首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the neuroprotection provided by cytidine 5'-diphosphocholine (citicoline) during interrupted and uninterrupted occlusion of the basilar artery after subarachnoid hemorrhage (SAH) in 121 hypotensive rats. Animals were anesthetized and the basilar artery was exposed through a transclival approach. Baseline local cerebral blood flow (LCBF) values were recorded, and then the basilar artery was punctured, causing SAH. Blood was drawn to induce hypotension [60-70 mmHg mean arterial blood pressure (MABP)]. Control rats received intraperitoneal (i.p.) injections of 0.5 ml saline immediately after SAH before hypotension induction and after 60 min of occlusion. Experimental rats received 400-mg/kg citicoline i.p. at the same time points. Control group I and treatment group III were subjected to 60 min of interrupted occlusion (5 min of reperfusion after each 10 min of occlusion). Control group II and treatment group IV were subjected to 60 min of uninterrupted occlusion. MABP and LCBF were recorded every 5 minutes. Brain edema was evaluated in seven rats from each group at 24 hours after ischemic injury. At 3 days after occlusion, another set of 28 rats was killed and coronal brain slices were stained to assess infarct volume. The groups' physiological and edema findings were similar. In all groups, LCBF fell immediately after SAH and remained below baseline throughout the experiment. In the citicoline-treated rats, arterial pressure increased significantly after 30-40 min of occlusion, and brain slices showed significantly smaller infarct volumes compared to control slices (p < 0.05). Mortality was significantly lower in the citicoline-treated animals (p < 0.001). The results suggest that citicoline provides significant neuroprotection during cerebral ischemia, and that it significantly reduces mortality. Part of the neuroprotective effect may be mediated by recovery of arterial pressure.  相似文献   

2.
Most neurosurgeons consider temporary vessel occlusion for aneurysmal clipping an effective technique that facilitates dissection between the aneurysm and the parent vessel. It is generally believed that repeated short periods of cerebral ischemia are safer for the brain than a single long episode. The aim of this study was to identify whether interrupted and uninterrupted vessel occlusion differs with regard to changes in brain tissue and cerebral hemodynamics after subarachnoid hemorrhage (SAH). Fifty Spraque Dawley rats (300-350 g) were placed under general anaesthesia and ventilated. The basilar artery was exposed through a transclival approach. Baseline local cerebral blood flow (LCBF) values was measured, and then the basilar artery was punctured, causing subarachnoid hemorrhage (SAH). Group I (n = 24) was subjected to 60 min of interrupted basilar artery occlusion, defined as 5 min of reperfusion after every 10 min of occlusion, group II (n = 26) 60 min of uninterrupted artery occlusion. Three days after completion of the experiment, each rat was neurologically evaluated and decapitated. Coronal brain slices were obtained and stained to assess infarct volume. Immediately after SAH, LCBF fell by 58% in group I, and by 52% in group II. In group I, each ischemic insult brought a similar reduction in LCBF, and after each release of the occlusion there was a rapid rise in flow. In group II, the LCBF values dropped initially and remained at low levels until the end of the study. The 2,3,5 triphenyltetrazolium chloride stained sections showed similar volumes of brainstem infarction in both groups (38.3 +/- 9.2 mm3 vs. 34.3 +/- 8.7 mm3, respectively; p > 0.05). The results suggest that there is no neuroprotective advantage to either interrupted or uninterrupted temporary blockage of blood flow during neurovascular procedures after SAH in the basilar artery region.  相似文献   

3.
Recently aside from the “classic” endovascular monofilament perforation technique to induce experimental subarachnoid hemorrhage (SAH) a modification using a tungsten wire advanced through a guide tube has been described. We aim to assess both techniques for their success rate (induction of SAH without confounding pathologies) as primary endpoint. Further, the early tissue lesion pattern as evidence for early brain injury will be analyzed as secondary endpoint. Sprague Dawley rats (n=39) were randomly assigned to receive either Sham surgery (n=4), SAH using the “classic” technique (n=18) or using a modified technique (n=17). Course of intracranial pressure (ICP) and regional cerebral blood flow (rCBF) was analyzed; subsequent pathologies were documented either 6 or 24 h after SAH. Hippocampal tissue samples were analyzed via immunohistochemistry and western blotting. SAH-induction, regardless of confounding pathologies, was independent from type of technique (p=0.679). There was no significant difference concerning case fatality rate (classic: 40%; modified: 20%; p=0.213). Successful induction of SAH without collateral ICH or SDH was possible in 40% with the classic and in 86.7% with the modified technique (p=0.008). Peak ICP levels differed significantly between the two groups (classic: 94 +/- 23 mmHg; modified: 68 +/- 19 mmHg; p=0.003). Evidence of early cellular stress response and activation of apoptotic pathways 6 h after SAH was demonstrated. The extent of stress response is not dependent on type of technique. Both tested techniques successfully produce SAH including activation of an early stress response and apoptotic pathways in the hippocampal tissue. However, the induction of SAH with less confounding pathologies was more frequently achieved with the modified tungsten wire technique.  相似文献   

