首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ferroxidase II protein from human serum is large and structurally complex. It possesses protein-bound lipid and copper components which are essential for the maintenance of its catalytic activity. Treatment of ferroxidase II with 8 M urea, 6 M guanidine hydrochloride, or 6 M guanidine hydrochloride and alkylation does not result in the dissociation of the enzyme into subunits. However, treatment with sodium dodecyl sulfate results in the dissociation of ferroxidase II into two nonidentical subunits, designated S-I and S-II. S-I contains little phospholipid, cholesterol, or copper and has a molecular weight of 3.8-3.9 X 10(5). In contrast, S-II contains bound phospholipid, cholesterol, and copper and has a molecular weight of 2.2-2.4 X 10(5). The lipid compositon of S-II is identical with the native enzyme. Sodium dodecyl sulfate-free S-I exhibits no ferroxidase activity. Immediately following removal of sodium dodecyl sulfate, S-II exhibits ferroxidase activity but S-II rapidly loses its activity in the absence of S-I. The separated subunits spontaneously reassociate upon removal of the sodium dodecyl sulfate to yield a fully active enzyme which chemically appears identical with native ferroxidase II. Furthermore, the reconstituted enzyme is stable. Both native and reconstituted ferroxidase II may be stored at 4 degrees C for 6 weeks without any loss in activity. This suggests that S-II, the copper and lipid-containing subunit, is the catalytic subunit and that S-I is essential for the stabilization of the enzymic activity of S-II. These results provide insight into the molecular structure and chemical composition of ferroxidase II and suggest that the complete native structure of ferroxidase II is required for the maintenance of i-s functional integrity.  相似文献   

2.
Brassica napus (AACC, 2n = 38) is a self-compatible amphidiploid plant that arose from the interspecies hybridization of two self-incompatible species, B. rapa (AA, 2n = 20) and B. oleracea (CC, 2n = 18). Self-incompatibility (S) haplotypes in one self-incompatible line and 124 cultivated B. napus lines were detected using S-locus-specific primers, and their relationships with restorer-maintainers were investigated. Two class I (S-I ( SLG ) a and S-I ( SLG ) b) and four class II (S-II ( SLG ) a, S-II ( SLG ) b, S-II ( SP11 ) a and S-II ( SP11 ) b) S haplotypes were observed, of which S-II ( SP11 ) b was newly identified. The nucleotide sequence of SP11 showed little similarity to the reported SP11 alleles. The lines were found to express a total of eleven S genotypes. The self-incompatible line had a specific genotype consisting of S-II ( SP11 ) a, similar to B. rapa S-60, and S-II ( SLG ) a, similar to B. oleracea S-15. Restorers expressed six genotypes: the most common genotype contained S-I ( SLG ) a, similar to B. rapa S-47, and S-II ( SLG ) b, similar to B. oleracea S-15. Maintainers expressed nine genotypes: the predominant genotype was homozygous for two S haplotypes, S-II ( SLG ) a and S-II ( SP11 ) b. One genotype was specific to restorers and four genotypes were specific to maintainers, whereas five genotypes were expressed in both restorers and maintainers. This suggests that there is no definitive correlation between the distribution of S genotypes and restorer-maintainers of self-incompatibility. The finding that restorers and maintainers express unique genotypes, and share some common genotypes, would be valuable for detecting the interaction of S haplotypes in inter- or intra-genomes as well as for developing markers-assisted selection in self-incompatibility hybrid breeding.  相似文献   

3.
Human plasma kallikrein (huPK) is a proteinase that participates in several biological processes. Although various inhibitors control its activity, members of the Kazal family have not been identified as huPK inhibitors. In order to map the enzyme active site, we synthesized peptides based on the reactive site (PRILSPV) of a natural Kazal-type inhibitor found in Cayman plasma, which is not an huPK inhibitor. As expected, the leader peptide (Abz-SAPRILSPVQ-EDDnp) was not cleaved by huPK. Modifications to the leader peptide at P'1, P'3 and P'4 positions were made according to the sequence of a phage display-generated recombinant Kazal inhibitor (PYTLKWV) that presented huPK-binding ability. Novel peptides were identified as substrates for huPK and related enzymes. Both porcine pancreatic and human plasma kallikreins cleaved peptides at Arg or Lys bonds, whereas human pancreatic kallikrein cleaved bonds involving Arg or a pair of hydrophobic amino acid residues. Peptide hydrolysis by pancreatic kallikrein was not significantly altered by amino acid replacements. The peptide Abz-SAPRILSWVQ-EDDnp was the best substrate and a competitive inhibitor for huPK, indicating that Trp residue at the P'4 position is important for enzyme action.  相似文献   

