首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human isoforms A and B of nm23/nucleoside diphosphate (NDP) kinase, functionally important in development and cancer, have been reported to bind to DNA, and in particular isoform A to the PDGF-A promoter and isoform B to the c-myc promoter and to telomeric repeats. However, no direct proof of the binding in vivo has yet been obtained. To demonstrate this interaction, human erythroleukemic K562 cells were incubated with two different cross-linking reagents, formaldehyde or cis-diammine dichloro platinum II. The DNA-protein covalent complexes were isolated and analyzed by Western blotting. The positive immunochemical staining showed that in both conditions NDP kinase isoforms A and B were efficiently cross-linked to DNA in vivo. NDP kinase-linked DNA fragments obtained by immunoprecipitation, subjected to hybridization with different probes, showed a definite enrichment in the nuclease-hypersensitive silencer element of the PDGF-A promoter. No conclusive evidence was found by this technique of preferential hybridization with a nuclease-hypersensitive element of the c-myc promoter and with the telomeric TTAGGG repeats. The immunoprecipitated NDP kinase-DNA complexes are a promising material for the detection of other specific DNA sequences interacting with NDP kinase.  相似文献   

2.
3.
Nucleoside diphosphate kinase (NDP kinase) catalyzes the transfer of terminal phosphate from nucleotide triphosphates (e.g. ATP) to nucleotide diphosphates (e.g. GDP) to yield nucleotide triphosphates (e.g. GTP). Since guanine nucleotides play critical role(s) in GTP-binding protein (G-protein)-mediated signal transduction mechanisms in retina, we quantitated NDP kinase activity in subcellular fraction-derived from normal rat retina. A greater than 85% of the total specific activity was present in the soluble fraction, which was stimulated (up to 7 fold) by 2 mM magnesium. NDP kinase exhibited saturation kinetics towards di- and tri-phosphate substrates, and was inhibited by known inhibitors of NDP kinase, uridine diphosphate (UDP) or cromoglycate (CRG). We have previously reported significant abnormalities in the activation of G-proteins in streptozotocin (STZ)-diabetic rat retina (Kowluru et al. Diabetologia 35:624–631, 1992). Since NDP kinase hasbeen implicated in direct interaction with and/or activation of various G-proteins, we quantitated both basal and magnesium-stimulated NDP kinase activity in soluble and particulate fractions of retina derived from STZ-diabetic rats to examine whether abnormalities in G-protein function in diabetes are attributable to alterations in retinal NDP kinase. There was no effect of diabetes either on the basal or the magnesium-activated retinal NDP kinase activity. This study represents the first characterization of NDP kinase activity in rat retina, and suggests that in diabetes, this enzyme may not be rate-limiting and/or causal for the observed alterations in retinal G-protein functions.  相似文献   

4.
Putative functions of nucleoside diphosphate kinase in plants and fungi   总被引:4,自引:0,他引:4  
The putative functions of NDP (nucleoside diaphosphate) kinases from various organisms focusing to fungi and plants are described. The biochemical reactions catalyzed by NDP kinase are as follows. (i) Phosphotransferring activity from mainly ATP to cognate NDPs generating nucleoside triphosphates (NTPs). (ii) Autophosphorylation activity from ATP and GTP. (iii) Protein kinase (phosphotransferring) activity phosphorylating such as myelin basic protein. NDP kinase could function to provide NTPs as a housekeeping enzyme. However, recent works proved possible functions of the NDP kinases in the processes of signal transduction in various organisms, as described below. By use of the extracts of the mycelia of a filamentous fungus Neurospora crassa blue-light irradiation could increase the phosphorylation of a 15-kDa protein, which was purified and identified to be NDP kinase (NDK-1). By use of the etiolated seedlings of Pisum sativum cv Alaska and Oryza sativa red-light irradiation of intact plants increased the phosphorylation of NDP kinase. However, successive irradiation by red–far-red reversed the reaction, indicating that phytochrome-mediated light signals are transduced to the phosphorylation of NDP kinase. NDP kinase localizing in mitochondria is encoded by nuclear genome and different from those localized in cytoplasm. NDP kinase in mitochondria formed a complex with succinyl CoA synthetase. In Spinicia oleraceae two different NDP kinases were detected in the chloroplast, and in Pisum sativum two forms of NDP kinase originated from single species of mRNA could be detected in the choloroplast. However, the function of NDP kinases in the choloroplast is not yet known. In Neurospora crassa a Pro72His mutation in NDP kinase (ndk-1 Pro72His ) deficient in the autophosphorylation and protein kinase activity resulted in lacking the light-induced polarity of perithecia. In wild-type directional light irradiation parallel to the solid medium resulted in the formation of the perithecial beak at the top of perithecia, which was designated as light-induced polarity of perithecia. In wild-type in darkness the beak was formed at random places on perithecia, and in ndk Pro72His mutant the perithecial beak was formed at random places even under directional light illumination. The introduction of genomic DNA and cDNA for ndk-1 demonstrated that the wild-type DNAs suppressed the mutant phenotype. With all these results except for the demonstration in Neurospora, most of the phenomena are elusive and should be solved in the molecular levels concerning with NDP kinases.  相似文献   