4.
Objective: To characterize and establish a reproducible model that demonstrates delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) in rats, in order to identify the initiating events, pathophysiological changes and potential targets for treatment.Methods: Twenty-eight male Sprague-Dawley rats (250 - 300 g) were arbitrarily assigned to one of two groups - SAH or saline control. Rat subarachnoid hemorrhage in the SAH group (n=15) was induced by double injection of autologous blood, 48 hr apart, into the cisterna magna. Similarly, normal saline (n=13) was injected into the cisterna magna of the saline control group. Rats were sacrificed on day five after the second blood injection and the brains were preserved for histological analysis. The degree of vasospasm was measured using sections of the basilar artery, by measuring the internal luminal cross sectional area using NIH Image-J software. The significance was tested using Tukey/Kramer''s statistical analysis.Results: After analysis of histological sections, basilar artery luminal cross sectional area were smaller in the SAH than in the saline group, consistent with cerebral vasospasm in the former group. In the SAH group, basilar artery internal area (.056 μm ± 3) were significantly smaller from vasospasm five days after the second blood injection (seven days after the initial blood injection), compared to the saline control group with internal area (.069 ± 3; p=0.004). There were no mortalities from cerebral vasospasm.Conclusion: The rat double SAH model induces a mild, survivable, basilar artery vasospasm that can be used to study the pathophysiological mechanisms of cerebral vasospasm in a small animal model. A low and acceptable mortality rate is a significant criterion to be satisfied for an ideal SAH animal model so that the mechanisms of vasospasm can be elucidated 7, 8. Further modifications of the model can be made to adjust for increased severity of vasospasm and neurological exams.  相似文献   

5.
The effect of pretreatment with the corticotropin releasing factor (CRF-41) antagonist, alpha-helical CRF(9-41), on the hypotensive response obtained on peripheral administration of CRF-41 has been assessed in anesthetized Wistar rats. A single IV bolus dose of rat CRF-41 (2 nmol, at 0 min) produced a hypotensive effect which was rapid in onset (-52 mmHg at +1 min) and sustained throughout the 60-min study period (-42, -40, -26 and -16 mmHg at +3, +10, +30 and +60 min, respectively). The antagonist [alpha CRF(9-41)] was administered in consecutive bolus doses of 12.5, 25 and 50 nmol at -15, -10 and -5 min, respectively. This had no effect on mean arterial blood pressure (MABP) or heart rate, nor did it change significantly the magnitude of the initial rapid fall in MABP when CRF-41 was administered (-45 mmHg at +1 min). However, following pretreatment with alpha CRF(9-41), MABP returned to control values within 3 min and the sustained period of hypotension was completely blocked. Administration of CRF-41 resulted in 44% and 142% increases in norepinephrine and epinephrine measured at +60 min. Pretreatment with the antagonist attenuated the rise in circulating catecholamine levels observed after CRF-41 administration. In comparison, pretreatment with the antagonist did not alter the ACTH response to CRF-41 at +1 and +3 min and only reduced ACTH levels by 28% (p less than 0.05), 43% (p less than 0.001) and 41% (p less than 0.01) at 10, 30 and 60 min, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Chronic communicating hydrocephalus is a significant health problem affecting up to 20% of survivors of spontaneous subarachnoid hemorrhage (SAH). The development of new treatment strategies is hampered by the lack of well characterized disease models. This study investigated the incidence of chronic hydrocephalus by evaluating the temporal profile of intracranial pressure (ICP) elevation after SAH, induced by endovascular perforation in rats. Twenty-five adult male Sprague-Dawley rats (260–320g) were subjected to either endovascular perforation or sham surgery. Five animals died after SAH induction. At 7, 14 and 21 days after surgery ICP was measured by stereotaxic puncture of the cisterna magna in SAH (n=10) and SHAM (n=10) animals. On day 21 T-maze test was performed and the number of alterations and latency to decision was recorded. On day 23, samples were processed for histological analyses. The relative ventricle area was evaluated in coronal Nissl stained sections. On day 7 after surgery all animals showed normal ICP. The absolute ICP values were significantly higher in SAH compared to SHAM animals on day 21 (8.26±4.53 mmHg versus 4.38±0.95 mmHg) but not on day 14. Observing an ICP of 10mmHg as cut-off, 3 animals showed elevated ICP on day 14 and another animal on day 21. The overall incidence of ICP elevation was 40% in SAH animals. On day 21, results of T-maze testing were significantly correlated with ICP values, i.e. animals with elevated ICP showed a lower number of alterations and a delayed decision. Histology yielded a significantly higher (3.59 fold increased) relative ventricle area in SAH animals with ICP elevation compared to SAH animals without ICP elevation. In conclusion, the current study shows that experimental SAH leads to chronic hydrocephalus, which is associated with ICP elevation, behavioral alterations and ventricular dilation in about 40% of SAH animals.  相似文献   

