首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have demonstrated that an increase in poly(ADP-ribose) polymerase activity could be closely related to DNA replication during liver regeneration and to DNA repair synthesis in different experimental systems. This relationship was further investigated by studying the time course of endogenous and total poly(ADP-ribose) polymerase activity in cultured rat hepatocytes stimulated by epidermal growth factor. This mitogen has been shown to stimulate DNA synthesis in liver cells both in vivo and in vitro. A 6-fold increase in endogenous activity was observed early after epidermal growth factor addition, just before DNA synthesis. A subsequent 4-fold increment in total enzyme activity, concomitant with DNA synthesis, was detected. Orotic acid, which has recently shown mitoinhibitory effect, abolished the epidermal-growth-factor-induced increase in endogenous and total poly(ADP-ribose) polymerase activity, as well as DNA synthesis. On the contrary, 3-aminobenzamide inhibitor of poly(ADP-ribose) polymerase completely suppressed the endogenous activity but only partially modified the increase in total catalytic level and the overall pattern of thymidine incorporation. Taken together, these data indicate that, in cultured hepatocytes, the induction of DNA synthesis is supported by an increased poly(ADP-ribose) polymerase activity.  相似文献   

2.
Poly(ADP-ribosyl)ation of nuclear proteins is catalyzed by poly(ADP-ribose) polymerase. This enzyme is involved in the regulation of basic cellular functions of DNA metabolism. DNA breaks induced by DNA-damaging agents trigger the activation of poly(ADP-ribose) polymerase increasing its endogenous level. This increase modifies the pattern of poly(ADP-ribosyl)ated chromatin proteins. In this paper we describe a procedure for the isolation of intact nuclei from rat liver to be used for the endogenous activity assay. Artifactual activation of the enzyme was avoided since a very low level of DNA-strand breaks occurs during the isolation of nuclei. We present a series of experiments which prove the ability of this procedure to detect increases in endogenous liver activity without modification of the total level. The application of this technique can be useful for a better understanding of the role of early changes in poly(ADP-ribose) polymerase level in physiological conditions and during exposure to DNA-damaging agents.  相似文献   

3.
Poly(ADP-ribose) polymerase, an enzyme that has reportedly been confined to the nucleus of eukaryotic cells, has been found in the cytoplasm of HeLa cells. The enzyme activity is stimulated more than 30-fold by the addition of both DNA and histones. These two macromolecules are absolutely necessary for maximal activity and they act in a synergistic manner. The product of the reaction was characterized as poly(ADP-ribose) by its acid insolubility, its insensitivity to hydrolysis by DNase, RNase, spleen phosphodiesterase or Pronase and by release of 5′-AMP and 2′-(5″-phosphoribosyl)-5′-AMP by incubation with snake venom phosphodiesterase. A covalent attachment between histone F1 and poly(ADP-ribose) has been established by using the cytoplasmic enzyme. The enzyme is primarily associated with ribosomes, both free ribosomes and those found in polysomes. Inhibition of protein synthesis in the intact cell reduced the level of activity in the cytoplasm. The enzyme can be removed from the ribosomes by centrifugation through sucrose gradients containing 0.6 m ammonium chloride. A relationship between this enzyme and DNA replication is suggested by the fact that the specific activity in the cytoplasm parallels the rate of DNA synthesis during the HeLa cell cycle.  相似文献   

4.
A poly(ADP-ribose)-H1 histone complex has been isolated from HeLa cell nuclei incubated with NAD. The rate of poly(ADP-ribose) glycohydrolase catalyzed hydrolysis of the polymer in the complex is only 1/9 that of free poly(ADP-ribose), indicating that the polymer is in a protected environment within the complex. Comparison of the rate of hydrolysis of free poly(ADP-ribose) in the presence or absence of H1 to that in the complex synthesized de novo indicates a specific mode of packaging of the complex. This is further indicated by the fact that alkaline dissociation of the complex followed by neutralization markedly exposes the associated poly(ADP-ribose) to the glycohydrolase. The complex also partially unfolds when it binds to DNA as evidenced by a 2-fold increase in the rate of glycolytic cleavage of poly(ADP-ribose). This effect of DNA is not due to a stimulation of the glycohydrolase per se since hydrolysis of free polymer by the enzyme is strongly inhibited by DNA, especially single-stranded DNA. Inhibition of glycohydrolase by DNA results from the binding of the enzyme to DNA and conditions which decrease this binding (increased ionic strength or addition of histone H1 which competes for DNA binding) relieve the DNA inhibition.  相似文献   

