首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Can Arbuscular Mycorrhizal Fungi Reduce the Growth of Agricultural Weeds?   总被引:1,自引:0,他引:1  

Background

Arbuscular mycorrhizal fungi (AMF) are known for their beneficial effects on plants. However, there is increasing evidence that some ruderal plants, including several agricultural weeds, respond negatively to AMF colonization. Here, we investigated the effect of AMF on the growth of individual weed species and on weed-crop interactions.

Methodology/Principal Findings

First, under controlled glasshouse conditions, we screened growth responses of nine weed species and three crops to a widespread AMF, Glomus intraradices. None of the weeds screened showed a significant positive mycorrhizal growth response and four weed species were significantly reduced by the AMF (growth responses between −22 and −35%). In a subsequent experiment, we selected three of the negatively responding weed species – Echinochloa crus-galli, Setaria viridis and Solanum nigrum – and analyzed their responses to a combination of three AMF (Glomus intraradices, Glomus mosseae and Glomus claroideum). Finally, we tested whether the presence of a crop (maize) enhanced the suppressive effect of AMF on weeds. We found that the growth of the three selected weed species was also reduced by a combination of AMF and that the presence of maize amplified the negative effect of AMF on the growth of E. crus-galli.

Conclusions/Significance

Our results show that AMF can negatively influence the growth of some weed species indicating that AMF have the potential to act as determinants of weed community structure. Furthermore, mycorrhizal weed growth reductions can be amplified in the presence of a crop. Previous studies have shown that AMF provide a number of beneficial ecosystem services. Taken together with our current results, the maintenance and promotion of AMF activity may thereby contribute to sustainable management of agroecosystems. However, in order to further the practical and ecological relevance of our findings, additional experiments should be performed under field conditions.  相似文献   

2.
Cowpea (Vigna unguiculata) is a nutritious legume crop for both its grain and leaves and comprises an important component in both human and animal nutrition. In Brazil, the use of mulch, such as coconut fiber, and organic fertilizers to maximize cowpea production offers an alternative to conventional mineral fertilizer strategies. Farming practices affect the diversity and activity of soil microorganisms, including arbuscular mycorrhizal fungi (AMF), important plant growth promoters for legumes. Our objective was to determine the effect of mulching with coconut fiber and manure on AMF diversity in cowpea. Soil samples were collected from an Experimental Station in Petrolina, NE Brazil: one Caatinga (natural dry‐forest vegetation), one fallow, and one experimental site established in the fallow area and cultivated with cowpea receiving cattle manure and four doses (0, 12, 24, 48 t/ha) of coconut fiber. AMF species richness, abundance, and diversity were evaluated. Sixty‐four AMF species were recorded, with predominance of Glomeraceae and Acaulosporaceae. Highest species richness (47) was recovered from the Caatinga but AMF diversity was also high in the cultivated sites, demonstrating the importance of mycotrophic plants, such as cowpea, in crop production systems for the maintenance of AMF species richness. Although several species, such as Claroideoglomus etunicatum, Acaulospora scrobiculata, Glomus trufemii, and Paraglomus pernambucanum, revealed pronounced sporulation patterns, even high doses of coconut fiber did not affect AMF richness and diversity, compared to fallow. Consequently, cultivation of mycotrophic plants and use of organic manures are able to maintain high AMF species richness in tropical agroecosystems.  相似文献   