4.
The structural relationships of S-II, S-II', and S-I(b) stimulatory proteins of RNA polymerase II purified from Ehrlich ascites tumor cells were investigated. From analysis of the amino acid compositions and tryptic peptide maps of these proteins labeled with radioiodinated Bolton-Hunter reagent, it was concluded that S-I(b) is a part of S-II located at either the amino- or carboxyl-terminal and that only this region mainly contains radioiodinatable amino acid residues when labeled using 125I. On chymotryptic digestion, S-II was cleaved to 21- and 18-kDa fragments in the presence of DNA. The 21-kDa fragment was found to be sufficient for stimulation of RNA polymerase II. It was suggested that S-II' is formed by phosphorylation of S-II in the domain containing the 18-kDa fragment.  相似文献   

5.
Endo-polygalacturonase (PG; EC 3.2.1.15) was recovered from the cell walls of avocado mesocarp ( Persea americana Mill cv. Lula) tissue and purified by sequential ion exchange and gel permeation chromatography. Two isoforms (S-I and S-II) were recovered, exhibiting molecular masses of about 41 kD on size exclusion media and about 48 (S-I) and 46 (S-II) kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Both isoforms exhibited maximum activity at pH 6.0 against polygalacturonic acid (PGA) and hydrolyzed PGA of about 180 kDa to polymers of about 4 kDa. The catalytic activity of the 48-kDa isoform against PGA was slightly higher than that of the 46-kDa isoform. The purified PGs catalyzed significant molecular mass downshifts in the polyuronides of pre-ripe avocados; however, the capacity of the enzymes to solubilize polyuronides from cell walls of pre-ripe fruit was limited.  相似文献   

6.
The large and varied multigene families of tissue kallikreins of rat and mouse are considered to selectively release as many bioactive peptides. In order to determine whether a similar family of enzymes is expressed in the organs of the guinea pig purification studies were performed. Tissue kallikreins from the submandibular gland, coagulating gland/prostate complex and the pancreas were separated by affinity chromatography on benzamidine-Sepharose. Amino-terminal sequences, the patterns of hydrolysis rates of a number of peptide p-nitroanilides, inactivation rates by active site-directed irreversible inhibitors, specific kininogenase activities and types of kinin released were used to probe the identity of the isolated enzymes. Guinea pig tissue kallikreins 1 and 2 have been reported previously. In the present study we have identified a third type, designated tissue kallikrein 1a because of its sequence similarity to kallikrein 1, which differs from the latter in the catalytic properties. The inferred occurrence of not more than two or three independent tissue kallikrein genes in the guinea pig contrasts with the varied family of enzymes expressed by the large number of such genes present in rats and mice. Expression in the guinea pig (and also in humans) of only a small number of tissue kallikreins makes specific processing of a multitude of biologically active peptides by such enzymes unlikely.  相似文献   

7.
Three series of N-3 alkyl substituted phenytoin, nirvanol, and barbiturate derivatives were synthesized and their inhibitor potencies were tested against recombinant CYP2C19 and CYP2C9 to probe the interaction of these ligands with the active sites of these enzymes. All compounds were found to be competitive inhibitors of both enzymes, although the degree of inhibitory potency was generally much greater towards CYP2C19. Inhibitor stereochemistry did not markedly influence K(i) towards CYP2C9, and log P adequately predicted inhibitor potency for this enzyme. In contrast, stereochemistry was an important factor in determining inhibitor potency towards CYP2C19. (S)-(+)-N-3-Benzylnirvanol and (R)-(-)-N-3-benzylphenobarbital emerged as the most potent and selective CYP2C19 inhibitors, with K(i) values of < 250nM--at least two orders of magnitude greater inhibitor potency than towards CYP2C9. Both inhibitors were metabolized preferentially at their C-5 phenyl substituents, indicating that CYP2C19 prefers to orient the N-3 substituents away from the active oxygen species. These features were incorporated into expanded CoMFA models for CYP2C9, and a new, validated CoMFA model for CYP2C19.  相似文献   

