首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Determination of paired fin or limb number, identity and positionare key issues in vertebrate development and evolution. Phylogeniesincluding fossil data show that paired appendages are uniqueto jawed vertebrates and their immediate ancestry; that suchfins evolved first as a single pair in an anterior location;that appendicular endoskeletons are primitively AP asymmetric;and that pectoral and pelvic fins primitively differ. It isconjectured that Hox gene expression patterns along the lateralplate mesoderm establish boundaries that contribute to localisationof AP levels at which signals initiate outgrowth from the bodywall. Such regionalisation may be regulated independently ofthat in the paraxial mesoderm and axial skeleton. When combinedwith current hypotheses of Hox gene phylogenetic and functionaldiversity, these data suggest a new model of fin/limb developmentalevolution. This coordinates body wall outgrowth regions withprimitive boundaries established in the gut, and the fundamentalnon-equivalence of pectoral and pelvic structures.  相似文献   

2.
SYNOPSIS. Steering during flight in the locust involves complexchanges in wingbeat, bending of thorax and head, and rudderingmovements of abdomen and hindlegs. Most of these behavioralsubcomponents involve coordinated modification of axial andappendicular musculature control. Some of the mechanisms underlyingthis neural modification have been analysed at the cellularlevel. During steering via wingbeat, sensory information aboutcourse deviations leads to highly coordinated and asymmetricchanges in the flight motor's output through the following mechanisms.Identified feature detector neurons in the locust brain integratesensory information concerning specific types of course deviation.Each of these descending detector neurons makes connectionswith a population of thoracic interneurons. These thoracic interneuronshave two important properties. First, they relay deviation informationto flight motoneurons. Second, they are under the gating controlof the flight central oscillator. Through this gating controlthe descending sensory signal is phase-coupled to the flightrhythm and delivered to appropriate flight motoneurons in oneand the same step. Although most of the recent cellular studieshave been aimed at unraveling the neural basis of wingbeat alterations,similar (but not identical) principles of neural organizationseem to be involved in the steering reactions produced by axialmotor systems.  相似文献   

3.
4.
5.
《CMAJ》1915,5(1):50-52
  相似文献   

6.
7.
8.
9.
Appendicular skeletal muscle mass: effects of age, gender, and ethnicity   总被引:6,自引:0,他引:6  
Gallagher, Dympna, Marjolein Visser, Ronald E. De Meersman,Dennis Sepúlveda, Richard N. Baumgartner, Richard N. Pierson, Tamara Harris, and Steven B. Heymsfield. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J. Appl. Physiol. 83(1): 229-239, 1997.This studytested the hypothesis that skeletal muscle mass is reduced in elderlywomen and men after adjustment first for stature and body weight. Thehypothesis was evaluated by estimating appendicular skeletal musclemass with dual-energy X-ray absorptiometry in a healthy adult cohort. Asecond purpose was to test the hypothesis that whole body40K counting-derived total bodypotassium (TBK) is a reliable indirect measure of skeletal muscle mass.The independent effects on both appendicular skeletal muscle and TBK ofgender (n = 148 women and 136 men) andethnicity (n = 152 African-Americans and 132 Caucasians) were also explored. Main findingswere 1) for both appendicularskeletal muscle mass (total, leg, and arm) and TBK, age was anindependent determinant after adjustment first by stepwise multipleregression for stature and weight (multiple regression modelr2 = ~0.60);absolute decrease with greater age in men was almost double that inwomen; significantly larger absolute amounts were observed in men andAfrican-Americans after adjustment first for stature, weight, and age;and >80% of within-gender or -ethnic group between-individualcomponent variation was explained by stature, weight, age, gender, andethnicity differences; and 2) mostof between-individual TBK variation could be explained by totalappendicular skeletal muscle(r2 = 0.865),whereas age, gender, and ethnicity were small but significant additional covariates (totalr2 = 0.903). Ourstudy supports the hypotheses that skeletal muscle is reduced in theelderly and that TBK provides a reasonable indirect assessment ofskeletal muscle mass. These findings provide a foundation forinvestigating skeletal muscle mass in a wide range of health-related conditions.