3.
The mycorrhizal fungi are symbiotic organisms able to provide many benefits to crop production by supplying a set of ecosystem functions. A recent ecological approach based on the ability of the fungi community to influence plant–plant interactions by extraradical mycelium development may be applied to diversified, herbaceous agroecosystems. Our hypothesis is that the introduction of a winter cereal cover crop (CC) as arbuscular mycorrhizal fungi (AMF)–host plant in an organic rotation can boosts the AMF colonization of the other plants, influencing crop–weed interference. In a 4‐years organic rotation, the effect of two winter cereal CC, rye and spelt, on weed density and AMF colonization was evaluated. The AMF extraradical mycelium on CC and weeds roots was observed by scanning electron microscopy analysis. By joining data of plant density and mycorrhization, we built the mycorrhizal colonization intensity of the Agroecosystem indicator (MA%). Both the CC were colonized by soil AMF, being the mycorrhizal colonization intensity (M%) affected by environmental conditions. Under CC, the weed density was reduced, due to the increase of the reciprocal competition in favor of CC, which benefited from mycorrhizal colonization and promoted the development of AMF extraradical mycelium. Even though non‐host plants, some weed species showed an increased mycorrhizal colonization in presence of CC respect to the control. Under intense rainfall, the MA% was less sensitive to the CC introduction. On the opposite, under highly competitive conditions, both the CC boosted significantly the mycorrhization of coexistent plants in the agroecosystem. The proposed indicator measured the agroecological service provided by the considered CCs in promoting or inhibiting the overall AMF colonization of the studied agroecosystems, as affected by weed selection and growth: It informs about agroecosystem resilience and may be profitably applied to indicate the extent of the linkage of specific crop traits to agroecosystem services, contributing to further develop the functional biodiversity theory.  相似文献   

4.
Forage radish (Raphanus sativus L. var. longipinnatus) is being used by increasing numbers of farmers as a winter cover crop in the Mid-Atlantic USA. It is a non-host to arbuscular mycorrhizal fungi (AMF) and releases anti-fungal isothiocyanates (ITCs) upon decomposition in the winter. Field experiments were conducted to determine the effect of forage radish and cereal rye (Secale cereale L.) cover crops on arbuscular mycorrhizal fungus colonization of and P acquisition by a subsequent maize (Zea mays L.) silage crop. Cover crop treatments included forage radish, rye, a mix of forage radish and rye, and no cover crop. Mycorrhizal fungus colonization of maize roots at the V4 stage following forage radish cover crops was not significantly different from that in the no cover crop treatment. In 3 out of 6 site-years, a rye cover crop increased AMF colonization of V4 stage maize roots compared to no cover crop. These findings suggest that forage radish cover crops do not have a negative effect on AMF colonization of subsequent crops.  相似文献   

5.
The impact of land use intensity on the diversity of arbuscular mycorrhizal fungi (AMF) was investigated at eight sites in the “three-country corner” of France, Germany, and Switzerland. Three sites were low-input, species-rich grasslands. Two sites represented low- to moderate-input farming with a 7-year crop rotation, and three sites represented high-input continuous maize monocropping. Representative soil samples were taken, and the AMF spores present were morphologically identified and counted. The same soil samples also served as inocula for “AMF trap cultures” with Plantago lanceolata, Trifolium pratense, and Lolium perenne. These trap cultures were established in pots in a greenhouse, and AMF root colonization and spore formation were monitored over 8 months. For the field samples, the numbers of AMF spores and species were highest in the grasslands, lower in the low- and moderate-input arable lands, and lowest in the lands with intensive continuous maize monocropping. Some AMF species occurred at all sites (“generalists”); most of them were prevalent in the intensively managed arable lands. Many other species, particularly those forming sporocarps, appeared to be specialists for grasslands. Only a few species were specialized on the arable lands with crop rotation, and only one species was restricted to the high-input maize sites. In the trap culture experiment, the rate of root colonization by AMF was highest with inocula from the permanent grasslands and lowest with those from the high-input monocropping sites. In contrast, AMF spore formation was slowest with the former inocula and fastest with the latter inocula. In conclusion, the increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly.  相似文献   