8.
Isocoumarins are potent mechanism-based heterocyclic irreversible inhibitors for a variety of serine proteases. Most serine proteases are inhibited by the general serine protease inhibitor 3,4-dichloroisocoumarin, whereas isocoumarins containing hydrophobic 7-acylamino groups are potent inhibitors for human leukocyte elastase and those containing 7-alkylureidogroups are inhibitors for procine pancreatic elastase. Isocoumarins containing basic side chains that resemble arginine are potent inhibitors for trypsin-like enzymes. A number of 3-alkoxy-4-chloro-7-guanidinoisocoumarins are potent inhibitors of bovine thrombin, human factor Xa, human factor XIa, human factor XIIa, human plasma kallikrein, porcine pancreatic kallikrein, and bovine trypsin. Another cathionic derivative, 4-chloro-3-(2-isothiureidoethoxy) isocoumarin, is less reactive toward many of these enzymes but is an extremely potent inhibitor of human plasma kallikrein. Several guanidinoisocoumarins have been tested as anticoagulants in human plasma and are effective at prolonging the prothrombin time. The mechanism of inhibition by this class of heterocyclic inactivators involves formation of an acyl enzyme by reaction of the active site serine with the isocoumarin carbonyl group. Isocoumarins with 7-amino or 7-guanidino groups will then decompose further to quinone imine methide intermediates, which react further with an active site residue (probably His-57) to form stable inhibited enzyme derivatives. Isocoumarins should be useful in further investigations of the physiological function of serine proteases and may have future therapeutic utility for the treatment of emphysema and coagulation disorders.  相似文献   

9.
The inhibitory constants of a series of synthetic N-carboxymethyl peptide inhibitors and the kinetic parameters (Km, kcat, and kcat/Km) of a series of model synthetic substrates were determined for the membrane-bound kidney metalloendopeptidase isolated from rabbit kidney and compared with those of bacterial thermolysin. The two enzymes show striking similarities with respect to structural requirements for substrate binding to the hydrophobic pocket at the S1' subsite of the active site. Both enzymes showed the highest reaction rates with substrates having leucine residues in this position while phenylalanine residues gave the lowest Km. The two enzymes were also inhibited by the same N-carboxymethyl peptide inhibitors. Although the mammalian enzyme was more susceptible to inhibition than its bacterial counterpart, structural variations in the inhibitor molecules affected the inhibitory constants for both enzymes in a similar manner. The two enzymes differed significantly, however, with respect to the effect of structural changes in the P1 and P2' positions of the substrate on the kinetic parameters of the reaction. The mammalian enzyme showed the highest reaction rates and specificity constants with substrates having the sequence -Phe-Gly-Phe- or -Phe-Ala-Phe- in positions P2, P1, and P1', respectively, while the sequence -Ala-Phe-Phe- was the most favored by the bacterial enzyme. The sequence -Gly-Gly-Phe- as found in enkephalins was not favored by either of the enzymes. Of the substrates having an aminobenzoate group in the P2' position, the mammalian enzyme favored those with the carboxyl group in the meta position while the bacterial enzyme favored those with the carboxyl group in the para position.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Seven groups of enkephalin-degrading enzymes and three groups of inhibitors active on these enzymes were separated from human plasma. The activity of the enzymes in hydrolyzing enkephalins and of the inhibitors in protecting enkephalins from proteolysis was measured. Results obtained with the endogenous inhibitors were compared to those relative to synthetic inhibitors. Data obtained indicate that all enkephalin-degrading enzymes found in plasma are significantly inhibited by the endogenous substances present in this tissue. The inhibition of the different classes of plasma enzymes by two of the three groups of endogenous substances is quite uniform, while one group of inhibitors appears specific to dipeptidylpeptidases. Results obtained are discussed in terms of the functional role of the inhibitory substances and of the possible pharmacological implication of their presence in human plasma.  相似文献   