  相似文献   

10.
The domestication of maize (Zea mays ssp. mays) from its wild ancestor (Zea mays ssp. parviglumis) led to a loss of genetic diversity both through a population bottleneck and through directional selection at agronomically important genes. In order to discriminate between those effects and to investigate the nature of the domestication bottleneck, we analyzed nucleotide diversity data from 12 chromosome 1 loci in parviglumis. We found an average loss of nucleotide diversity of 38% across genes, but this average was skewed downward by four putatively selected loci (tb1, d8, ts2, and zagl1). To better understand the domestication process, we used the coalescent with recombination to simulate bottlenecks under various lengths and population sizes. For each locus, we determine the likelihood of the observed data using three summary statistics: the number of segregating sites, an estimate of the population recombination parameter, and Tajima's D. Based on the eight neutrally evolving loci, a model with a bottleneck had a significantly higher likelihood than a model without one. The four putatively selected loci had significantly different likelihood optimums than the neutral loci, and this approach confirmed that ts2 and d8 were selected either during domestication or breeding. Overall, the best-fitting models had a bottleneck in which the population size and the bottleneck duration had a ratio of approximately 4- to approximately 5; for example, if the initial domestication event occurred over a 500-year period, the population size was roughly 2,000 to 2,500 individuals. However, this range did vary with the summary statistic used to assess the fit of simulations to data. In this context, Tajima's D performed poorly as a goodness-of-fit statistic, probably because Z. mays ssp. parviglumis has a frequency spectrum that is significantly skewed toward low-frequency variants. Finally, we found that demography is unlikely to account for the previously observed positive correlation between nucleotide diversity and the population-recombination parameter in maize, leaving this observation difficult to interpret.  相似文献   

11.
Feeding and faecal pellet production of late copepodite stages of Calanus finmarchicus were measured in mixtures of cultured autotrophic and heterotrophic food, as well as in a natural post-bloom plankton assemblage, in order to evaluate food selection and its potential effect on sedimentation of organic matter. Calanus finmarchicus consistently selected for diatoms, both in mixtures with the heterotrophic dinoflagellate Oxyrrhis marina, and in natural seston containing dinoflagellates, ciliates and flagellates. Similarly, the filtration, ingestion and faecal pellet production rates were significantly higher feeding on diatoms than when feeding on other food species. Calanus finmarchicus selection appeared relatively inflexible, so that changes in seston composition induced large changes in diet quantity and composition. Our results support the traditional view of C. finmarchicus as a major grazer of diatoms, and suggest potentially high post-bloom faecal pellet production rates.  相似文献   

12.
Advances in digital technology and the growth of information networks are revolutionizing human activity. The Internet has been championed as a new tool for environmental improvement. A life-cycle energy analysis of digital libraries, a growing application of information technology, was conducted to test this premise.
Life-cycle models were compared for journal collections in digital and traditional formats. The basis for analysis was the amount of information in a typical scientific journal article (∼12 pages), which is equivalent to 0.97 hr of on-screen reading time. Digital system elements such as servers, routers, laser printers, and computer workstations were modeled. Journal production, delivery, storage, binding, interlibrary loan, and photocopying were examined for the traditional system. Building-related infrastructure, office paper, and personal transportation of the library patron were analyzed for both cases. In all, the study incorporated nearly 30 model elements, 90 input variables, and numerous fixed parameters.
Five primary scenarios were constructed to consider increasing levels of complexity. Scenario 1 assumes only one reading per article (unit of analysis). Additional scenarios assume 1,000 readings and vary the following: laser printing, photocopying, and personal transportation. Energy consumed by the digital collection ranged between 4.10 and 216 MJ. The traditional system realized burdens from 0.55 to 525 MJ. Four significant effects were uncovered: (1) Energy consumption per unit was highly influenced by the number of readings per article. (2) Networking infrastructure by itself had a relatively small effect on total energy consumed by the digital system. (3) When personal transportation was considered, its effects tended to dominate. (4) The impact of making personal copies varied. Photocopying always increased energy consumption, whereas laser printing actually saved energy when it substituted for on-screen reading.  相似文献   

13.
It has been argued that downstream enzymes in metabolic pathways are expected to be subject to reduced selective constraint, while upstream enzymes, particularly those at pathway branch points, are expected to exhibit more frequent adaptive substitution than downstream enzymes. We examined whether these expectations are met for enzymes in the anthocyanin biosynthetic pathway in Ipomoea. Previous investigations have demonstrated that downstream enzymes in this pathway have substantially higher rates of nonsynonymous substitution than upstream enzymes. We demonstrate here that the difference in rates between the most upstream enzyme (CHS) and the two most downstream enzymes (ANS and UFGT) is explained almost entirely by differences in levels of selective constraint. Adaptive substitutions were not detected in any of these genes. Our results are consistent with suggestions that constraint is greater on enzymes with greater connectivity.  相似文献   

