid half-strength MS medium (1/2 MS) without growth regulators. PSEs in the cotyledonary stage were multiplied by adventitious embryogenesis. Single secondary somatic embryos (SSEs) or their clusters developed at the base of PSE hypocotyls and regenerated into plantlets in a one-step process on plant growth regulator-free 1/2 MS medium. Low sucrose concentration of 15 g l−1 promoted development of normal SSEs. All SSEs regenerated into single, well-rooted plantlets on a Nitsch and Nitsch medium supplemented with 0.5 mg l−1 kinetin, 0.1 mg l−1 indole-3-butyric acid, and 10 mg l−1 adenine sulfate. Subsequent two subculture cycles on the same medium were necessary to obtain plantlets sufficiency developed to allow successful transfer to the soil. Rooted plantlets were established in a peat mixture with 90% survival, with the plants showing normal morphological characteristics.  相似文献   

3.
A three-stage procedure for embryogenesis in Trachyspermum ammi was developed from cotyledon and cotyledonary node explants cultured in Murashige and Skoog (MS) liquid medium supplemented with 0.2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). Globular somatic embryos without intervening callus phase developed in 4 wk. The development of embryos to heart and torpedo stages required second-stage subculture of the explants (along with developing embryos) in liquid medium with lower concentrations of 2,4-D. Further development of embryos required a third-stage subculture in hormone-free liquid medium supplemented with 100 mg l−1 casein hydrolysate. Regeneration of complete plantlets occurred after the fully developed somatic embryos were transferred to solidified half-strength MS medium supplemented with 1 mg l−1 gibberellic acid.  相似文献   

4.
Plant regeneration was achieved through direct and indirect somatic embryogenesis in Eucalyptus camaldulensis. Callus was induced from mature zygotic embryos and from cotyledon explants collected from 10, 15, 25, and 30-day-old seedlings cultured on Murashige and Skoog (MS) basal medium supplemented with different concentrations of naphthaleneacetic acid (NAA). Maximum callus induction from mature zygotic embryos was obtained on MS basal medium containing 1 mg l−1 NAA. The frequency of callus development varied based on the age of the cotyledon explants 10-day-old explants giving highest percentage on MS basal medium supplemented with 1 mg l−1 NAA. Callus obtained from mature zygotic embryos gave highest frequency of somatic embryogenesis on MS basal medium containing 0.5 mg l−1 benzyladenine (BA) and 0.1 mg l−1 NAA. Separate age wise culture of the calli, obtained from cotyledons of different ages cultured separately, revealed high somatic embryogenic potential on callus from 10-day-old cotyledons. Direct somatic embryogenesis too was obtained from hypocotyl explants without an intervening callus phase on MS basal medium containing 0.5 mg l−1 BA. The effects of abscisic acid (ABA), sucrose, and different strengths of MS medium on somatic embryo maturation and germination were also investigated. Number of mature somatic embryos increased with lower concentrations (0–1 mg l−1) of ABA while no significant differences were observed at higher concentrations (2–5 mg l−1) of ABA. Compared to basal medium containing lower concentrations of sucrose (1%), the MS medium supplemented with higher levels of sucrose (4%) showed significantly lower frequency of mature somatic embryos. Basal medium without any dilution gave the highest number of immature embryos. However, the number of mature embryos was high at higher medium dilutions.  相似文献   

5.
A modified culture protocol has been developed for the induction of somatic embryogenesis in Azadirachta indica (neem). Embryogenic calluses were initiated from cotyledons or hypocotyls using a Murashige and Skoog (MS) agar medium supplemented with 0.5 mg l−1 α-napthaleneacetic acid (NAA), 1 mg l−1 6-benzylaminopurine (BA), 1 g l−1 casein hydrolysate, and 50 g l−1 sucrose. The calluses, when transferred to a liquid medium similar to the agar medium but with NAA replaced by 0.5 mg l−1 indole-3-acetic acid (IAA), formed globular structures which further developed a rudimentary root, after 4 to 5 weeks incubation. Subsequently, these highly differentiated tissues when transferred into a hormone-free MS medium containing 1 g l−1 casein hydrolysate and 50 g l−1 sucrose, active embryo masses started to appear after 1 to 2 weeks. The embryo production was found to improve more than 2 fold by adding 0.2 mg l−1 zeatin to the medium. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Culture conditions for high frequency plant regeneration via somatic embryogenesis from cell suspension cultures of Ranunculus kazusensis are described. Zygotic embryos formed white nodular structures and pale-yellow calluses at a frequency of 84.9% when cultured on half-strength Schenk and Hildebrandt (SH) medium supplemented with 0.1 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). However, the frequency of white nodular structure and off-white callus formation decreased with an increasing concentration of 2,4-D up to 10 mg l−1, when the frequency reached 25%. Cell suspension cultures were established from zygotic embryo-derived pale-yellow calluses using half-strength SH medium supplemented with 0.1 mg l−1 of 2,4-D. Upon plating onto half-strength SH basal medium, over 90% of cell aggregates gave rise to numerous somatic embryos and developed into plantlets. Regenerated plantlets were successfully transplanted to potting soil and grown to maturity at a survival rate of over 90% in a growth chamber. The plant regeneration system established in this study can be applied to mass propagation and conservation of this species.  相似文献   