7.
ABSTRACT: BACKGROUND: Vasospasm-related delayed cerebral ischemia (DCI) significantly impacts on outcome after aneurysmal subarachnoid hemorrhage (SAH). Erythropoietin (EPO) may reduce the severity of cerebral vasospasm and improve outcome, however, underlying mechanisms are incompletely understood. In this study, the authors aimed to investigate the effect of EPO on cerebral metabolism and brain tissue oxygen tension (PbtO2). METHODS: Seven consecutive poor grade SAH patients with multimodal neuromonitoring (MM) received systemic EPO therapy (30.000 IU per day for 3 consecutive days) for severe cerebral vasospasm. Cerebral perfusion pressure (CPP), mean arterial blood pressure (MAP), intracranial pressure (ICP), PbtO2 and brain metabolic changes were analyzed during the next 24 hours after each dose given. Statistical analysis was performed with a mixed effects model. RESULTS: A total of 22 interventions were analyzed. Median age was 47 years (32-68) and 86% were female. Three patients (38%) developed DCI. MAP slightly decreased 2 hours after intervention (P<0.04) without significantly affecting CPP and ICP. PbtO2 significantly increased over time (P<0.05) to a maximum of 7+/-4mmHg increase 16 hours after infusion. Brain metabolic parameters did not change over time. CONCLUSIONS: EPO increases PbtO2 in poor grade SAH patients with severe cerebral vasospasm. The effect on outcome needs further investigation.  相似文献   

8.
We studied cerebral blood flow (CBF) autoregulation and intracranial pressure (ICP) during normo- and hyperventilation in a rat model of Streptococcus pneumoniae meningitis. Meningitis was induced by intracisternal injection of S. pneumoniae. Mean arterial blood pressure (MAP), ICP, cerebral perfusion pressure (CPP, defined as MAP - ICP), and laser-Doppler CBF were measured in anesthetized infected rats (n = 30) and saline-inoculated controls (n = 30). CPP was either incrementally reduced by controlled hemorrhage or increased by intravenous norepinephrine infusion. Twelve hours postinoculation, rats were studied solely during normocapnia, whereas rats studied after 24 h were exposed to either normocapnia or to acute hypocapnia. In infected rats compared with control rats, ICP was unchanged at 12 h but increased at 24 h postinoculation (not significant and P < 0.01, respectively); hypocapnia did not lower ICP compared with normocapnia. Twelve hours postinoculation, CBF autoregulation was lost in all infected rats but preserved in all control rats (P < 0.01). Twenty-four hours after inoculation, 10% of infected rats had preserved CBF autoregulation during normocapnia compared with 80% of control rats (P < 0.01). In contrast, 60% of the infected rats and 100% of the control rats showed an intact CBF autoregulation during hypocapnia (P < 0.05 for the comparison of infected rats at normocapnia vs. hypocapnia). In conclusion, CBF autoregulation is lost both at 12 and at 24 h after intracisternal inoculation of S. pneumoniae in rats. Impairment of CBF autoregulation precedes the increase in ICP, and acute hypocapnia may restore autoregulation without changing the ICP.  相似文献   