5.
The nuclear enzyme poly(ADP-ribose) polymerase has been purified about 9200-fold from pig thymus nuclei with a 46% yield. An aqueous organic solvent system was used for the isolation of the polymerase from nuclei and for its purification by chromatography at sub-zero temperatures. Electrophoretic analysis under both denaturing and non-denaturing conditions revealed a single protein band suggesting that the preparation was homogeneous and that the enzyme is composed of one polypeptide chain. The molecular weight estimated from sodium dodecyl sulphate-/polyacrylamide gel electrophoresis was 63 500 and from gel filtration through columns of Sephadex G-100, 58 000. The enzyme preparation was free from poly(ADP-ribose)-degrading enzymes and from DNA. The purified polymerase showed an absolute requirement for both DNA and histones. The maximal specific activity of the homogeneous preparation measured by the standardized assay, was 20.7 mu mol NAD+ incorporated x min-1 x mg-1 of protein at 37 degree C. Amino-terminal group analysis with dansyl chloride did not reveal a terminal amino acid suggesting that the amino-terminal group may be blocked. In the presence of histones, the Km for NAD+ was 23 micrometer.  相似文献   

6.
7.
8.
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase activities were both investigated in chicken erythroblasts transformed by Avian Erythroblastosis Virus. Respectively 21% and 58% of these activities were found to be present in the post-mitochondrial supernatant (PMS). Fractionation of the PMS on sucrose gradients and poly(A+) mRNA detection by hybridization to [3H] poly(U) show that cytoplasmic poly(ADP-ribose) polymerase is exclusively localized in free mRNP. The glycohydrolase activity sedimented mostly in the 6 S region but 1/3 of the activity was in the free mRNP zone. Seven poly(ADP-ribose) protein acceptors were identified in the PMS in the Mr 21000–120000 range. The Mr 120000 protein corresponds to automodified poly(ADP-ribose) polymerase. A Mr 21000 protein acceptor is abundant in PMS and a Mr 34000 is exclusively associated with ribosomes and ribosomal subunits. The existence of both poly(ADP-ribose) polymerase and glycohydrolase activities in free mRNP argues in favour of a role of poly(ADP-ribosylation) in mRNP metabolism. A possible involvement of this post translational modification in the mechanisms of repression-derepression of mRNA is discussed.Abbreviations ADP-ribose adenosine (5) diphospho(5)--D ribose - poly(ADP-ribose) polymer of ADP-ribose - mRNP messenger ribonucleoprotein particles - PMSF phenylmethylsulfonyl fluoride - LDS lithium dodecyl sulfate - TCA trichloroacetic acid  相似文献   

9.
10.
Treatment with heparin or preferential removal of lysine-rich histones (LRH) stimulates endogenous DNA polymerase and template activities in swine aortic nuclei. The activities can be further enhanced in the presence of an endonuclease like DNase I. In contrast, the extraction of LRH reversibly inhibits the poly(ADP-ribose) polymerase activity of the extracted nuclei. This is due to the removal of the enzyme along with the LRH and the addition of the extract to the extracted nuclei reverses this inhibition. Heparin, on the other hand, does not inhibit the poly(ADP-ribose) polymerase unless very high concentrations are used. It appears that the removal of LRH as well as poly(ADP-ribose) polymerase exposes initiation sites for DNA polymerase.  相似文献   

11.
The short-chain lipid hydroperoxide analogue tert-butylhydroperoxide induces peroxynitrite-dependent and -independent DNA single strand breakage in PC12 cells. U937 cells that do not express constitutive nitric oxide synthase respond to tert-butylhydroperoxide treatment with peroxynitrite-independent DNA cleavage. Under experimental conditions leading to equivalent strand break frequencies, the analysis of poly(ADP-ribose) polymerase activity showed an increase in PC12 cells but not in U937 cells. The enhanced poly(ADP-ribose) polymerase activity observed in PC12 cells was paralleled by a significant decline in NAD+ content and both events were prevented by treatments suppressing formation of peroxynitrite. Although DNA breaks were rejoined at similar rates in the two cell lines, an inhibitor of poly(ADP-ribose) polymerase delayed DNA repair in PC12 cells but had hardly any effect in U937 cells. The results obtained using the latter cell type were confirmed with an additional cell line (Chinese hamster ovary cells) that does not express nitric oxide synthase. Collectively, our data suggest that tert-butylhydroperoxide-induced peroxynitrite-independent DNA strand scission is far less effective than the DNA cleavage generated by endogenous peroxynitrite in stimulating the activity of poly(ADP-ribose) polymerase.  相似文献   