5.
Nucleoside diphosphate kinase (NDP kinase) from Paramecium was purified to homogeneity. The native enzyme was 80 kDa (by gel filtration), with subunits of 18 and 20 kDa. Near the amino terminus, 15 of 20 residues were identical with those in human NDP kinase, and 17 of 20 with the awd gene product from Drosophila. NDP kinase bound α-labeled ATP and GTP, and a photoreactive GTP analog labeled both subunits. Purified NDP kinase underwent autophosphorylation on a histidine and a serine residue using either ATP or GTP as a substrate. The enzyme also catalyzed acid-stable phosphorylation of casein and phosvitin. This protein kinase activity is distinct from the histidine phosphorylation that is part of the NDP kinase catalytic cycle. Antiserum against the purified protein from Paramecium cross-reacted with 16- to 20-kDa proteins in most species tested, and with a larger protein (44 kDa) in Paramecium, Xenopus, and two human lines. The multiple forms (20 and 44 kDa) of the NDP kinase in Paramecium and its protein kinase activity, suggest that the protein is more than a housekeeping enzyme; it may have regulatory roles such as those of the NDP kinase-like awd protein of Drosophila and Nm23 protein of humans.  相似文献   

6.
A cDNA clone (TAB2) encoding a nucleoside diphosphate (NDP) kinase has been isolated from a tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) cDNA library. The clone is 590 bp long and exhibits a high degree of sequence identity with spinach NDP kinases I and II, Pisum sativum NDP kinase I, Arabidopsis thaliana NDP kinase, Drosophila melanogaster NDP kinase, Dictyostelium discoideum NDP kinase and human Nm 23-H1 and Nm23-H2. Northern analysis has revealed that the mRNA encoded by TAB2 is up-regulated in both leaf and stem tissue in response to wounding. The increase is apparent within 1 h of wounding and is not further elevated by application of ethylene. Southern blot analysis indicates that TAB2 is a member of a small gene family.  相似文献   

7.
Nucleoside (NDP) diphosphate kinases are oligomeric enzymes. Most are hexameric, but somebacterial enzymes are tetrameric. Hexamers and tetramers are constructed by assemblingidentical dimers. The hexameric structure is important for protein stability, as demonstratedby studies with natural mutants (the Killer-of-prune mutant ofDrosophila NDP kinase andthe S120G mutant of the human NDP kinase A in neuroblastomas) and with mutants obtainedby site-directed mutagenesis. It is also essential for enzymic activity. The function of the tetrameric structure is unclear.  相似文献   

8.
9.
10.
Nm23 was the first metastasis suppressor gene identified. This gene encodes a NDP kinase that also exhibits other properties like histidine protein kinase and interactions with proteins and DNA. The S120G mutant of NDPK-A has been identified in aggressive neuroblastomas and has been found to reduce the metastasis suppressor effect of Nm23. In order to understand the differences between the wild type and the S120G mutant, we have determined the structure of both mutant and wild type NDPK-A in complex with ADP. Our results reveal that there are no significant changes between the two enzyme versions even in the surroundings of the catalytic histidine that is required for NDP kinase activity. This suggests that the S120G mutation may affect an other protein property than NDP kinase activity.  相似文献   

11.
Nucleoside diphosphate (NDP) kinase has a central role in the synthesis of (deoxy-)trinucleotides. In addition, mutations in the gene encoding NDP kinase have been shown to have important consequences for Drosophila development and mammalian tumorogenesis. We have overexpressed, in Dictyostelium discoideum, a genomic clone encoding the enzyme NDP kinase. The concomitant increase in the levels of RNA and enzyme activity identifies a 5′ non-coding genomic region of 0.9 kb as being the complete promoter region. Overexpression of wild-type NDP kinase has no effect on development. This is also true for an inactive mutant H122C that does not have a dominant inhibitor effect. Overexpression of the P105G mutant NDP kinase, which is known to be affected in its stability in vitro, only leads to a small increase in total NDP-kinase activity. Thermal and chemical denaturation experiments demonstrate the formation of hexameric hybrids between wild-type and mutant monomers.  相似文献   