9.
We observed changes in the local cerebral blood flow (LCBF), red blood cell (RBC) concentration and RBC velocity in alpha-chloralose anesthetized rats using laser-Doppler flowmetry during activation of the somatosensory cortex following electrical stimulation of the hind paw under hyperoxia (PaO(2)=513.5+/-48.4 mmHg; mean+/-S.D.) and normoxia (PaO(2)=106.4+/-8.4 mmHg). Electrical stimuli of 5 and 10 Hz (pulse width 0.1 ms) with an intensity of 1.5 mA were applied for 5 s (n=13 at 5 Hz, n=9 at 10 Hz). Baseline levels of LCBF and RBC concentration under hyperoxia were, respectively, 5.6+/-3.3 and 8.8+/-3.0% lower than those under normoxia (P<0.05), and that of RBC velocity under hyperoxia was slightly higher than that under normoxia (NS), suggesting mild vasoconstriction at rest under hyperoxia. At 5 Hz stimulation, after normalization to each baseline level, normalized response magnitudes of LCBF, RBC concentration and RBC velocity under hyperoxia were, respectively, 68.2+/-48.0, 71.1+/-65.5 and 66.0+/-56.3% greater than those under normoxia (P<0.05). At 10-Hz stimulation, normalized response magnitudes of LCBF and RBC concentration under hyperoxia were, respectively, 44.6+/-32.0 and 55.9+/-43.5% greater than those under normoxia (P<0.05), although a significant difference in the normalized response magnitude of RBC velocity was not detected between both conditions. The evoked LCBF under hyperoxia increased earlier, by approximately 0.15 s, than that under normoxia regardless of the stimulus frequency (P<0.05). These results suggest the involvement of oxygen interaction on the regulation of LCBF during neuronal activation.  相似文献   

10.
Inhalant anesthetics may interfere with normal cerebrovascular autoregulation. It was, therefore, hypothesized that intracranial pressure (ICP) and cerebral perfusion pressure (CPP) in isoflurane-anesthetized horses would be especially sensitive to body and head position because of the potential for large hydrostatic gradients between the brain and heart in this species. Anesthesia was induced and maintained in six clinically healthy, unmedicated geldings with 1.57% isoflurane in O(2); mechanical ventilation was used to maintain normocapnia. ICP was measured by using a subarachnoid strain-gauge transducer. Blood gases and carotid arterial, right atrial, and airway pressures were also measured. Five body positions were studied in semirandomized order: dorsal recumbency (DR) with head down (HD), DR with head level (HL), lateral recumbency (LR), sternal recumbency (SR) with HL, and SR with head up (HU). Data were analyzed by using paired t-tests. ICP and CPP values, respectively, are as follows (means +/- SD): 36 +/- 4 and 55 +/- 18 mmHg (DR-HD); 34 +/- 6 and 51 +/- 32 mmHg (DR-HL); 24 +/- 5 and 48 +/- 4 mmHg (LR); 19 +/- 11 and 87 +/- 12 mmHg (SR-HL); and -14 +/- 7 and 71 +/- 10 mmHg (SR-HU). Significant differences were found among all positions, except for SR-HL vs. LR. Significant increases in CPP were observed only in sternal positions. In conclusion, ICP in isoflurane-anesthetized horses changes inversely with the brain-to-heart hydrostatic gradient. DR may also cause increases in ICP, irrespective of head position.  相似文献   