11.
The synthesis and the inhibition potency of octahydro- and decahydrobenzo[c]quinolizin-3-one derivatives 3--7, as new non-steroidal selective inhibitors of human enzyme 5 alpha-reductase type 1, are reported. These compounds differ from the recently reported benzo[c]quinolizin-3-one inhibitors 2 by the presence of a fully or partially saturated C-ring. Compounds 3 and 4, with a double bond in the C-ring, were prepared by sequential rearrangement-annulation of isoxazolines 19 and 20. C-ring saturated compounds 5--7 were prepared by the Lewis acid-promoted Mannich-Michael tandem reaction of Danishefsky diene with the appropriate N-t-Boc iminium ion. Inhibition experiments were carried out on 5 alpha R-1 and 5 alpha R-2 expressed by CHO cells. Among the prepared compounds, octahydrobenzo[c]quinolizin-3-one 3, with a double bond at the position 6a--10a, was a potent and selective inhibitor of human 5 alpha R-1 (IC(50)=58 nM). The introduction of a tert-butylcarboxyamide at the position 8 (compound 4) was deleterious for the inhibition activity. The lack of the double bond in the C-ring reduced strongly the inhibition activity of compounds 5--7. The extended planarity of the most potent benzo[c]quinolizin-3-ones as well as favorable interactions of the C-ring unsaturation with the enzyme active site could account for the inhibition activity of these compounds.  相似文献   

12.
Based on 4-methylcoumarinyl-7-amide (Amc) arginine and a series N-alkyloxycarbonyl derivatives of phenylalanine, eleven Amc-derivatives of the type ROCO-Phe-Arg-Amc (R = alkyl) were synthesized; also were n-C3H7OCO-Leu-Arg-Amc and n-C3H7OCO-D-Phe-Arg-Amc synthesized. The enzymatic hydrolysis of these compounds under the action of tissue and plasma human kallikreins were studied. Tissue kallikrein from human urine hydrolyzed the compounds with R = n-propyl and n-butyl and n-C3H7OCO-Leu-Arg-Amc more readily than the known substrates Z-Phe-Arg-Amc and H-Pro-Phe-Arg-Amc. n-C3H7OCO-D-Phe-Arg-Amc is a weak inhibitor of this enzyme (Ki = 1.5.10(-4) M). Human plasma kallikrein hydrolyzed these novel substrates at a lower rate than Z-Phe-Arg-Amc.  相似文献   

13.
Three highly specific trypsin-like proteases from mouse submaxillary gland; nerve growth factor gamma subunit, beta nerve growth factor-endopeptidase, and epidermal growth factor-binding protein were tested for kallikrein activity. Low molecular weight kininogen was purified from mouse plasma and used as substrate for the three enzymes, and the kinin released by the enzymes was assayed by its ability to induce contraction of isolated rat uterus. All three enzymes were found to have significant kininogenase activity, and the most active enzyme, beta nerve growth factor-endopeptidase, has activity comparable to authentic kallikreins from other glandular sources. Essentially all of the kininogenase activity of submaxillary gland co-purifies with beta nerve growth factor-endopeptidase. Hence, beta nerve growth factor-endopeptidase appears to be identical with submaxillary gland kallikrein. Nerve growth factor gamma subunit, epidermal growth factor-binding protein, and beta nerve growth factor-endopeptidase have similar amino acid compositions and molecular weights, and are immunologically similar. Comparison of published partial primary sequence data confirms our conclusion that nerve growth factor gamma subunit, epidermal growth factor-binding protein, and kallikrein are very closely related enzymes. It is postulated that these three enzymes are members of a larger family of similar enzymes, all of which are involved in the processing of precursors to polypeptide hormones and growth factors.  相似文献   

