共查询到20条相似文献,搜索用时 0 毫秒
1.
Genetic dissection of interaction between poliovirus 3D polymerase and viral protein 3AB. 总被引:2,自引:7,他引:2 下载免费PDF全文
Poliovirus RNA-dependent RNA polymerase 3D and viral protein 3AB are both thought to be required for the initiation of RNA synthesis. These two proteins physically associate with each other and with viral RNA replication complexes found on virus-induced membranes in infected cells. An understanding of the interface between 3D and 3AB would provide a first step in visualizing the architecture of the multiprotein complex that is assembled during poliovirus infection to replicate and package the viral RNA genome. The identification of mutations in 3D that diminish 3D-3AB interactions without affecting other functions of 3D polymerase is needed to study the function of the 3D-3AB interaction in infected cells. We describe the use of the yeast two-hybrid system to isolate and characterize mutations in 3D polymerase that cause it to interact less efficiently with 3AB than wild-type polymerase. One mutation, a substitution of leucine for valine at position 391 (V391L), resulted in a 3AB-specific interaction defect in the two-hybrid system, causing a reduction in the interaction of 3D polymerase with 3AB but not with another viral protein or a host protein tested. In vitro, purified 3D-V391L polymerase bound to membrane-associated 3AB with reduced affinity. Poliovirus that contained the 3D-V391L mutation was temperature sensitive, displaying a pronounced conditional defect in RNA synthesis. We conclude that interaction between 3AB and 3D or 3D-containing polypeptides plays a role in RNA synthesis during poliovirus infection. 相似文献
2.
RBM4, also known as Lark, was described initially as having a role in circadian rhythm control in Drosophila. In the last 5 years data have emerged from studies of mammalian cells. It is now clear that RBM4 is an RNA-binding protein involved in diverse cellular processes that include alternative splicing of pre-mRNA, translation, and RNA silencing. Its structure, similar to other RNA-binding proteins, contains two RNA recognition motifs and a CCHC-type zinc finger. Here we review current information about the function of RBM4 and its localization within the cell. We then speculate about its possible relationship to disease. 相似文献
3.
4.
Expression and subcellular localization of poliovirus VPg-precursor protein 3AB in eukaryotic cells: evidence for glycosylation in vitro. 总被引:1,自引:7,他引:1 下载免费PDF全文
The poliovirus-encoded, membrane-associated VPg-precursor polypeptide 3AB has been implicated in the initiation of viral RNA synthesis. We have expressed 3AB and 3A polypeptides in eukaryotic cells and examined their localization using indirect immunofluorescence and a direct in vitro membrane-binding assay. Results presented here demonstrate that both 3AB and 3A are capable of localizing in the endoplasmic reticulum and the Golgi apparatus in transfected HeLa cells in the absence of any other poliovirus protein. We have also shown that the carboxy-terminal 18 amino acids of 3A that constitute an amphipathic domain are important in membrane binding of 3A and 3AB. Additionally, we demonstrate that a significant fraction of both 3A and 3AB can be glycosylated in a membrane-dependent fashion during in vitro translation in reticulocyte lysate. We demonstrate that 6-diazo-5-oxo-L-norleucine, an inhibitor of glycoprotein synthesis, significantly inhibits poliovirus RNA synthesis in vivo. The implications of glycosylation of 3AB (and 3A) in viral replication are discussed. 相似文献
5.
K Oshima T Nakashima Y Kakuta K Tsumoto M Kimura 《Bioscience, biotechnology, and biochemistry》2012,76(6):1252-1255
The protein component PhoRpp38 of Pyrococcus horikoshii ribonuclease P (RNase P) is known to be a multifunctional RNA-binding protein. Previous biochemical data indicate that it binds to two stem-loops in RNase P RNA (PhopRNA). Thermodynamic analysis revealed that PhoRpp38 and PhopRNA interact with each other with an association constant (Ka) of 1.56×10(7) M(-1). It was further found that PhoRpp38 simultaneously binds two stem-loop structures in PhopRNA with approximately equal affinity. Crystals of PhoRpp38 in complex with the stem-loop were grown and diffracted to a resolution of 7.0 ? on a synchrotron X-ray source. 相似文献
6.
By sequence-specific binding to 3' UUU-OH, the La protein shields precursor (pre)-RNAs from 3' end digestion and is required to protect defective pre-transfer RNAs from decay. Although La is comprised of a La motif and an RNA-recognition motif (RRM), a recent structure indicates that the RRM beta-sheet surface is not involved in UUU-OH recognition, raising questions as to its function. Progressively defective suppressor tRNAs in Schizosaccharomyces pombe reveal differential sensitivities to La and Rrp6p, a 3' exonuclease component of pre-tRNA decay. 3' end protection is compromised by mutations to the La motif but not the RRM surface. The most defective pre-tRNAs require a second activity of La, in addition to 3' protection, that requires an intact RRM surface. The two activities of La in tRNA maturation map to its two conserved RNA-binding surfaces and suggest a modular model that has implications for its other ligands. 相似文献
7.