11.
The mechanisms by which antenatal glucocorticoids facilitate postnatal circulatory function in preterm infants are uncertain but may be related to augmented angiotensinergic functions. To test the hypothesis that the effects of glucocorticoids on postnatal cardiovascular and sympathetic activity are mediated via the renin-angiotensin system, we studied the effects of AT(1) receptor blockade on postnatal changes in heart rate (HR), mean arterial blood pressure (MABP), renal sympathetic nerve activity (RSNA), and baroreflex control of HR in prematurely delivered lambs. After maternal administration of betamethasone (12 mg im 48 and 24 h before delivery), chronically instrumented preterm lambs (118- to 123-day gestation, term 145 days) were studied before and after delivery by cesarean section; fetuses received either the AT(1) receptor antagonist losartan (10 mg iv, n = 6) or saline (n = 6) 1 h before delivery. A third group of animals (n = 6) received losartan without prior exposure to betamethasone. Compared with fetal values, betamethasone-treated animals demonstrated significant increases (P < 0.05) in MABP (47 +/- 2 to 58 +/- 2 mmHg) and RSNA (181 +/- 80% of fetal value) 1 h after delivery. Betamethasone + losartan-treated lambs also displayed increases in MABP (48 +/- 1 to 55 +/- 3 mmHg) and RSNA (198 +/- 96% of fetal value) 60 min after birth, similar to betamethasone alone lambs. Losartan alone treated animals had no postnatal increase in either MABP or RSNA, responses similar to those seen in nontreated sheep delivered at the same gestational age. The sensitivity of baroreflex-mediated changes in HR in response to increases in MABP was less in both groups of betamethasone-treated animals; no effect was seen with losartan. These results suggest the postnatal increases in MABP and RSNA seen with antenatal glucocorticoid treatment are not mediated by stimulation of peripherally accessible AT(1) receptors. We speculate that augmented cardiovascular function in glucocorticoid-treated premature lambs is dependent, in part, on a generalized sympathoexcitatory response and that this effect of glucocorticoids is mediated by central mechanisms.  相似文献   

12.
As one of the causes of the space adaptation syndrome, an increased intracranial pressure due to the cephalad fluid shift is suggested. In the present study, we measured intracranial pressure (ICP), aortic pressure and cerebral flow velocity (CFV) in anesthetized rats (n=5) during 4.5 sec of microgravity induced by free drop. The rats were set at horizontal prone (Flat) and 30-degree head-up whole body tilting (HU) positions to examine the effect of gravitational pressure gradient. Then, arterial pressure at the eye level (APeye), cerebral perfusion pressure (CPP; CPP=APeye-ICP), and CPP-CFV relationship was calculated. In HU position, ICP, APeye, and CPP increased by 2.2 +/- 0.4, 12.3 +/- 2.0, and 10.1 +/- 1.7 mmHg respectively. However, CFV did not change significantly. In Flat position, none of these variables did not change significantly. In HU position the slope of CPP-CFV relationship decreased, suggesting the increased cerebral flow resistance. However, it did not change in Flat position. These results can be understood by the disappearance of gravitational pressure gradient by microgravity and the cerebral autoregulation.  相似文献   

13.
In this study the influence of acute (6 hr) exposure to 2450 MHz (CW) microwave radiation on certain cardiovascular, biochemical, and hematologic indices was examined in unanesthetized rats. Under methoxyflurane anesthesia, a catheter was inserted into the right femoral artery, which was used for monitoring blood pressure, heart rate, and blood sampling. Colonic temperature was monitored via a VITEK thermistor probe inserted rectally to a depth of 5 cm. The rat was subsequently placed into a ventilated restraining cage which was located inside an anechoic chamber. The temperature and humidity in the chamber were maintained at 22 +/- 0.5 degrees C and 60 +/- 5% (means +/- S.E.), respectively, during the experimental period. Rats (60) were exposed to either 0 (sham) or 10 mW/cm2 (exposed) for 6 hr. During exposure rats were oriented perpendicular to the E-field, and the measured specific absorption rate (SAR) was 3.7 mW/g. In the sham and exposed rats, the preexposure (time 0) mean +/- S.E. arterial blood pressure (MABP), heart rate, and colonic temperature were approximately 120 +/- 5 mmHg, 450 +/- 10 beats/min, and 37.0 +/- 0.2 degrees C, respectively. In the sham-exposed rats these values remained stable throughout the 6-hr exposure period. In the exposed rats, no effects were noted on MABP or colonic temperature; however after 1 hr of exposure, a significant reduction in heart rate was noted (450 versus 400 beats/min). This decrease in heart rate persisted throughout the remainder of the exposure period. None of the hematologic or biochemical parameters examined were affected by the microwave exposure. Although other mechanisms may be responsible, this decrease in heart rate may have been due to subtle cardiovascular adjustments because of microwave-induced heating with a resultant reduction in resting metabolic rate.  相似文献   