6.
In this study, carried out in four water bodies in the Upper Paraná River floodplain, we assessed the occurrence of root colonization by arbuscular mycorrhizal fungi (AMF) and dark septate fungi (DSF), as well as the AMF species richness associated with 24 species of aquatic macrophytes belonging to different life forms. AMF were found in nine species of macrophytes and DSF in 16 species among the 24 investigated. AM colonization occurred mainly in eudicotiledons (five of the six species evaluated) and the Paris morphology was the most common type. Co-occurrence of AMF and DSF was observed in seven species of macrophytes (Commelinaceae sp. 1, Limnobium laevigatum (H.B.K. ex Willd) Heine, Hygrophila cf. costata, Myriophyllum brasiliense (Camb), Polygonum acuminatum Kunth, P. ferrugineum Wedd and P. stelligerum Cham). Four species of macrophytes (Pistia stratiotes L., Eichhornia crassipes (Mart.) Solms, Egeria najas Planch and Nymphaea amazonum Mart. & Zucc) were not colonized by any type of fungi. In total, 27 morphotypes of AMF were recorded, and spores occurred both in the rhizosphere of macrophytes whose roots were internally colonized by AMF and in non-colonized macrophytes. Acaulospora delicata, Acaulospora aff. laevis, Acaulospora longula, Glomus lamellosum, Glomus luteum and NID 1 (a non-identified species) were the most frequent species. Samples collected close to the roots of N. amazonum had the highest AMF richness (20 species), but this plant was not colonized by fungi. A species richness curve indicated that more root-associated fungi than reported here are likely present in this floodplain.  相似文献   

7.
《农业工程》2023,43(1):27-33
Wheat (Triticum aestivum L.) is an important cereal crop in Pakistan which is suffering from major grain production loss because of weed infestations. Control of weeds by herbicides is a primary weed management tool in wheat crop which can be detrimental to the environment and grain produce. Development of an efficient and eco-friendly alternate to the herbicidal weed control, testing the effectiveness of cultural weed control (crop row orientation, selected wheat genotypes and hand weeding) and plants water extracts was undertaken for weed control in wheat. An experiment was run under field conditions in winter season in 2016–2017 and in 2017–2018 in Khyber Pakhtunkhwa Province, Pakistan. The repeated experiment was each time undertaken using a randomized complete block design with a double split plot arrangements at the New Developmental Farm, University of Agriculture, Peshawar, Pakistan. The crop row orientations used were assigned to the main plots. The wheat genotypes used were assigned to the sub-plots. The allelopathic water extracts and hand weeding were assigned to the sub-sub plots. The averaged mean values for row orientations of both the years revealed lowest weed density (95.7 weeds m?2), highest grains per spike (47.3), 1000 grains weight (44.7 g) in north to south row orientation. The averaged mean values of weed density (101.6 weeds m?2), grains per spike (48.2), 1000 grains weight (45.9 g), crude protein content (12.793%), crude fat content (1.533%) and ash content (1.586%) were greater for the wheat genotype Pirsabaq-2013 and Atta-Habib-2010. Water extract of S. halepense, P. hysterophorus, H. annuus and hand weeding showed significantly lower weed density (84.0 to 93.3), grains per spike (50.9 to 48.3), 1000 grains weight (48.3 to 46.2 g), grains protein content (12.280 to 12.209%), grains crude fat content (1.471 to 1.464%) and grains ash content (1.523 to 1.515%). Interaction effect of different tested weed control treatments i.e. N-S × Pirsabaq-2013 and Atta-Habib-2010 × water extract of S. halepense, P. hysterophorus and H. annuus were found to show further reduction in weed density and enhance grains per spike and grains nutrition contributing parameters. Our results show that sowing wheat genotypes Pirsabaq-2013 and Atta-Habib-2010 in north-to-south row orientation, and application of water extract of S. halepense, P. hysterophorus, H. annuus can give an effective weed management and increased quality grain yield of wheat.  相似文献   

8.
Climate and agricultural practice interact to influence both crop production and soil microbes in agroecosystems. Here, we carried out a unique experiment in Central Germany to simultaneously investigate the effects of climates (ambient climate vs. future climate expected in 50–70 years), agricultural practices (conventional vs. organic farming), and their interaction on arbuscular mycorrhizal fungi (AMF) inside wheat (Triticum aestivum L.) roots. AMF communities were characterized using Illumina sequencing of 18S rRNA gene amplicons. We showed that climatic conditions and agricultural practices significantly altered total AMF community composition. Conventional farming significantly affected the AMF community and caused a decline in AMF richness. Factors shaping AMF community composition and richness at family level differed greatly among Glomeraceae, Gigasporaceae and Diversisporaceae. An interactive impact of climate and agricultural practices was detected in the community composition of Diversisporaceae. Organic farming mitigated the negative effect of future climate and promoted total AMF and Gigasporaceae richness. AMF richness was significantly linked with nutrient content of wheat grains under both agricultural practices.  相似文献   