7.
A system for rapid plant regeneration through somatic embryogenesis from shoot tip explants of sorghum [Sorghum bicolor (L.) Moench] is described. Somatic embryogenesis was observed after incubation of explants in dark for 6–7 weeks through a friable embryogenic callus phase. Linsmaier and Skoog medium supplemented with 2,4-dichlorophenoxyacetic acid (2 mg l−1) and kinetin (0.1 mg l −1) was used for induction of friable embryogenic calli and somatic embryos. Germination of somatic embryos was achieved about 5 weeks after transfer onto Murashige and Skoog (MS) medium supplemented with 6-benzylaminopurine (2 mg l−1) and indole-3-acetic acid (0.5 mg l −1) under light. Seeds from in vitro-regenerated plants produced a normal crop in a field trial, and were comparable to the crop grown with the seeds of the mother plant used to initiate tissue culture. The simplicity of the protocol and possible advantages of the system for transformation over other protocols using different explants are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
In this paper, we would like to show unexpected morphogenic potential of cell suspensions derived from seedling explants of Gentiana kurroo (Royle). Suspension cultures were established with the use of embryogenic callus derived from seedling explants (root, hypocotyl and cotyledons). Proembryogenic mass proliferated in liquid MS medium supplemented with 0.5 mg l−1 2,4-D and 1.0 mg l−1 Kin. The highest growth coefficient was achieved for root derived cell suspensions. The microscopic analysis showed differences in aggregate structure depending on their size. To assess the embryogenic capability of the particular culture, 100 mg of cell aggregates was implanted on MS agar medium supplemented with Kin (0.0–2.0 mg l−1), GA3 (0.0–2.0 mg l−1) and AS (80.0 mg l−1). The highest number of somatic embryos was obtained for cotyledon-derived cell suspension on GA3-free medium, but the best morphological quality of embryos was observed in the presence of 0.5–1.0 mg l−1 Kin, 0.5 mg l−1 GA3 and 80.0 mg l−1 AS. The morphogenic competence of cultures also depended on the size of the aggregate fraction and was lower when size of aggregates decreased. Flow cytometry analysis reveled luck of uniformity of regenerants derived from hypocotyl suspension and 100% of uniformity for cotyledon suspension.  相似文献   

9.
A simple and effective method of regenerating Syngonium podophyllum ‘Variegatum’ via direct somatic embryogenesis has been established. Leaf and petiole explants were cultured on Murashige and Skoog (MS) medium supplemented with N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) or N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (TDZ) with either α-naphthalene acetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D). Somatic embryos directly formed at one or two sides of petiole explants on MS medium supplemented 2.5 mg l−1 TDZ with 0.5 mg l−1 NAA or 2.0 mg l−1 TDZ with 0.2 mg l−1 NAA or with 0.2 and 0.5 mg l−1 2,4-D, respectively. The frequency of petiole explants with somatic embryos produced was as high as 86% when cultured on medium containing 2.5 mg l−1 TDZ with 0.5 mg l−1 NAA. Up to 85% of somatic embryos were able to germinate after transferring onto medium containing 2.0 mg l−1 6-benzylaminopurine (BA) and 0.2 mg l−1 NAA. Approximately 50–150 plantlets were regenerated from a single petiole explant. However, there was no somatic embryo formation from leaf explants regardless of growth regulator combinations used. Regenerated plantlets from petiole explants were stable and grew vigorously after transplanting to a soilless container substrate in a shaded greenhouse.  相似文献   