Interaction between the 5'-terminal cloverleaf and 3AB/3CDpro of poliovirus is essential for RNA replication. 总被引:4,自引:6,他引:4 下载免费PDF全文
On the basis of sequence alignments and secondary structure comparisons of the first 100 nucleotides of enterovirus and rhinovirus RNAs, chimeric constructs in which this region of poliovirus type 1 Mahoney [PV1(M)] is replaced with that of human rhinovirus type 2 (HRV2) or HRV14 have been engineered. These chimeric constructs contain the internal ribosomal entry site of either poliovirus or encephalomyocarditis virus. Independent of the internal ribosomal entry site elements, only the constructs containing either the PV1(M) or HRV2 cloverleaf sequences yielded viable viruses. The secondary structures of all three cloverleaves are quite similar. However, highly purified polioviral proteins 3CDpro and 3AB together bound to the PV1(M) and HRV2 cloverleaves, albeit with different affinities, whereas the HRV14 homolog did not interact with these proteins to any appreciable extent. These results support a mechanism of poliovirus genomic replication in which the formation of a complex between the cloverleaf structure and the 3CDpro/3AB proteins of poliovirus plays an essential role. 相似文献
8.
Aminoacylation and editing by leucyl-tRNA synthetases (LeuRS) require migration of the tRNA acceptor stem end between the canonical aminoacylation core and a separate domain called CP1 that is responsible for amino acid editing. The LeuRS CP1 domain can also support group I intron RNA splicing in the yeast mitochondria, although splicing-sensitive sites have been identified on the main body. The RDW peptide, a highly conserved peptide within an RDW-containing motif, resides near one of the beta-strand linkers that connects the main body to the CP1 domain. We hypothesized that the RDW peptide was important for interactions of one or more of the LeuRS-RNA complexes. An assortment of X-ray crystallography structures suggests that the RDW peptide is dynamic and forms unique sets of interactions with the aminoacylation and editing complexes. Mutational analysis identified specific sites within the RDW peptide that failed to support protein synthesis activity in complementation experiments. In vitro enzymatic investigations of mutations at Trp445, Arg449, and Arg451 in yeast mitochondrial LeuRS suggested that these sites within the RDW peptide are critical to the aminoacylation complex, but impacted amino acid editing activity to a much less extent. We propose that these highly conserved sites primarily influence productive tRNA interactions in the aminoacylation complex. 相似文献
9.
Replication of poliovirus RNA takes place on the cytoplasmic surface of membranous vesicles that form after infection of the host cell. It is generally accepted that RNA polymerase 3D(pol) interacts with membranes in a complex with viral protein 3AB, which binds to membranes by means of a hydrophobic anchor sequence that is located near the C-terminus of the 3A domain. In this study, we used fluorescence and fluorescence quenching methods to define the topography of the anchor sequence in the context of 3A and 3AB proteins inserted in model membranes. Mutants with a single tryptophan near the center of the anchor sequence but lacking Trp elsewhere in 3A/3AB were constructed which, after the emergence of suppressor mutations, replicated well in HeLa cells. When a peptide containing the mutant anchor sequence was incorporated in model membrane vesicles, measurements of Trp depth within the lipid bilayer indicated formation of a transmembrane topography. However, rather than the 22-residue length predicted from hydrophobicity considerations, the transmembrane segment had an effective length of 16 residues, such that Gln64 likely formed the N-terminal boundary. Analogous experiments using full-length proteins bound to preformed model membrane vesicles showed that the anchor sequence formed a mixture of transmembrane and nontransmembrane topographies in the 3A protein but adopted only the nontransmembrane configuration in the context of 3AB protein. Studies of the function of 3A/3AB inserted into model membrane vesicles showed that membrane-bound 3AB is highly efficient in stimulating the activity of 3D(pol) in vitro while membrane-bound 3A totally lacks this activity. Moreover, in vitro uridylylation reactions showed that membrane-bound 3AB is not a substrate for 3D(pol), but free VPg released by cleavage of 3AB with proteinase 3CD(pro) could be uridylylated. 相似文献
10.
Galectin-3 as a multifunctional protein 总被引:5,自引:0,他引:5
Galectin-3 is a 31 kDa member of a growing family of beta-galactoside-binding animal lectins. This protein is expressed in a variety of tissues and cell types and is mainly found in the cytoplasm, although, depending on cell type and proliferative state, a significant amount of this lectin can also be detected in the nucleus, on the cell surface or in the extracellular environment. Galectin-3 is secreted from cells by a novel and incompletely understood mechanism that is independent of the classical secretory pathway through the endoplasmic reticulum/Golgi network. Galectin-3 exhibits pleiotropic biological function, playing a key role in many physiological and pathological processes. 相似文献
11.