9.
Nitrogen (N)-deficiency and lack of phosphorus (P) availability are major constraints to maize yields in Western Kenya. In a two-season field study in the lake Victoria basin, we tested the capacity of white lupin (Lupinus albus (L.), cv. Ultra), as a nitrogen-fixing crop with a highly efficient P-acquisition capacity, to increase maize yields when used as a companion or cover crop, or as a source of organic matter. Each experiment was performed on three different fields (Vertisols) differing in N/P availability, previous cropping history and in levels of infestation by the parasitic weed Striga hermonthica (Del.) Benth. Our results show that white lupin led to significantly higher yields of maize when used as a cover crop. When lupin was grown as a companion crop, it also slightly enhanced the yield of the co-cultivated maize. When lupin shoots were incorporated to the soil, the positive effect of lupin on maize growth was field-dependent and only occurred in the field most heavily infested with S. hermonthica. Despite the beneficial impact on maize yield, no clear effect of lupin on soil N and P availability or on maize N/P uptake were observed. In contrast, lupin significantly inhibited infestation of maize by S. hermonthica: when lupin was grown together with maize in pots inoculated with S. hermonthica, the emergence of the weed was strongly reduced compared to the pots with maize only. This work opens a new range of questions for further research on white lupin and its potential beneficial impact as a S. hermonthica-inhibiting crop.  相似文献   

10.
No‐till cropping systems that include cover crops could lead to important changes in weed communities by decreasing some annual weed populations. In this study, we predicted that seed burial depth and the presence of cover crop would affect the emergence and initial growth success of annual weed species. We tested two factors on 14 weed species in a greenhouse: the seed burial depth of weeds (buried versus soil surface) and the presence/absence of a cover crop (ryegrass). We counted the emerged seedlings and measured the height of weeds and cover crops (Hweed, Hcover), the dry matter content of weeds and cover crops (DMCweed, DMCcover) and the number of leaves of weeds (NLweed) on 1433 weed and 390 ryegrass individuals. Emergence of five weed species (AMBEL, ANGAR, BROST, CENCY and EPHHE) was affected by the seed location (?10.3% on average for unburied seeds), five other weed species (ALOMY, CAPBP, SONAS, VERPE and VLPMY) were affected by cover (on average ?9.5% for seeds emerged in the presence of cover crop), and four weed species (GERDI, LAMPU, POAAN and VIOAR) were not affected by either. Weed growth of all weed species also decreased with the presence of a cover crop (on average Hweed: ?49.9%, DMCweed: ?87.2% and NLweed: ?55.4%) and for unburied seeds (on average Hweed: ?33.7%, DMCweed: ?70.6% and NLweed: ?43.3%), with various responses according to species. This study indicates that annual weeds could be disadvantaged by no‐till systems using cover crops.  相似文献   

11.
Weeds can be suppressed in the field by cover crop residues, extracts of which have been demonstrated to exert chemical inhibition of crop and weed germination and early growth in bioassays. In this study, two complementary bioassays were developed with soil and mulch material originating from a long‐term maize–cover crop experiment to determine the relative physical and chemical effect of rye cover crop residues on weed and maize germination and early growth. This was compared with the effect exerted by residue material from the natural vegetation that developed in the crop stubble during the winter before maize sowing. Germination percentage and early growth of maize and two maize weeds, Amaranthus retroflexus and Echinochloa crus‐galli, were assessed in a seed incubator in tilled (green manured) and nontilled (surface mulched) soil, with and without N fertilisation, at various dates after cover crop destruction. Responses were compared to those of the same species in a standard soil without mulch or with an inert poplar mulch. A second bioassay was set up in a glasshouse to determine the effect of different quantities of fresh residue material and additional N fertilisation on emergence speed and percentage and on plant vigour during the first 22 days after cover crop destruction. These results were compared with no‐mulch controls and poplar mulch controls. Results of these trials were compared with weed density and biomass that developed in the maize crop sown after cover crop destruction. Soil and mulch chemical and biological properties were determined for material collected in the field at different times after cover crop destruction. Chemical properties of the mulch differed only occasionally between the treatments, but variation in cover crop biomass production led to significantly different soil chemical properties. Although soil total phenolic acid content did not always correlate to weed and maize germination and early growth inhibition, soil microbial activity did. In suboptimal conditions, as is often the case in the field, plant residue material exerted both a physical and a chemical effect on maize and weed emergence and early growth. Nitrogen fertilisation and application timing can give the maize crop a competitive advantage with respect to the weeds, but the final response and the practical consequences depended largely on the weed species involved.  相似文献   