14.
Aim of the study was to quantify cerebral vasospasm in rats after subarachnoid hemorrhage (SAH) by morphometric examination of basilar artery and to evaluate the influence of endothelin receptor blocker BQ-123 on basilar artery constriction. The rat cisterna magna (CM) was cannulated and after 7 days SAH was developed by administration of 100 microl autologic, non-heparinized blood to the CM. The sham subarachnoid hemorrhage was developed by intracisternal administration of 100 microl of artificial cerebrospinal fluid. Endothelin receptor blocker BQ-123 was injected into the CM in a dose of 40 nmol diluted in 50 microl of cerebrospinal fluid 20 min. before SAH, and 24h and 48 h after SAH. After perfusion fixation the brains were removed from the skull and histological preparations of basilar artery were done. The internal diameter and wall thickness of basilar arteries was measured by interactive morphometric method. The most severe vasospasm was found in rats after SAH. The presence of numerous infiltrations composed of neutrophils and macrophages correlated with advanced vasospasm (index of constriction 5 times lower than in normal), suggesting the role of other factors participating in the late phase of vasospasms after SAH. Administration of BQ-123 in the late phase after SAH caused the dilatation of basilar artery. Following the administration of BQ-123 in the late phase (48 h after SAH) the basilar artery dilated, its wall became thinner, and the number of leukocyte infiltrations in the subarachnoid space decreased compared to the values after SAH alone.  相似文献   

15.
Studies were performed to test the hypothesis that the absence of adrenal glucocorticoids late in gestation alters sympathetic and baroreflex responses before and immediately after birth. Fetal sheep at 130-131 days gestation (term 145 days) were subjected to bilateral adrenalectomy before the normal prepartum increase in plasma cortisol levels. One group of fetuses (n = 5) received physiological cortisol replacement with a continuous infusion of hydrocortisone (2 mg x day(-1) x kg(-1) for 10 days), whereas the other group received 0.9% NaCl vehicle (n = 5). All animals underwent a second surgery 48 h before the study for placement of a renal nerve recording electrode. Heart rate (HR), mean arterial blood pressure (MABP), renal sympathetic nerve activity (RSNA), and baroreflex control of HR and RSNA were studied before and after cesarean section delivery. At the time of study (140-141 days gestation), fetal plasma cortisol concentration was undetectable in adrenalectomized (ADX) fetuses and 58 +/- 9 ng/ml in animals receiving cortisol replacement (ADX + F). Fetal and newborn MABP was significantly greater in ADX + F relative to ADX animals. One hour after delivery, MABP increased 13 +/- 3 mmHg and RSNA increased 91 +/- 12% above fetal values in ADX + F (both P < 0.05) but remained unchanged in ADX lambs. The midpoint pressures of the fetal HR and RSNA baroreflex function curves were significantly greater in ADX + F (54 +/- 3 and 56 +/- 3 mmHg for HR and RSNA curves, respectively) than ADX fetuses (45 +/- 2 and 46 +/- 3 mmHg). After delivery, the baroreflex curves reset toward higher pressure in ADX + F but not ADX lambs. These results suggest that adrenal glucocorticoids contribute to cardiovascular regulation in the late-gestation fetus and newborn by modulating arterial baroreflex function and sympathetic activity.  相似文献   

16.
Vasospasm after subarachnoid hemorrhage (SAH) is associated with lipid peroxidation. However, lipid peroxides increase in a delayed fashion after SAH and may be a byproduct of but not a cause of vasospasm. This study correlated vasospasm with hydroxyl free radical and lipid peroxide levels. 24 dogs had baseline cerebral angiography and induction of SAH by 2 injections of blood into the cisterna magna at baseline and 2 days later. Angiography was repeated 4, 7, 10, 14 or 21 days after the first injection (n = 4 per group) and a microdialysis catheter was inserted into the premedullary cistern. Control dogs (n = 4) underwent angiography and microdialysis but not SAH. Salicylic acid, 100 mg/kg, was administered intravenously, and microdialysis fluid was collected and analyzed by high pressure liquid chromatography for 2,3- and 2,5-dihydroxybenzoic acids (DHBA). Malondialdehyde was measured in subarachnoid clot removed from the prepontine cistern and in the basilar artery itself at the time of euthanasia. Significant vasospasm developed 4 to 14 days after SAH. Malondialdehyde levels were significantly elevated in the basilar artery and subarachnoid clot 4 days after SAH (p < 0.0001, ANOVA) but not at other times. 2,5-DHBA levels were significantly greater than control at 4 to 14 days and they peaked at 4 days (p < 0.05, ANOVA). 2,3-DHBA was significantly increased at 4 days after SAH (p < 0.05, ANOVA). There were significant correlations between basilar artery malondialdehyde levels and vasospasm and cerebrospinal fluid 2,5-DHBA levels and vasospasm. These results suggest the presence of hydroxyl free radical after SAH and demonstrate a correlation between such production, as measured by trapping with salicylate, and the early phase of vasospasm. The correlation with vasospasm implicates free radicals and lipid peroxidation in this phase of vasospasm.  相似文献   