Jain V Saleem-Batcha R China A Chatterji D 《Protein science : a publication of the Protein Society》2006,15(6):1449-1464
Latency in Mycobacterium tuberculosis poses a barrier in its complete eradication. Overexpression of certain genes is one of the factors that help these bacilli survive inside the host during latency. Among these genes, rel, which leads to the expression of Rel protein, plays an important role by synthesizing the signaling molecule ppGpp using GDP and ATP as substrates, thereby changing bacterial physiology. In Gram-negative bacteria, the protein is thought to be activated in vivo in the presence of ribosome by sensing uncharged tRNA. In the present report, we show that Rel protein from Mycobacterium smegmatis, which is highly homologous to M. tuberculosis Rel, is functional even in the absence of ribosome and uncharged tRNA. From the experiments presented here, it appears that the activity of Rel(Msm) is regulated by the domains present at the C terminus, as the deletion of these domains results in higher synthesis activity, with little change in hydrolysis of ppGpp. However, in the presence of tRNA, though the synthesis activity of the full-length protein increases to a certain extent, the hydrolysis activity undergoes drastic reduction. Full-length Rel undergoes multimerization involving interchain disulfide bonds. The synthesis of pppGpp by the full-length protein is enhanced in the reduced environment in vitro, whereas the hydrolysis activity does not change significantly. Mutations of cysteines to serines result in monomerization with a simultaneous increase in the synthesis activity. Finally, it has been possible to identify the unique cysteine, of six present in Rel, required for tRNA-mediated synthesis of ppGpp. 相似文献
12.
The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a 总被引:5,自引:0,他引:5
hnRNP A1 is an RNA-binding protein involved in various aspects of RNA processing. Use of an in vivo cross-linking and immunoprecipitation protocol to find hnRNP A1 RNA targets resulted in the identification of a microRNA (miRNA) precursor, pre-miR-18a. This microRNA is expressed as part of a cluster of intronic RNAs, including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92, and potentially acts as an oncogene. Here we show that hnRNP A1 binds specifically to the primary RNA sequence pri-miR-18a before Drosha processing. HeLa cells depleted of hnRNP A1 have reduced in vitro processing activity with pri-miR-18a and also show reduced abundances of endogenous pre-miR-18a. Furthermore, we show that hnRNP A1 is required for miR-18a-mediated repression of a target reporter in vivo. These results underscore a previously uncharacterized role for general RNA-binding proteins as auxiliary factors that facilitate the processing of specific miRNAs. 相似文献
13.
14.
Tyrosine 3 of poliovirus terminal peptide VPg(3B) has an essential function in RNA replication in the context of its precursor protein, 3AB 下载免费PDF全文
Poliovirus (PV) VPg is a genome-linked protein that is essential for the initiation of viral RNA replication. It has been well established that RNA replication is initiated when a molecule of UMP is covalently linked to the hydroxyl group of a tyrosine (Y3) in VPg by the viral RNA polymerase 3D(pol), but it is not yet known whether the substrate for uridylylation in vivo is the free peptide itself or one of its precursors. The aim of this study was to use complementation analyses to obtain information about the true in vivo substrate for uridylylation by 3D(pol). Previously, it was shown that a VPg mutant, in which tyrosine 3 and threonine 4 were replaced by phenylalanine and alanine (3F4A), respectively, was nonviable. We have now tested whether wild-type forms of proteins 3B, 3BC, 3BCD, 3AB, 3ABC, and P3 provided either in trans or in cis could rescue the replication defect of the VPg(3F4A) mutations in the PV polyprotein. Our results showed that proteins 3B, 3BC, 3BCD, and P3 were unable to complement the RNA replication defect in dicistronic PV or dicistronic luciferase replicons in vivo. However, cotranslation of the P3 precursor protein allowed rescue of RNA replication of the VPg(3F4A) mutant in an in vitro cell-free translation-RNA replication system, but only poor complementation was observed when 3BC, 3AB, 3BCD, or 3ABC proteins were cotranslated in the same assay. Interestingly, only protein 3AB but not 3B and 3BC, when provided in cis by insertion of a wild-type 3AB coding sequence between the P2 and P3 domains of the polyprotein, supported the replication of the mutated genome in vivo. Elimination of cleavage between 3A and 3B in the complementing 3AB protein, however, led to a complete lack of RNA replication. Our results suggest that (i) VPg has to be delivered to the replication complex in the form of a large protein precursor (P3) to be fully functional in replication; (ii) the replication complex formed during PV replication in vivo is essentially inaccessible to proteins provided in trans, even if the complementing protein is translated from a different cistron of the same RNA genome; (iii) 3AB is the most likely precursor of VPg; and (iv) Y3 of VPg has an essential function in RNA replication in the context of both VPg and 3AB. 相似文献
15.