12.
Cereals occupies a major part in the diet of humans globally, participating more to our daily protein and calorie intake than any other crop. The present study highlight the weed flora of cereal crops compared to other crops in middle Egypt and their distribution. Ninety-two weed species were recorded in the all studied crops, cereal and other crops; in the studied area belong to 67 genera and 20 families. Egyptian clover; showed the highest numbers of both weed species and genera followed by wheat, on contrast the lowest weed species and genera numbers were recorded associated with Solanaceous crops tomato and pepper. Wheat crops exhibited the highest number of weed species, among cereals, followed by maize crop, while the lowest weed species number was detected in barley crop. Chenopodium murale, Cynodon dactylon, Convolvulus arvensis and Malva parviflora were the most frequent species in winter cereals, while Echinochloa colona, P. oleraceae were the most frequent weeds in summer cereals. Chorological analysis of the recorded weed species showed that cosmopolitan elements showed the highest numbers in total weed flora Differences in weed species compositions were fundamentally influenced by seasonal priority. Based on TWINSPAN and Ward classifications, crop family showed slightly effect as a factor affecting weed composition.  相似文献   

13.
Application of a mycorrhizal inoculum could be one way to increase the yield of rice plants and reduce the application of fertilizer. We therefore studied arbuscular mycorrhizal fungi (AMF) in the roots of wetland rice (Oryza sativa L.) collected at the seedling, tillering, heading, and ripening stages in four paddy wetlands that had been under a high-input and intensively irrigated rice cultivation system for more than 20 years. It was found that AMF colonization was mainly established in the heading and ripening stages. The AMF community structure was characterized in rhizosphere soils and roots from two of the studied paddy wetlands. A fragment covering the partial small subunit (SSU), the whole internal transcribed spacer (ITS), and the partial large subunit (LSU) rRNA operon regions of AMF was amplified, cloned, and sequenced from roots and soils. A total of 639 AMF sequences were obtained, and these were finally assigned to 16 phylotypes based on a phylogenetic analysis, including 12 phylotypes from Glomeraceae, one phylotype from Claroideoglomeraceae, two phylotypes from Paraglomeraceae, and one unidentified phylotype. The AMF phylotype compositions in the soils were similar between the two surveyed sites, but there was a clear discrepancy between the communities obtained from root and soil. The relatively high number of AMF phylotypes at the surveyed sites suggests that the conditions are suitable for some species of AMF and that they may have an important function in conventional rice cultivation systems. The species richness of root-colonizing AMF increased with the growth of rice, and future studies should consider the developmental stages of this crop in the exploration of AMF function in paddy wetlands.  相似文献   

14.
We studied the effect of four weeding regimes (weed free, one manual weeding, one manual weeding+atrazine, and a weedy check) on larval density and leaf defoliation in four pear millet genotypes by the larvae of Oriental armyworm, Mythimna separata. Data were also recorded on the extent of larval parasitism under different weeding regimes, and the parasitoids involved. The leaf damage and larval densities were lower in weed free plots as compared to the weedy plots. This was also reflected in grain yield, as maximum grain yield was recorded in weed-free plots as compared to the weedy plots. Seven parasitoids (Cotesia ruficrus, Metopius rufus, Sturmiopsis inferens, Palexorista solemnis, P. laxa, Carcelia sp., and the entomopathogenic nematode Neoplectana sp. were recorded from M. separata larvae, of which M. rufus, Carceliasp., and Neoplectanasp. were the most abundant. Parasitism by M. rufus was greater in plots with a weed cover and least in weed-free plots, while parasitsm by Carcelia sp. was lower in plots with one hand weeding than in weedy plots. Numerically, parasitism by Neopletana sp. was low in plots treated with atrazine, and maximum in plots weeded manually. Therefore, the minimum level of weeding, which does not affect the crop adversely should be undertaken to promote the biological control of M. separata in pearl millet.  相似文献   