14.
15.
Aromatase (CYP19) catalyzes three consecutive hydroxylation reactions converting C19 androgens to aromatic C18 estrogenic steroids. In this study, five human aromatase mutants (E302D, S478A, S478T, H480K, and H480Q) were prepared using a mammalian cell expression system. These mutants were evaluated by enzyme kinetic analysis, inhibitory profile studies, and reaction intermediate measurements. Three steroidal inhibitors [4-hydroxyandrostenedione (4-OHA), 7alpha-(4'-amino)phenylthio-1,4-androstandiene-3,17-dione (7alpha-APTADD), and bridge (2,19-methyleneoxy) androstene-3,17-dione (MDL 101003)], and four nonsteroidal inhibitors [aminoglutethimide (AG), CGS 20267, ICI D1033, and vorozole (R83842)] were used in the inhibitory profile studies. Our computer model of aromatase suggests that Glu302 is situated in the conserved I-helix region and located near the C-19 position of the steroid substrate. The model was supported by significant changes in kinetic parameters and a sevenfold increase in the Ki value of MDL 101,003 for the mutant E302D. As S478A was found to have kinetic properties similar to the wild-type enzyme and a much higher activity than S478T, Ser478 is thought to be situated in a rather restricted environment. There was a 10-fold increase in the Ki value of 7alpha-APTADD for S478T over that for the wild-type enzyme, suggesting that Ser478 might be near the C-7 position of the substrate. The reaction intermediate analysis revealed that significantly more 19-ol intermediate was generated by both S478A and S478T than the wild-type enzyme. These results would support a hypothesis that Ser478 plays a role in the first and second hydroxylation reactions. A positive charged amino acid is preferred at position 480 as shown by the fact that H480K has a significantly higher activity than H480Q. The Ki value of 4-OHA for H480Q was found to be three times that of the wild-type enzyme. In addition, significantly more 19-ol and 19-al intermediates were detected for both mutants H480K and H480Q than for the wild-type enzyme. Evaluation of the two mutations at His480 allows us to propose that this residue may participate in the aromatization reaction (the third step) by acting as a hydrogen bond donor for the C-3 keto group of the substrate. Furthermore, new products were generated when the enzyme was mutated at Ser478 and His480. Thus, these two residues must play an important role in the catalysis and are likely closer to the substrate binding site than previously predicted.  相似文献   

16.
Mouse alpha- and gamma-nerve growth factor (NGF) are glandular kallikreins that form a non-covalent complex (7S NGF) with beta-NGF. gamma-NGF is an active arginine-specific esteropeptidase; the alpha-subunit is catalytically inactive and has a zymogen-like conformation. Site-directed mutagenesis of alpha-NGF to alter the N-terminus and three residues in loop 7, a region that contributes to the catalytic center, restored substantial catalytic activity against N-benzoyl arginine-p-nitroanilide as substrate in two derivatives although they were not as active as recombinant gamma-NGF. Seven of the 15 derivatives that remained more alpha-like were able to substitute for native alpha-NGF in reforming 7S complexes; the other eight derivatives that were more gamma-like showed greatly reduced ability to do so. However, the most gamma-like alpha-NGF derivative could not substitute for native gamma-NGF in 7S complex formation. These findings suggest that the alpha-NGF backbone can be corrected to a functional enzyme by the addition of a normal N-terminal structure and two catalytic site substitutions and that the 7S complex requires one kallikrein subunit in the zymogen form and one in an active conformation.  相似文献   

17.
Twenty peptide-4-methylcoumarin amides (MCA) were newly synthesized and tested as possible substrates for alpha-thrombin, factor Xa, kallikreins, urokinase, and plasmin. These fluorogenic peptides contained arginine-MCA as the carboxyl-terminus. Release of 7-amino-4-methylcoumarin was determined fluorometrically. Of these peptides, the following were found to be specific substrates for individual enzymes: Boc-Val-Pro-Arg-MCA for alpha-thrombin, Boc-Ile-Glu-Gly-Arg-MCA, and Boc-Ser-Gly-Arg-MCA for factor Xa, Z-Phe-Arg-MCA for plasma kallikrein, Pro-Phe-Arg-MCA for pancreatic and urinary kallikreins, and glutaryl-Gly-Arg-MCA for urokinase. Moreover, these peptide-MCA substrates were resistant to plasmin.  相似文献   