Chloroplast mRNA 3'' end processing requires a nuclear-encoded RNA-binding protein. 总被引:18,自引:5,他引:18 下载免费PDF全文
The protein coding regions of plastid mRNAs in higher plants are generally flanked by 3' inverted repeat sequences. In spinach chloroplast mRNAs, these inverted repeat sequences can fold into stem-loop structures and serve as signals for the correct processing of the mature mRNA 3' ends. The inverted repeat sequences are also required to stabilize 5' upstream mRNA segments, and interact with chloroplast protein in vitro. To dissect the molecular components involved in chloroplast mRNA 3' end processing and stability, a spinach chloroplast protein extract containing mRNA 3' end processing activity was fractionated by FPLC and RNA affinity chromatography. The purified fraction consisted of several proteins and was capable of processing the 3' ends of the psbA, rbcL, petD and rps14 mRNAs. This protein fraction was enriched for a 28 kd RNA-binding protein (28RNP) which interacts with both the precursor and mature 3' ends of the four mRNAs. Using specific antibodies to this protein, the poly(A) RNA-derived cDNA for the 28RNP was cloned and sequenced. The predicted amino acid sequence for the 28RNP reveals two conserved RNA-binding domains, including the consensus sequences RNP-CS1 and CS2, and a novel acidic and glycine-rich N-terminal domain. The accumulation of the nuclear-encoded 28RNP mRNA and protein are developmentally regulated in spinach cotyledons, leaves, root and stem, and are enhanced during light-dependent chloroplast development. The general correlation between accumulation of the 28RNP and plastid mRNA during development, together with the result that depletion of the 28RNP from the chloroplast protein extract interferes with the correct 3' end processing of several chloroplast mRNAs, suggests that the 28RNP is required for plastid mRNA 3' end processing and/or stability. 相似文献
16.
Mutations critical for the central nervous system (CNS) attenuation of the Sabin vaccine strains of poliovirus (PV) are located within the viral internal ribosome entry site (IRES). We examined the interaction of the IRESs of PV type 3 (PV3) and Sabin type 3 (Sabin3) with polypyrimidine tract-binding protein (PTB) and a neural cell-specific homologue, nPTB. PTB and nPTB were found to bind to a site directly adjacent to the attenuating mutation, and binding at this site was less efficient on the Sabin3 IRES than on the PV3 IRES. Translation mediated by the PV3 and Sabin3 IRESs in neurons of the chicken embryo spinal cord demonstrated a translation deficit for the Sabin3 IRES that could be rescued by increasing PTB expression in the CNS. These data suggest that the low levels of PTB available in the CNS, coupled to a reduced binding of PTB on the Sabin3 IRES, leads to its CNS-specific attenuation. This study also demonstrates the use of the chicken embryo to easily investigate translation of RNA within a neuron in the CNS of an intact living organism. 相似文献
17.
The multifunctional RNA-binding protein La is required for mouse development and for the establishment of embryonic stem cells 下载免费PDF全文
Park JM Kohn MJ Bruinsma MW Vech C Intine RV Fuhrmann S Grinberg A Mukherjee I Love PE Ko MS DePamphilis ML Maraia RJ 《Molecular and cellular biology》2006,26(4):1445-1451
18.
A family of cold-regulated RNA-binding protein genes in the cyanobacterium Anabaena variabilis M3. 总被引:2,自引:0,他引:2 下载免费PDF全文
N Sato 《Nucleic acids research》1995,23(12):2161-2167
I previously found a cold-regulated RNA-binding protein gene rbpA (now named rbpA1) in Anabaena variabilis M3 [Sato, N. (1994) Plant Mol. Biol. 24, 819-823]. I show here that this gene is a member of a gene family containing at least eight members as evidenced by Southern blot and immunoblot analyses. I have isolated three additional genes (rbpB, rbpC and rbpD) in this family. Of these, rbpB was 100% identical to the rbpB gene of Anabaena 7120 reported previously. Another gene named rbpA in Anabaena 7120 was also found to exist in A.variabilis M3 with identical sequence and named rbpA2. The amino acid sequences of these gene products were highly conserved, except that the RbpD protein lacked glycine-rich C-terminal domain present in all other known members of the gene family. RNA blot and immunoblot analyses showed that the expression of rbpA1, rbpA2, rbpB, rbpC and rbpD, as well as uncloned rbp genes was regulated by cold, though the exact time-course and extent of response to cold were different among these genes. Gel-filtration assay showed that all of the Rbp proteins have higher affinities to poly(G) and poly(U) than to poly(A) and poly(C). 相似文献
19.
Structure of the yeast ribosomal 5 S RNA-binding protein YL3 总被引:4,自引:0,他引:4
20.