15.
Invasive plants can have strong impacts on native communities, which have prompted intense efforts at invasive removal. However, relatively little is known about how native communities will reassemble after a dominant invader has been removed from the system. Legacy effects of invasive plants on soil microbial communities may alter native plant community reassembly long after the invader is gone. Here we found that arbuscular mycorrhizal fungal (AMF) communities have shown some recovery in experimental plots following 6 years of removal of the invasive Alliaria petiolata (garlic mustard, a species known to degrade AMF communities) in terms of taxonomic richness and community composition. However, despite this recovery, the density of A. petiolata at the beginning of the experiment (in 2004) still correlated with lower AMF richness and altered community composition after 6 years of annual weeding, suggesting long-term legacies of dense A. petiolata infestations. Because native plant and mycorrhizal fungal communities may show interdependence, reassembly of one community may be limited by the reassembly of the other. Restoration may be more effective if practices address both communities simultaneously.  相似文献   

16.
Smallholder farmers in southern African countries rely primarily on cultural control and hoe weeding to combat weeds, but often times, they are unable to keep up with the weeding requirements of the crop because of its laboriousness, causing them to incur major yield losses. Optimisation of crop planting pattern could help to increase yield and suppress weeds and to reduce the critical period of weed control and the weeding requirements to attain maximum yield. Experiments were carried out in Zimbabwe during two growing seasons to assess the effect of maize density and spatial arrangement on crop yield, growth and seed production of weeds and to determine the critical period for weeding. Planting maize at 60 cm row distance achieved higher yields and better weed suppression than planting at 75 or 90 cm row distance. Increasing crop densities beyond the customary three to four plants m−2 gave modest reductions in weed biomass but also diminished crop yields, probably because of increased competition for water and nutrient resources. Maize planted in narrow rows (60 cm) intercepted more radiation and suffered less yield reduction from delaying hoe weeding than those planted in wider rows (75 or 90 cm), and the duration of the weed-free period required to attain maximum grain yield was 3 weeks shorter in the narrow spacing than that in the 75- and 90-cm row spacings. Weeding was more effective in curtailing weed seed production in the narrow row spatial arrangements than in the wide row planting. The results of these studies show that narrow row spacings may reduce weeding requirements and increase yields.  相似文献   

17.
A clear understanding of how crop root proliferation affects the distribution of the spore abundance of arbuscular mycorrhizal fungi (AMF) and the composition of AMF communities in agricultural fields is imperative to identify the potential roles of AMF in winter cover crop rotational systems. Toward this goal, we conducted a field trial using wheat (Triticum aestivum L.) or red clover (Trifolium pratense L.) grown during the winter season. We conducted a molecular analysis to compare the diversity and distribution of AMF communities in roots and spore abundance in soil cropped with wheat and red clover. The AMF spore abundance, AMF root colonization, and abundance of root length were investigated at three different distances from winter crops (0 cm, 7.5 cm, and 15 cm), and differences in these variables were found between the two crops. The distribution of specific AMF communities and variables responded to the two winter cover crops. The majority of Glomerales phylotypes were common to the roots of both winter cover crops, but Gigaspora phylotypes in Gigasporales were found only in red clover roots. These results also demonstrated that the diversity of the AMF colonizing the roots did not significantly change with the three distances from the crop within each rotation but was strongly influenced by the host crop identity. The distribution of specific AMF phylotypes responded to the presence of wheat and red clover roots, indicating that the host crop identity was much more important than the proliferation of crop roots in determining the diversity of the AMF communities.  相似文献   

