首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In C. elegans, germline ablation leads to long life span and stress resistance. It has been reported that mutations that block oogenesis or an upstream step in germline development confer strong resistance to hypoxia. We demonstrate here that the hypoxia resistance of sterile mutants is dependent on developmental stage and age. In just a 12-hour period, sterile animals transform from hypoxia sensitive L4 larvae into hypoxia resistant adults. Since this transformation occurs in animals with no germline, the physiological programs that determine hypoxia sensitivity in germline mutants occur independently of germline signals and instead rely on signals from somatic tissues. Furthermore, we found two distinct mechanisms of hypoxia resistance in germline deficient animals. First, a DAF-16/FoxO independent mechanism that occurs in all hypoxia resistant sterile adults and, second, a DAF-16/FoxO dependent mechanism that confers an added layer of resistance, or “super-resistance”, to animals with no germline as they age past day 1 of adulthood. RNAseq data showed that genes involved in both cytosolic and mitochondrial protein translation are repressed in sterile adults and further repressed only in germline deficient mutants as they age. Importantly, mutation of daf-16 specifically blocked the repression of cytosolic ribosomal protein genes, but not mitochondrial ribosomal protein genes, implicating DAF-16/FoxO mediated repression of cytosolic ribosomal protein genes as a mechanism of hypoxia super-resistance. Consistent with this hypothesis, the hypoxia super-resistance of aging germline deficient adults was also suppressed by dual mutation of ncl-1 and larp-1, two regulators of protein translation and ribosomal protein abundance. These studies provide novel insight into a profound physiological transformation that takes place in germline mutants during development, showing that some of the unique physiological properties of these long-lived animals are derived from developmentally dependent DAF-16/FoxO mediated repression of genes involved in cytosolic protein translation.  相似文献   

5.
6.
7.
Evans EA  Chen WC  Tan MW 《Aging cell》2008,7(6):879-893
The Caenorhabditis elegans DAF-2 insulin-like signaling pathway, which regulates lifespan and stress resistance, has also been implicated in resistance to bacterial pathogens. Loss-of-function daf-2 and age-1 mutants have increased lifespans and are resistant to a variety of bacterial pathogens. This raises the possibility that the increased longevity and the pathogen resistance of insulin-like signaling pathway mutants are reflections of the same underlying mechanism. Here we report that regulation of lifespan and resistance to the bacterial pathogen Pseudomonas aeruginosa is mediated by both shared and genetically distinguishable mechanisms. We find that loss of germline proliferation enhances pathogen resistance and this effect requires daf-16, similar to the regulation of lifespan. In contrast, the regulation of pathogen resistance and lifespan is decoupled within the DAF-2 pathway. Long-lived mutants of genes downstream of daf-2, such as pdk-1 and sgk-1, show wildtype resistance to pathogens. However, mutants of akt-1 and akt-2, which we find to individually have modest effects on lifespan, show enhanced resistance to pathogens. We also demonstrate that pathogen resistance of daf-2, akt-1, and akt-2 mutants is associated with restricted bacterial colonization, and that daf-2 mutants are better able to clear an infection after challenge with P. aeruginosa. Moreover, we find that pathogen resistance among insulin-like signaling mutants is associated with increased expression of immunity genes during infection. Other processes that affect organismal longevity, including Jun kinase signaling and caloric restriction, do not affect resistance to bacterial pathogens, further establishing that aging and innate immunity are regulated by genetically distinct mechanisms.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号