14.
Body mass declines during wing moult in numerous, but not all, populations of Anatidae. We assessed two leading hypotheses for body mass dynamics during wing moult: (1) body mass dynamics are adapted to attain a target body mass at the end of wing moult (restraint hypothesis) vs. (2) body mass dynamics reflect environmental constraint on the nutrient–energy balance during wing moult (constraint hypothesis). We used regressions of mass of breeding female Black Brant Branta bernicla nigricans on ninth primary length (a measure of moult stage) for each of 16 years to assess mass dynamics during wing moult and used regression equations to predict mass at the beginning and end of wing moult each year. We also included gosling mass at 30 days (an indicator of forage availability) in models of adult mass to assess how mass dynamics varied as a function of foraging conditions. Predicted body mass (± 95% CI) at the start of wing moult (ninth primary = 0 mm) varied significantly among years from 1032 ± 52 to 1169 ± 27 g. Similarly, predicted mass in late wing moult (ninth primary = 142 mm) ranged from 1048 ± 25 to 1222 ± 28 g. The rate of mass gain was significantly related to gosling mass at 30 days: interaction between adult ninth primary length and gosling mass = 0.0031 ± 0.0020 (P = 0.003). Females initiated wing moult at lower body masses, gained mass more rapidly and ended with wing moult heaviest when goslings were heaviest. Body mass dynamics of female Black Brant during wing moult were consistent with the constraint hypothesis. The positive association between gosling mass and rate of body mass gain by adult females during wing moult was also consistent with the constraint hypothesis.  相似文献   

15.
Our data on a subterranean mammal, Spalax ehrenbergi, and other evidence, indicate that appreciable polymorphism can be preserved in small isolated populations consisting of several dozens of, or a hundred, individuals. Current theoretical models predict fast gene fixation in small panmictic populations without selection, mutation, or gene inflow. Using simple multilocus models, we demonstrate here that moderate stabilizing selection (with stable or fluctuating optimum) for traits controlled by additive genes could oppose random fixation in such isolates during thousands of generations. We also show that in selection-free models polymorphism persists only for a few hundred generations even under high mutation rates. Our multi-chromosome models challenge the hitchhiking hypothesis of polymorphism maintenance for many neutral loci due to close linkage with few selected loci.  相似文献   

16.
17.
The osteology of the appendicular skeleton and its postnatal development are described in Bachia bicolor, a serpentiform lizard with reduced limbs. The pectoral girdle is well developed and the forelimb consists of a humerus, ulna, radius, five carpal elements (ulnare, radiale, distal carpals 4–3, centrale), four metacarpals (II, III, IV, V) and phalanges (phalangeal formula X‐2‐2‐2‐2). In the hindlimb, the femur is small and slender, and articulates distally with a series of ossified amorphous and extremely reduced elements that correspond to a fibula, tibia and proximal and distal tarsals 4 and 3. The pelvic girdle consists of ischium, pubis and ilium, but its two halves are widely separated; the ilium is the least reduced element. We describe the ossification and development during postnatal skeletal ontogeny, especially of epiphyseal secondary centres, ossifications of carpal elements, apophyseal ossifications and sesamoids. Compared to other squamates, B. bicolor shows an overall reduction in limb size, an absence of skeletal elements, a fusion of carpal elements, an early differentiation of apophyseal centres, and a low number of sesamoids and apophyseal centres. These observations suggest that the reductions are produced by heterochronic changes during postnatal development and probably during embryonic development; therefore the appendicular skeleton exhibits a pattern of paedomorphic features.  相似文献   

18.
I investigate the competition between two quasispecies residing on two disparate neutral networks. Under the assumption that the two neutral networks have different topologies and fitness levels, it is the mutation rate that determines which quasispecies will eventually be driven to extinction. For small mutation rates, I find that the quasispecies residing on the neutral network with the lower replication rate will disappear. For higher mutation rates, however, the faster replicating sequences may be outcompeted by the slower replicating ones if the connection density on the second neutral network is sufficiently high. The analytical results are in excellent agreement with flow-reactor simulations of replicating RNA sequences.  相似文献   

19.
20.
The Drosophila bicoid gene is well known for encoding a protein that forms a morphogenetic gradient with a key role in anterior patterning of the fruitfly embryo. Recent results suggest the evolution of bicoid might have involved dramatic changes in function - essentially the invention of a new regulatory protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号