18.
The coagulation cascade enzymes thrombin and factor Xa are known to have specificity pockets very similar to those of trypsin and plasmin. However, comparative molecular modeling analysis of the crystal structures of benzamidine–thrombin and benzamidine–trypsin, in conjunction with a docking analysis of 5‐amidinoindole and related inhibitors in both enzymes reveals subtle differences between the specificity sites of the two types of enzymes. Specifically, thrombin and factor Xa, which have an alanine residue at position 190, exhibit increased activities for the rigid and more bulky bicyclic derivatives of benzamidine (e.g. amidinobenzofuran, amidinothiophene and amidinoindole), because of additional hydrophobic and H‐bond interactions between the inhibitors and the specificity sites, whereas enzymes with a serine residue at position 190, like trypsin and plasmin, exhibit little difference in activity among the same set of compounds because of the orientational restriction imposed on the inhibitors by Ser190, which forms an additional H‐bond with the amidino group of the inhibitors. Enzymes of both groups show similar responses to the flexible aminobenzamidine since the smaller size and the rotatable anilino group of the inhibitor would allow the inhibitor to achieve favorable electrostatic interactions with both groups of enzymes. 5‐Amidinoindole is the most dramatic example of the rigid bicyclic type inhibitor. Based on our docking analysis, we propose that a selective H‐bond with the hydroxyl group of the catalytic Ser195 and the subtle differences in steric fit imposed by Ala/Ser at position 190 explain the high potency and selectivity of 5‐amidinoindole for thrombin and factor Xa. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Short peptidoglycan recognition protein (PGRP-S) is a member of the innate immunity system in mammals. PGRP-S from Camelus dromedarius (CPGRP-S) is found to be highly potent against bacterial infections. It is capable of binding to a wide range of pathogen-associated molecular patterns (PAMPs) including lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN). The heparin-like polysaccharides have also been observed in some bacteria such as the capsule of K5 Escherichia coli thus making them relevant for determining the nature of their interactions with CPGRP-S. The binding studies of CPGRP-S with heparin disaccharide in solution using surface plasmon resonance gave a value 3.3×10-7 M for the dissociation constant (Kd). The structure of the heparin bound CPGRP-S determined at 2.8Å resolution revealed the presence of a bound heparin molecule in the binding pocket of CPGRP-S. It was found anchored tightly to the protein with the help of several ionic and hydrogen bonded interactions. Three sulphate groups of heparin S1, S2 and S3 have been found to interact with residues, Arg-31, Lys-90, Thr- 97, Asn-99 Asn-140, Gln-150 and Arg-170 of CPGRP-S. The binding site includes two subsites, S-I and S-II with cleft-like structures. Heparin disaccharide is bound in subsite S-I. Previously determined structures of the complexes of CPGRP-S with LPS, LTA and PGN also showed that their glycan moieties were also held in subsite S-I indicating that heparin disaccharide also represents an important element for the recognition by CPGRP-S.  相似文献   

20.
Enzymes and inhibitors in leu-enkephalin in metabolism in human plasma   总被引:1,自引:0,他引:1  
The enzymes degrading leucine enkephalin in human plasma and the inhibitors active on these enzymes were studied by kinetic and chromatographic techniques. Data obtained evidence the existence of complex kinetics of leu-enkephalin hydrolysis and of formation of its hydrolysis byproducts. These appear to originate from the combined effect of further hydrolysis of the enkephalin's fragments after their release and of competition between the different enzymes present in plasma. Chromatographic separation of plasma proteolysis inhibitors indicates the existence of several pools of substances acting on all three enzyme groups that degrade leu-enkephalin. The partial specificity of these substances induces competition effects: consequently, the actual protection over leu-enkephalin is considerably lower that the total inhibitory activity. That notwithstanding, plasma inhibitors control enkephalin hydrolysis to a relevant extent, while they modify only slightly the ratio of hydrolysis between the different enzymes. This latter parameter—and specifically the large prevalence of aminopeptidases over dipeptidylaminopeptidases and dipeptidylcarboxypeptidases—appears controlled mainly by kinetic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号