12.
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme present in most eukaryotes and has been involved in processes such as DNA repair and gene expression. The poly(ADP-ribose) polymer (PAR) is mainly catabolised by poly(ADP-ribose) glycohydrolase. Here, we describe the cloning and characterisation of a PARP from Trypanosoma cruzi (TcPARP). The recombinant enzyme (Mr=65) required DNA for catalytic activity and it was strongly enhanced by nicked DNA. Histones purified from T. cruzi increased TcPARP activity and the covalent attachment of [32P]ADP-ribose moieties to histones was demonstrated. TcPARP required no magnesium or any other metal ion cofactor for its activity. The enzyme was inhibited by 3-aminobenzamide, nicotinamide, theophylline and thymidine but not by menadione. We demonstrated an automodification reaction of TcPARP, and that the removal of attached PAR from this protein resulted in an increase of its activity. The enzyme was expressed in all parasite stages (amastigotes, epimastigotes and trypomastigotes). When T. cruzi epimastigotes were exposed to DNA-damaging agents such as hydrogen peroxide or beta-lapachone, PAR drastically increased in the nucleus, thus confirming PAR synthesis in vivo and suggesting a physiological role for PARP in trypanosomatid DNA repair signalling.  相似文献   

13.
To elucidate the role of poly(ADP-Rib) in the nucleus, DNA synthesis and DNA fragmentation were studied in isolated nuclei of rat liver and rat ascites hepatoma AH-130 cells. Liver and hepatoma cell nuclei formed the same amount of poly(ADP-Rib) per mg of nuclear DNA from NAD. Preincubation of liver nuclei with NAD repressed DNA polymerase activity to 30% of that of the control, but preincubation of hepatoma cell nuclei with NAD did not affect DNA polymerase activity. It was also found that incubation of liver nuclei with NAD prevented the fragmentation of nuclear DNA which occurred without NAD. Incubation of hepatoma cell nuclei with or without NAD did not result in fragmentation of DNA. The role of endonuclease in primer formation for DNA synthesis is discussed.  相似文献   

14.
Treatment of alkylated HeLa cells with 3-aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase, increased the number of DNA strand breaks but did not affect the rate of strand rejoining. This suggests that an increase in DNA incision, not a decrease in ligation, results from the inhibition ofpoly(ADP-ribose) polymerase in cells recovering from DNA damaged by alkylating agents. Poly(ADP-ribose) DNA strand break DNA repair  相似文献   

15.
During apoptosis, endonucleases cleave DNA into 50-300-kb fragments and subsequently into internucleosomal fragments. DNA fragmentation factor (DFF) is implicated in apoptotic DNA cleavage; this factor comprises DFF45 and DFF40 subunits, the former of which acts as a chaperone and inhibitor of the catalytic subunit and whose cleavage by caspase-3 results in DFF activation. Disruption of the DFF45 gene blocks internucleosomal DNA fragmentation and confers resistance to apoptosis in primary thymocytes. The role of DFF-mediated DNA fragmentation in apoptosis was investigated in primary fibroblasts from DFF45(-/-) and control (DFF45(+/+)) mice. DFF45 deficiency rendered fibroblasts resistant to apoptosis induced by tumor necrosis factor (TNF). TNF induced rapid cleavage of DNA into approximately 50-kb fragments in DFF45(+/+) fibroblasts but not in DFF45(-/-) cells, indicating that DFF mediates this initial step in DNA processing. The TNF-induced activation of poly(ADP-ribose) polymerase (PARP), which requires PARP binding to DNA strand breaks, and the consequent depletion of the PARP substrate NAD were markedly delayed in DFF45(-/-) cells, suggesting a role for DFF in PARP activation. The activation of caspase-3 and mitochondrial events important in apoptotic signaling, including the loss of mitochondrial membrane potential and the release of cytochrome c, induced by TNF were similarly delayed in DFF45(-/-) fibroblasts. DFF45(-/-) and DFF45(+/+) cells were equally sensitive to the DNA-damaging agent and PARP activator N-methyl-N'-nitro-N-nitrosoguanidine. Inhibition of PARP by 3-aminobenzamide partially protected DFF45(+/+) cells against TNF-induced death and inhibited the associated release of cytochrome c and activation of caspase-3. These results suggest that the generation of 50-kb DNA fragments by DFF, together with the activation of PARP, mitochondrial dysfunction, and caspase-3 activation, contributes to an amplification loop in the death process.  相似文献   