10.
Embelia ribes, an important vulnerable medicinal liana, was regenerated through organogenesis and embryogenesis using leaf explants. Leaf explants produced organogenic calluses on MS medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.5 mg l−1 6-benzylaminopurine. Shoot regeneration was obtained from organogenic calluses on MS medium containing different concentrations of thidiazuron (TDZ) and indole-3-acetic acid (IAA). The frequency of shoot bud organogenesis was highest (23.9 shoots/explant) in MS medium containing 0.5 mg l−1 TDZ and 0.1 mg l−1 IAA. The best result for induction of embryogenic callus was noticed in the combination of 2.0 mg l−1 TDZ and 0.5 mg l−1 2,4-D. This callus, maintained in the same medium, showed the highest differentiation of embryos (56.5%) after 6 wk of culture. Embryos were transferred to MS medium supplemented with different concentrations of TDZ, and this facilitated conversion of embryos into plants. After 6 wk of subculture, MS medium with 0.05 mg l−1 TDZ favored the highest percentage (52.2%) embryo conversion. As per the present protocol, 52.2% of the embryos underwent conversion, and a mean number of 29.5 shoots per culture was obtained. Shoots developed from both types of calluses were rooted on half-strength MS basal medium supplemented with 1.0 mg l−1 indole-3-butyric acid. HPLC-UV assay demonstrated the highest embelin content (5.33% w/w) in the embryogenic callus cultures. Embelin was isolated from embryogenic callus and was identified using IR and 1H NMR studies.  相似文献   

11.
Summary Callus induction was observed from hypocotyl, root, and cotyledonary leaf segments, grown on Murashige and Skoog (MS) medium supplemented with various concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KN). Maximum callusing (100%) was obtained from root and cotyledonary leaf segments grown on MS medium supplemented with a combination of 2 mg l−1 (9.1 μM) 2,4-D and 0.2 mg l−1 (0.9 μM) KN. The calluses, when subcultured in the same medium, showed profuse callusing. However, these calluses remained recalcitrant to regenerate regardless of the quality and combinations of plant growth regulators in the nutrient pool. When hypocotyl segments were used as explants, callus induction was noticed in 91% of cultures which showed shoot regeneration on MS medium supplemented with 2 mg l−1 2,4-D and 0.2 mg l−1 KN. These shoots were transferred to fresh medium containing various concentrations and combinations of 6-benzyladenine (BA) and N6-(2-isopentenyl)adenosine (2-iP). Maximum shoot multiplication was observed after 60 d of the second subculture on MS medium containing 2 mg l−1 (8.9 μM) BA. These shoots were rooted best (87%) on MS medium containing 2 mg l−1 (9.9 μM) indole-3-butyric acid (IBA). The plantlets were transferred to the field after acclimatization and showed 60% survival.  相似文献   

12.
Summary Callus of Phalaenopsis Nebula was induced from seed-derived protocorms on 1/2 Murashige and Skoog (MS) basal medium plus 0–1.0 mg l−1 (0–4.52 μM) N-phenyl-N′-1,2,3,-thiadiazol-5-yl urea (TDZ) and/or 0–10 mg l−1 (0–45.24 μ M) 2,4-dichlorophenoxyacetic acid (2,4-D). Protocorms 2 mo. old performed better than 1-mo.-old protocorms for callus induction. More calluses formed on 1/2 MS basal medium supplemented with 0.1–1.0 mg l−1 (0.45–4.52 μM) TDZ. These calluses could be maintained by subculturing every month with basal medium supplemented with 0.5 mg l−1 (2.27 μM) TDZ and 0.5 mg l−1 (2.26 μM) 2,4-D. Protocorm-like bodies were formed, and plants regenerated from these calluses on 1/2 MS basal medium alone or supplemented with 0.1–1.0 mg l−1 (0.45–4.52 μM) TDZ. Plantlets were then potted on sphagnum moss in the greenhouse and grew well. No chromosomal abnormalities were found among the root-tip samples of 21 of the regenerated plantlets that were successfully acclimatized.  相似文献   