12.
The Human Nm23/Nucleoside Diphosphate Kinases   总被引:17,自引:0,他引:17  
Biochemical experiments over the past 40 years have shown that nucleoside diphosphate(NDP) kinase activity, which catalyzes phosphoryl transfer from a nucleoside triphosphate toa nucleoside diphosphate, is ubiquitously found in organisms from bacteria to human. Overthe past 10 years, eight human genes of the nm23/NDP kinase family have been discoveredthat can be separated into two groups based on analysis of their sequences. In addition tocatalysis, which may not be exhibited by all isoforms, evidence for regulatory roles has comerecently from the discovery of the genes nm23 and awd, which encode NDP kinases and areinvolved in tumor metastasis and Drosophila development, respectively. Current work showsthat the human NDP kinase genes are differentially expressed in tissues and that their productsare targeted to different subcellular locations. This suggests that Nm23/NDP kinases possessdifferent, but specific, functions within the cell, depending on their localization. The roles ofNDP kinases in metabolic pathways and nucleic acid synthesis are discussed.  相似文献   

13.
Abstract

Nucleoside diphosphate (NDP) kinases of mammals are hexamers of two sorts of randomly associated highly homologous subunits of 152 residues each and, therefore exist in cell as NDP kinase isoforms. The catalytic properties and three-dimensional structures of the isoforms are very similar. The physiological meaning of the existence of the isoforms in cells remained unclear, but studying recombinant rat NDP kinases a and β, each containing only one sort of subunits, we discovered that, in contrast to the isoenzyme β, NDP kinase α is able to interact with the complex between bleached rhodopsin and G-protein transducin in retinal rod membranes at lowered pH values (Orlov et al. FEBS Lett. 389, 186–190, 1996). In order to search for possible molecular basis of such differences between these isoenzymes, a detailed comparative study of their intrinsic fluorescence properties in a large range of solvent conditions was performed in this work. The isoenzymes α and β both contain the same three tryptophan (Trp78, 133, 1nd 149) and four tyrosine (Tyr 52, 67, 147, and 151) residues per subunit, but exhibit pronounced differences in their fluorescence properties (both in spectral positions and shape and quantum yield values) and behave differently under pH titration. Whereas NDP kinase a undergoes spectral changes in the pH range 5–7 with the mid-point at 6.2, no unequivocal indication of a structural change of NDP kinase β under pH titration from 9 to 5 was obtained. Since the pH dependencies obtained for fluorescence of isoenzyme α resembles the dependence of its binding to the rhodopsin-transducin complex it was suggested that the differences between the NDP kinase isoenzymes α and β in the pH-induced behavior, revealed by the fluorescence spectroscopy, and the differences in their ability to interact with rhodopsin-transducin complex may have the same physical nature, that would be a physico-chemical reason of possible functional dissimilarity of NDP kinase isoforms in cell. An additional analysis of three-dimensional structure of homologous NDP kinases revealed that the source of the differences in fluorescence properties and pH-titration behavior between the isoenzymes α and β may be due to the difference in their global electrostatic charges, rather than to any structural differences between them at neutral pH. The unusually high positive electrostatic potential at he deeply buried active site Tyr52 makes possible that it exists in deprotonated tyrosinate form at neutral and moderately acidic solution. Such a possibility may account for rather unusual fluorescence properties of NDP kinase α: (i) rather long-wavelength emission of NDP kinase a at ca. 340 nm at pH ca. 8 at extremely low accessibility to external quenchers and, possibly, (ii) an unusually high quantum yield value (ca. 0.42).  相似文献   