16.
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase have been detected in chromatin extracts from the dinoflagellate Crypthecodinium cohnii. Poly(ADP-ribose) glycohydrolase was detected by the liberation of ADP-ribose from poly(ADP-ribose). Poly(ADP-ribose) polymerase was proved by (a) demonstration of phosphoribosyl-AMP in the phosphodiesterase digest of the reaction product, (b) demonstration of ADP-ribose oligomers by fractionation of the reaction product on DEAE-Sephadex. The (ADP-ribose)-protein transfer is dependent on DNA; it is inhibited by nicotinamide, thymidine, theophylline and benzamide. The protein-(ADP-ribose bond is susceptible to 0.1 M NaOH (70%) and 0.4 M NH2OH (33%). Dinoflagellates, nucleated protists, are unique in that their chromatin lacks histones and shows a conformation like bacterial chromatin [Loeblich, A. R., III (1976) J. Protozool. 23, 13--28]; poly(ADP-ribose) polymerase, however, has been found only in eucaryotes. Thus our results suggest that histones were not relevant to the establishment of poly(ADP-ribose) during evolution.  相似文献   

17.
Molecular interactions between purified poly(ADP-ribose) polymerase, whole thymus histones, histone H1, rat fibroblast genomic DNA, and closed circular and linearized SV40 DNA were determined by the nitrocellulose filter binding technique. Binding of the polymerase protein or histones to DNA was augmented greatly when both the enzyme protein and histones were present simultaneously. The polymerase protein also associated with histones in the absence of DNA. The cooperative or promoted binding of histones and the enzyme to relaxed covalently closed circular SV40 DNA was greater than the binding to the linearized form. Binding of the polymerase to SV40 DNA fragments in the presence of increasing concentrations of NaCl indicated a preferential binding to two restriction fragments as compared to the others. Polymerase binding to covalently closed relaxed SV40 DNA resulted in the induction of superhelicity. The simultaneous influence of the polymerase and histones on DNA topology were more than additive. Topological constraints on DNA induced by poly(ADP-ribose) polymerase were abolished by auto ADP-ribosylation of the enzyme. Benzamide, by inhibiting poly(ADP-ribosylation), reestablished the effect of the polymerase protein on DNA topology. Polymerase binding to in vitro-assembled core particle-like nucleosomes was also demonstrated.  相似文献   

18.
Alkylation treatment of HeLa cells results in the rapid induction of apoptosis as revealed by DNA laddering and cleavage of poly(ADP-ribose) polymerase (PARP) into the 29-and 85-kDa fragments (Kumari S. R., Mendoza-Alvarez, H. & Alvarez-Gonzalez, R. (1998) Cancer Res. 58, 5075-5078). Here, we performed a time-course analysis of (i) poly(ADP-ribose) synthesis and degradation as well as (ii) the subnuclear localization of PARP and its fragments by using confocal laser scanning immunofluorescence microscopy. PARP was activated within 15 min post-treatment, as revealed by nuclear immunostaining with antibody 10H (recognizing poly(ADP-ribose)). This was followed by a late, time-dependent, progressive decline of 10H signals that coincide with the time of PARP cleavage. Strikingly, nucleolar immunostaining with antibodies 10H and C-II-10 (recognizing the 85-kDa PARP fragment) was lost by 15 min post-treatment, whereas F-I-23 signals (recognizing the 29-kDa fragment) persisted. We hypothesize that the 85-kDa PARP fragment is translocated, along with covalently bound poly(ADP-ribose), from nucleoli to the nucleoplasm, whereas the 29-kDa fragment is retained, because it binds to DNA strand breaks. Our data (i) provide a link between the known time-dependent bifunctional role of PARP in apoptosis and the subcellular localization of PARP fragments and also (ii) add to the evidence for early proteolytic changes in nucleoli during apoptosis.  相似文献   

19.
20.
Summary Poly(ADP-ribose) polymerase catalyses the formation of ADP-ribose polymers covalently attached to various nuclear proteins, using NAD+ as substrate. The activity of this enzyme is strongly stimulated upon binding to DNA single or double strand breaks. Poly(ADP-ribosyl)ation is an immediate cellular response to DNA damage and is thought to be involved in DNA repair, genetic recombination, apoptosis and other processes during which DNA strand breaks are formed. In recent years we and others have established cell culture systems with altered poly(ADP-ribose) polymerase activity. Here we describe immunocytochemistry protocols based on the use of antibodies against the DNA-binding domain of human poly(ADP-ribose) polymerase and against its reaction product poly(ADP-ribose). These protocols allow for the convenient mass screening of cell transfectants with overexpression of poly(ADP-ribose) polymerase or of a dominant-negative mutant for this enzyme, i.e. the DNA-binding domain. In addition, the immunocytochemical detection of poly(ADP-ribose) allows screening for cells with altered enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号