17.
Exposure of the early gestation ovine fetus to exogenous glucocorticoids induces alterations in postnatal cardiovascular physiology, including hypertension. To determine whether autonomic function and systemic vascular reactivity are altered by in utero programming before the development of systemic hypertension, we examined arterial baroreflex function and in vivo hemodynamic and in vitro vascular responses to vasoactive agents in 10- to 14-day-old newborn lambs exposed to early gestation glucocorticoids. Dexamethasone (Dex, 0.28 mg.kg-1.day-1) or saline was administered to pregnant ewes by intravenous infusion over 48 h beginning at 27 days gestation (term 145 days), and lambs were allowed to deliver (n=6 in each group). Resting mean arterial blood pressure (MABP; 77+/-1 vs. 74+/-3 mmHg) and heart rate (HR; 249+/-9 vs. 226+/-21 beats/min) were similar in Dex-exposed and control animals, respectively. The arterial baroreflex curve, relating changes in HR to MABP, was significantly shifted toward higher pressure in the Dex-exposed lambs although no change in the sensitivity (gain) of the response was seen. In vivo changes in blood pressure in response to bolus doses of ANG II (20, 50, and 100 ng/kg) and phenylephrine (2, 5, and 10 microg/kg) were similar in the two groups. However, Dex lambs displayed greater decreases in MABP in response to ganglionic blockade with tetraethylammonium bromide (10 mg/kg; -30+/-3 vs. -20+/-3 mmHg, P<0.05) and greater increases in MABP after nitric oxide synthase blockade with NG-nitro-L-arginine (25 mg/kg; 23+/-3 vs. 13+/-2 mmHg, P<0.05) compared with control lambs. By in vitro wire myography, mesenteric and femoral artery microvessel contractile responses to KCl were similar, whereas responses to endothelin (in mesenteric) and norepinephrine (in femoral) were significantly attenuated in Dex lambs compared with controls. Femoral vasodilatory responses to forskolin and sodium nitroprusside were similar in the two groups (n=4). These findings suggest that resetting of the baroreflex, accompanied by increased sympathetic activity and altered nitric oxide-mediated compensatory vasodilatory function, may be important contributors to programming of hypertension.  相似文献   

18.
To test whether changes in sympathetic nervous system (SNS) activity or insulin sensitivity contribute to the heterogeneous blood pressure response to aerobic exercise training, we used compartmental analysis of [3H]norepinephrine kinetics to determine the extravascular norepinephrine release rate (NE2) as an index of systemic SNS activity and determined the insulin sensitivity index (S(I)) by an intravenous glucose tolerance test, before and after 6 mo of aerobic exercise training, in 30 (63 +/- 7 yr) hypertensive subjects. Maximal O2 consumption increased from 18.4 +/- 0.7 to 20.8 +/- 0.7 ml x kg(-1) x min(-1) (P = 0.02). The average mean arterial blood pressure (MABP) did not change (114 +/- 2 vs. 114 +/- 2 mmHg); however, there was a wide range of responses (-19 to +17 mmHg). The average NE2 did not change significantly (2.11 +/- 0.15 vs. 1.99 +/- 0.13 microg x min(-1) x m(-2)), but there was a significant positive linear relationship between the change in NE2 and the change in MABP (r = 0.38, P = 0.04). S(I) increased from 2.81 +/- 0.37 to 3.71 +/- 0.42 microU x 10(-4) x min(-1) x ml(-1) (P = 0.004). The relationship between the change in S(I) and the change in MABP was not statistically significant (r = -0.03, P = 0.89). When the changes in maximal O2 consumption, percent body fat, NE2, and S(I) were considered as predictors of the change in MABP, only NE2 was a significant independent predictor. Thus suppression of SNS activity may play a role in the reduction in MABP and account for a portion of the heterogeneity of the MABP response to aerobic exercise training in older hypertensive subjects.  相似文献   