18.
Agricultural intensification in Europe during the past 30 years has led to changes in compositional and functional weed structure in agroecosystems as well as increases in the prominence of alien weeds. Irrigation is a major driver of agricultural intensification, particularly in semi‐arid zones of the Mediterranean. In the past few decades, irrigated land has expanded in semi‐arid agricultural lands in northeastern Spain. The goals of this study were to identify long‐term temporal changes in compositional and functional weed communities in annual (i.e. maize crops) and perennial (i.e. orchards) irrigated crops of this area and determine whether these changes differentially affect native and alien plants. Changes in the diversity, composition and functional groups of the weed communities in fruit‐tree orchards and maize crops were assessed using plant surveys in 1989 and 2009. During the studied period, a decrease was recorded in the diversity of native species in the fruit‐tree orchards; this decrease was accompanied by an increase in alien weed diversity and a general homogenisation of species in the weed community. In the maize crops, the diversity values of native and alien plants changed little during 20 years. The identification of functional groups revealed that most of the species whose cover increased in the fruit‐tree orchards were graminoid alien species that perform C4 photosynthesis and disperse seed via water or a combination of vectors. In the maize crops, the identified functional groups did not differ in the proportion of species whose cover changed between 1989 and 2009. Hence, in irrigated orchards the observed changes in the weed community and the prominence of alien species are mediated by the selection of a set of traits that let species to overcome management filters. Similarly, the stability of functional composition of weed communities in maize fields is the result of the selection of species functionally similar to the crop.  相似文献   

19.
Arbuscular mycorrhizal fungi (AMF) were surveyed for species richness and abundance in sporulation in six distinct land uses in the western Amazon region of Brazil. Areas included mature pristine forest and sites converted to pasture, crops, agroforestry, young and old secondary forest. A total of 61 AMF morphotypes were recovered and 30% of them could not be identified to known species. Fungal communities were dominated by Glomus species but Acaulospora species produced the most abundant sporulation. Acaulospora gedanensis cf., Acaulospora foveata, Acaulospora spinosa, Acaulospora tuberculata, Glomus corymbiforme, Glomus sp15, Scutellospora pellucida, and Archaeospora trappei sporulated in all land use areas. Total spore numbers were highly variable among land uses. Mean species richness in crop, agroforestry, young and old secondary forest sites was twice that in pristine forest and pasture. fungal communities were dominated in all land use areas except young secondary forest by two or three species which accounted for 48% to 63% of all sporulation. Land uses influenced AMF community in (1) frequency of occurrence of sporulating AMF species, (2) mean species diversity, and (3) relative spore abundance. Conversion of pristine forest into distinct land uses does not appear to reduce AMF diversity. Cultural practices adopted in this region maintain a high diversity of arbuscular mycorrhizal fungi.  相似文献   

20.
《Biological Control》2010,52(3):435-443
The growing demand for organic products creates opportunities for farmers. Information on the consequences of management practices can help farmers transition to organic and take advantage of these prospects. We examined the interaction between soil disturbance and initial cover crop on naturally occurring entomopathogenic fungi (EPF) during the 3-year transition to organic production in a feed grain rotation in central Pennsylvania. Our experiment included four systems comprised of a factorial combination of two levels of primary tillage (full vs. reduced) and two types of initial cover crop (timothy/clover vs. rye/vetch). The cropping sequence consisted of an initial cover crop, followed by soybean, and finally, maize. The entire experiment was replicated in time, with the initiation lagged by 1 year. We detected four species of EPF (Metarhizium anisopliae, Beauveria bassiana, Isaria fumosorosea, and Isaria farinosa) by bioassay of soil samples collected four times during each field season. The latter three species were detected infrequently; therefore, we focused statistical analysis on M. anisopliae. Detection of M. anisopliae varied across sampling date, year in crop sequence, and experimental start, with no consistent trend across the 3-year transition period. M. anisopliae was isolated more frequently in the systems initiated with timothy/clover cover crops and utilizing full tillage; however, we only observed a tillage effect in one temporal replicate. M. anisopliae detection was negatively associated with soil moisture, organic matter, and zinc, sulfur, and copper concentrations in the soil. This study helps to inform farmers about management effects on soil function, specifically conservation biological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号