13.
In vitro studies were initiated with Withania somnifera (L.) Dun. for rapid micropropagation of selected chemotypes using nodes, internodes, hypocotyls and embryo explants. Direct regeneration of shoot buds was observed in MS basal medium supplemented with various concentrations of either benzyladenine (BA) or thidiazouron (TDZ) depending on the explant. Nodal explants formed multiple shoots both from pre-existing and de novo buds on Murashige and Skoog's medium (MS) containing 0.1–5.0 mg l−1 BA and a ring of de novo shoot buds on MS medium containing 0.2 and 0.3 mg l−1 TDZ. Internodal explants formed shoot buds on MS with 1.0 and 5.0 mg l−1 BA while the hypocotyl explants gave rise to multiple shoots only on MS with 0.5 mg l−1 BA. Isolated embryos gave rise to many shoot buds on MS with 0.2 and 0.3 mg l−1 TDZ. The shoot buds elongated and rooted either on MS medium with 0.01 mg l−1 BA or on half strength MS medium lacking growth regulators, which depended upon the growth regulator used in the shoot bud induction medium. Except for the embryo-derived plantlets, all other plantlets could be acclimatized with 100% success. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Direct somatic embryogenesis of Frittilaria meleagris L. was induced using leaf base explants excised from in vitro grown shoots. Somatic embryos occurred at the basal part of leaf explants 4 weeks after culture on a Murashige and Skoog (MS) medium supplemented with various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) or kinetin (KIN). The highest number of somatic embryos (SEs) were formed (9.74) from leaf explant on MS medium supplemented with 0.1 mg dm−3 2,4-D after 4 weeks of culture initiation. An initial exposure to a low concentration of KIN in the medium also enhanced SEs induction. Our observations by light and scanning electron microscopy revealed that SEs originate directly from the epidermal and subepidermal layers of leaf explant. The developmental stages of somatic embryogenesis from the first unequal cell division through the meristematic clusters, multi-cellular globular somatic embryos to the fully formed cotyledonary embryos were determined. After 4 weeks on MS medium without plant growth regulators, SEs developed into bulblets.  相似文献   

15.
Segments taken from flower-stalk internodes of Oncidium Sweet Sugar formed somatic embryos and shoot buds directly from wound surfaces or via nodular masses proliferation within 1.5 months, when cultured on a Gelrite-gelled 1/2-MS basal medium supplemented with thidiazuron (0.1–3 mg l−1) in darkness. In light, when subcultured, these nodular masses proliferated into green compact callus, and produced somatic embryos, shoot buds and/or yellowish abnormal structures spontaneously. Supplementing 0.1–1 mg l−1 NAA enhanced embryo formation, but retarded proliferation of shoot buds and yellowish abnormal structures. Somatic embryos that directly formed from wound surfaces of flower stalk explants usually developed into abnormal structures, but the callus-derived embryos could germinate into PLBs and eventually developed to normal plantlets on a hormone-free basal medium for 3–4 weeks. Both the embryo-and shoot bud-derived regenerants developed into healthly plantlets when potted in sphagnum moss and acclimatized in the greenhouse. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Cotyledon, hypocotyl or root explants of 7-day-old broccoli seedlings were cultured on Murashige and Skoog (MS) agar or liquid medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). The frequency of direct somatic embryo formation was 100% when root explants were cultured in liquid medium. Histological analysis indicated that somatic embryos were initiated directly from the pericycle cell layers of root explants as early as 1 day after liquid culture. Genotype did not affect the frequency of somatic embryo formation or the number of somatic embryos per explant. All broccoli genotypes examined had 100% somatic embryo induction efficiency, and the number of somatic embryos per 0.8 mm root segment ranged from 22.9 in ‘Luhui’ to 26.0 in ‘Haizi’. The number of normally developed somatic embryos in culture increased with increasing 2,4-D concentration. Plantlet regeneration frequency was the highest (73.3%) when germinated plantlets were transferred to 1/2 strength MS agar medium containing 1.0 mg l−1 6-benzyladenine (BA). When regenerated plantlets were transferred to a greenhouse, approximately 75% survived and there were no morphological differences between regenerated plants and seed-derived controls. The protocols established in this study will benefit large-scale vegetative propagation and transformation-based genetic improvement of broccoli.  相似文献   