14.
The role of nucleoside diphosphate (NDP) kinases in cell growth, differentiation, and tumormetastasis in relation to signal transduction was investigated. The essential role of NDP kinasein cell growth was validated by coupling between reduced NDP kinase levels, induced byantisense oligonucleotides, and the suppression of proliferative activity of a cultured cell line.In addition, because NDP kinase levels are often enhanced with development and differentiation,as has been demonstrated in postmitotic cells and tissues, such as the heart and brain, wefurther examined this possibility using the bone tissue (osteoblasts) and a cultured cell linePC12D. The enhanced NDP kinase accumulation was demonstrated in the matured osteoblastsin vivo and in vitro by immunohistochemistry. In PC12D cells neurite outgrowth took placein NDP kinase -transfected clones without differentiation inducers, which was accompaniedby prolongation of doubling time. Neurite outgrowth, triggered by nerve growth factor and acyclic AMP analog, was down-regulated upon forced expression of inactive mutant NDPkinase by virtue of a dominant negative effect. NDP kinase -transfected rat mammaryadenocarcinoma cells (MTLn3) and nm23-H2-transfected human oral squamous cell carcinomacells (LMF4) manifested reduced metastatic potential and were associated with an alteredsensitivity to environmental factors, such as motility and growth factors. NDP kinase ,compared to NDP kinase , was involved in a wide variety of the cellular phenomena examined.Taken together, NDP kinase isoforms appear to elicit both their own respective and commoneffects. They may have an ability to lead cells to both proliferative and differentiated statesby modulating responsiveness to environmental factors, but their fate seems to depend on theirsurrounding milieu.  相似文献   

15.
An ATP-binding protein from the haloalkaliphilic archaeon Natronobacterium magadii was purified and characterized by affinity chromatography on ATP-agarose and by fast protein liquid chromatography (FPLC) on a Mono Q column. The N-terminal 20 amino acid sequence of the kinase showed a strong sequence similarity of this protein with nucleoside diphosphate (NDP) kinases from different organisms and, accordingly, we believe that this protein is a nucleoside diphosphate kinase, an enzyme whose main function is to exchange γ-phosphates between nucleoside triphosphates and diphosphates. Comparison of the molecular weights of the NDP kinase monomer determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (23 000) and of the oligomer determined by sedimentation equilibrium experiments (125 000) indicated that the oligomer is a hexamer. The enzyme was autophosphorylated in the presence of [γ-32P]ATP, and Mg2+ was required for the incorporation of phosphate. The kinase preserved the ability to transfer γ-phosphate from ATP to GDP in the range of NaCl concentration from 90 mM to 3.5 M and in the range of pH from 5 to 12. It was found and confirmed by Western blotting that this kinase is one of the proteins that bind specifically to natronobacterial flagellins. NDP kinase from haloalkaliphiles appeared to be simple to purify and to be a suitable enzyme for studies of structure and stability compared with NDP kinases from mesophilic organisms. Received: December 3, 1997 / Accepted: January 29, 1998  相似文献   

16.
17.
18.
Nucleoside diphosphate kinase plays a distinctive metabolic role as the enzyme poised between the last reaction of deoxyribonucleoside triphosphate (dNTP) biosynthesis and the DNA polymerization apparatus. In bacteriophage T4 infection, NDP kinase is one of very few enzymes of host cell origin to participate in either dNTP synthesis or DNA replication. Yet NDP kinase forms specific contacts with phage-coded proteins of dNTP and DNA synthesis. This article summarizes work from our laboratory that identifies and characterizes these interactions. Despite these specific interactions, the enzyme appears to be dispensable, both for T4 replication and for growth of the host, Escherichia coli, because site-specific disruption of ndk, the structural gene for NDP kinase, does not interfere with growth of the host cell and only partly inhibits phage replication. However, ndk disruption unbalances the dNTP pools and stimulates mutagenesis. We discuss our attempts to understand the basis for this enhanced mutagenesis.  相似文献   

19.
20.
《Autophagy》2013,9(2):288-289
Autophagy functions as a cell-autonomous effector mechanism of innate immunity by separating bacteria from cytosolic resources and delivering them for lysosomal destruction. How cytosolic bacteria are targeted for autophagy is incompletely understood. We recently discovered that Salmonella enterica serotype Typhimurium and Streptococcus pyogenes are detected by NDP52 (nuclear dot protein 52kDa), after these bacteria enter the cytosol of human cells and become decorated with poly-ubiquitinated proteins. NDP52 binds the bacterial ubiquitin coat as well as ATG8/LC3 and delivers cytosolic bacteria into autophagosomes. In the absence of NDP52 ubiquitin-coated bacteria accumulate outside ATG8/LC3+ autophagosomes. Cells lacking NDP52 fail to restrict bacterial proliferation, as do cells depleted of TBK1, an IKK family kinase colocalizing with NDP52 at the bacterial surface. Our findings demonstrate the existence of a receptor for the selective autophagy of cytosolic bacteria, suggesting that cells are able to differentiate between anti-bacterial and other forms of autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号