19.
Systemic hypoxia (SHx) produces microvascular inflammation in mesenteric, cremasteric, and pial microcirculations. In anesthetized rats, SHx lowers arterial blood pressure (MABP), which may alter microvascular blood flow and microvascular Po(2) (Pm(O(2))) and influence SHx-induced leukocyte-endothelial adherence (LEA). These experiments attempted to determine the individual contributions of the decreases in Pm(O(2)), venular blood flow and shear rate, and MABP to the hypoxia-induced increase in LEA. Cremaster microcirculation of anesthetized rats was visualized by intravital microscopy. Pm(O(2)) was measured by a phosphorescence-quenching method. SHx [inspired Po(2) of 70 Torr for 10 min, MABP of 65 +/- 3 mmHg, arterial Po(2) (Pa(O(2))) of 33 +/- 1 Torr] and cremaster ischemia (MABP of 111 +/- 7 mmHg, Pa(O(2)) of 86 +/- 3 Torr) produced similar Pm(O(2)): 7 +/- 2 and 6 +/- 2 Torr, respectively. However, LEA increased only in SHx (1.9 +/- 0.9 vs. 11.2 +/- 1.1 leukocytes/100 microm, control vs. SHx, P < 0.05). Phentolamine-induced hypotension (MABP of 55 +/- 4 mmHg) in normoxia lowered Pm(O(2)) to 26 +/- 6 Torr but did not increase LEA. Cremaster equilibration with 95% N(2)-5% CO(2) during air breathing (Pa(O(2)) of 80 +/- 1 Torr) lowered Pm(O(2)) to 6 +/- 1 Torr but did not increase LEA. On the other hand, when cremaster Pm(O(2)) was maintained at 60-70 Torr during SHx (Pa(O(2)) of 35 +/- 1 Torr), LEA increased from 2.1 +/- 1.1 to 11.1 +/- 1.5 leukocytes/100 microm (P < 0.05). The results show a dissociation between Pm(O(2)) and LEA and support the idea that SHx results in the release of a mediator responsible for the inflammatory response.  相似文献   

20.
CGS 35601 is a triple vasopeptidase inhibitor (VPI) of angiotensin converting enzyme (ACE), neutral endopeptidase (NEP), and endothelin (ET) converting enzyme-1 (ECE-1), with respective IC(50) values of 22, 2, and 55 nM. The aim of the present study was to establish the hemodynamic profile of Zucker diabetic fatty (Zdf)-Fatty rats, a high-fat diet gene-prone model developing spontaneous Type 2 diabetes (T2D) and the effects of CGS 35601. Male Zdf-Fatty (14 weeks, n = 17-23), Zdf-Lean (14 weeks, n = 8-10), and Wistar (14 weeks, n = 9-10) rats on distinct diets were implanted with a catheter in the left carotid and placed individually in a metabolic cage for 30 days. The hemodynamic profile and some metabolic biomarkers were assessed daily. After a 7-day stabilization period, the Zdf-Fatty rats were divided into two groups: Group 1, controls (n = 7-10) receiving vehicle-saline (250 microl/hr) and Group 2, (n = 10-13) receiving increasing doses of CGS 35601 (0.1, 1, and 5 mg/kg/day x 6 days each, intra-arterially) followed by a 5-day washout period. Mean arterial blood pressure (MABP) of young Zdf-Fatty rats was compared with age-matched Zdf-Lean and Wistar rats, which were found similar. MABP decreased by 5.9% (from baseline at 102 +/- 5 to 96 +/- 4 mmHg), 12.7% (to 89 +/- 6 mmHg) and 21.6% (to 80 +/- 4 mmHg), at 0.1, 1, and 5 mg/kg/day, respectively, in CGS 35601-treated Zdf-Fatty rats. Systolic and diastolic blood pressures were similarly reduced. The heart rate was not affected. Hyperglycemic status and insulin-resistance were not modulated by short-term treatment. CGS 35601 presented an excellent short-term safety profile. This novel molecule and class of VPI may be of interest for lowering vascular tone. Further long-term studies, once cardiovascular and renal complications have developed in this T2D rat model are warranted to define the efficacy of this class of VPI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号