17.
We have developed a system for the in vitro regeneration of pasqueflowers (Pulsatilla koreana Nakai). The system was based on somatic embryogenesis and shoot organogenesis. Over a growth period of 6 weeks, multiple shoots were initiated from leaf, petiole, and pedicel explants on Murashige and Skoog (MS) medium containing 0.5 mg l−1 indole-3-acetic acid (IAA) and zeatin (Zn), kinetin (Kin), or 6-benzyladenine (BA). We achieved 100% of adventitious shoot induced when petiole and pedicel explants were cultured on MS, 0.5–2.0 mg l−1 Zn, and 0.5 mg l−1 IAA. Somatic embryos developed from the explants and generated shoots on MS medium containing 0.25 mg l−1 Zn and 0.5 mg l−1 IAA. Globular and heart-shaped stages of somatic embryos were observed. Histological studies have revealed the stages of development of somatic embryos. For propagation and growth, the regenerated shoots from organogenic or embryogenic calluses were transferred to MS medium containing either (1) 1.5 mg l−1 Zn and 0.05 mg l−1 IAA or (2) 1.0 mg l−1 BA and 0.05 mg l−1 IAA. After the length of the shoots reached 3 cm, the shoots initiated by organogenesis as well as those initiated by somatic embryogenesis were transferred to the root induction medium. After 2 months of culture in half-strength MS with 1.5 mg l−1 α-naphthalene acetic acid (NAA), the rooting ratio was 93%. Finally, the rooted plantlets were acclimatized in a mixture of mountain soil and perlite.  相似文献   

18.
Embryogenic cultures were induced from immature avocado zygotic embryos representing different botanical races and complex hybrids. The optimum induction medium consisted of B5 major salts, MS minor salts, 0.4 mg l−1 thiamine HCl, 100 mg l−1 myo-inositol, 30 g l−1 sucrose, 0.41 μM picloram and 8 g l−1 TC agar. Somatic embryogenesis occurred directly from the explants on induction medium, and secondary embryos and proembryonic masses proliferated in liquid and on semisolid maintenance medium. Embryogenic culture maintainance was optimized in liquid, filter-sterilized MS medium, supplemented with 30–50 mg l−1 sucrose, 4 mg l−1 thiamine HCl and 0.41 μM picloram. Two types of embryogenic cultures were recognized: –genotypes that proliferated as proembryonic masses in the presence of auxin (PEM-type) and; –genotypes in which the heart stage and later stages of somatic embryos developed in the presence of auxin(SE-type). Embryogenic suspension cultures became increasingly disorganized over time, and this was associated with progressive loss of embryogenic potential. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Hypocotyl, cotyledon and zygotic embryo explants from two Tunisian Cucumis melo L. cultivars Beji and Maazoun, cultured on the MS medium added with 2,4-D (0.25–1 mg l−1) and BA (0.10–0.50 mg l−1), produce calluses with somatic embryos after 3 weeks of culture. For Beji c.v. the highest percentage (62.50%) of embryogenesis was observed for cotyledons. The average embryo number per callus was 10.40. Embryogenesis induction for zygotic embryos reached 33.50% with 29 embryos per callus. The embryogenesis ability of hypocotyls did not exceed 12.50% (2.50 embryos per callus). Somatic embryogenesis for Maazoun c.v. explants was less efficient. Embryos formation was observed only for cotyledons (29%) and zygotic embryos (25%). Cotyledonary staged embryos, when transferred to hormone free MS medium, germinated. The maximum germination rates were 51.50 and 44.50%, respectively for Maazoun and Beji c.v. The highest percentage (36.50%) of survival plants was noted for Beji c.v. Regenerants were diploids (2n = 2x = 24) and morphologically similar to their parents issued from seeds.  相似文献   

20.
An in vitro protocol for efficient plant regeneration has been developed from mature embryo explants of highland barley (Hordeum vulgare L. var. nudum Hk. f.) under endosperm-supported culture. Embryos with (endosperm-supported culture, ES) or without endosperm (non-endosperm-supported culture, NES) were excised from mature seeds and cultured on MS medium supplemented with various concentrations of 2,4-D (1–5 mg l−1) for callus induction. The percentage of callus induction from ES explants was significantly (P < 0.05) lower than that from NES. The highest frequency (97.6%) of callus induction was obtained from NES explants on MS medium containing 3 mg l−1 2,4-D. When the primary calli were maintained at a reduced concentration of 2,4-D (0.5 mg l−1) for 3 weeks, embryogenic calli were formed. The embryogenic calli were then transferred to MS medium supplemented with different concentrations of BA (1–5 mg l−1) and 500 mg l−1 casein hydrolysate (CH) for shoot regeneration. However, the capacity of plant regeneration from ES explant-derived calli was significantly (P < 0.05) higher than that from NES. The best response (81.3%) was observed from ES explant-derived calli on MS medium containing 2 mg l−1 BA. Regenerated plantlets with well-developed root systems were transferred to pots where they grew well, attained maturity and produced fertile seeds. This method could be employed for genetic manipulation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号