首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The membrane-mobility agent 2-(2-methoxyethoxy)ethyl-cis-8-(2-octylcyclopropyl)octanoate (A2C) promotes fusion of rat, but not of human, erythrocytes. The difference in fusibility was shown to be correlated with membrane proteolysis, a process induced by Ca2+ in the rat erythrocytes or hemolysate-loaded ghosts, but not in the human cell. Membrane proteolysis is necessary but not sufficient for fusion. Fusion requires both Ca2+ and A2C [Kosower, N. S., Glaser, T. and Kosower, E. M. (1983) Proc. Natl Acad. Sci USA 80, 7542-7546]. Membrane proteolysis (Ca2+-dependent) and fusion (Ca2+ and A2C-dependent) requires a Ca2+-activated cytoplasmic thiol protease, as shown by the following observations. In intact rat erythrocytes, proteolysis and fusion are prevented by thiol alkylation and by inhibitors of Ca2+-dependent thiol proteases. Inhibitors to other proteases have no effect. Erythrocyte ghosts undergo proteolysis and fusion only when loaded with non-inhibited hemolysate, irrespective of membrane status (native or alkylated membrane). A partially purified cytosolic enzyme, identified as calpain I, promotes proteolysis in rat erythrocyte ghosts. A2C induces fusion only in such calpain-treated ghosts.  相似文献   

2.
Human erythrocyte UDPgalactose : 2-acetamido-2-deoxy-alpha-D-galactopyranosylpeptide galactose beta(1 lead to 3) transferase (Galactosyltransferase) has been characterized in terms of detergent and metal ion requirements. Michaelis constants for donor and acceptor substrates, inhibition constant for N-acetylgalactosamine, pH optimum and ionic strength effects. The assay thus optimized permits initial velocity measurements. Galactosyltransferase was shown to be membrane-bound by demonstrating its association with erythrocyte ghosts after high and low ionic strength treatments to remove weakly-associated proteins. In the absence of detergents, no activity was detectable in sealed ghosts and inside-out vesicles derived from erythrocyte membranes. Enzyme activation by detergents paralleled solubilization of membrane proteins. Both latency and solubilization studies indicated a substrate inaccessible active site for the enzyme in situ in the membrane. Galactosyltransferase activity in resealed ghosts, leaky ghosts and inside-out vesicles was resistant to the action of trypsin, chymotrypsin or pronase applied as single agents. A mixture of these proteases, however, strongly reduced the enzyme activity in inside-out vesicles and leaky ghosts, indicating a cytosolic orientation for the active site of the galactosyltransferase.  相似文献   

3.
Human erythrocyte UDPgalactose : 2-acetamido-2-deoxy-α-d-galactopyranosylpeptide galactose transferase (Galactosyltransferase) has been characterized in terms of detergent and metal ion requirements, Michaelis constants for donor and acceptor substrates, inhibition constant for N-acetylgalactosamine, pH optimum and ionic strength effects. The assay thus optimized permits initial velocity measurements. Galactosyltransferase was shown to be membrane-bound by demonstrating its association with erythrocyte ghosts after high and low ionic strength treatments to remove weakly-associated proteins. In the absence of detergents, no activity was detectable in sealed ghosts and inside-out vesicles derived from erythrocyte membranes. Enzyme activation by detergents paralleled solubilization of membrane proteins. Both latency and solubilization studies indicated a substrate-inaccessible active site for the enzyme in situ in the membrane. Galactosyltransferase activity in resealed ghosts, leaky ghosts and inside-out vesicles was resistant to the action of trypsin, chymotrypsin or pronase applied as single agents. A mixture of these proteases, however, strongly reduced the enzyme activity in inside-out vesicles and leaky ghosts, indicating a cytosolic orientation for the active site of the galactosyltransferase.  相似文献   

4.
1. Proteins in human erythrocyte membranes after red blood cells hemolysis revealed relatively high rate of self-digestion. 2. This indicates hemolysis as a critical moment for membrane proteases activation. 3. The detailed pattern of band 3 protein and spectrin degradation during ghosts preparation was more complicated and reflected both the changes in proteolytic susceptibility and extraction of some proteases. 4. Further extraction of membrane proteins by alkali stripping resulted in an increase in the self-digestion rate and decrease in the degradation rate of an exogenous substrate.  相似文献   

5.
M Gaczyńska 《Cytobios》1989,60(240):27-31
Ghost proteins immobilized in polyacrylamide gel after SDS-PAGE (first dimension) were degraded by endogenous membrane proteases. Fragments of the gels were submitted to SDS-PAGE (second dimension). Undigested proteins appeared on a diagonal, whereas products of proteolysis were evident below the substrates on electropherograms. The typical product patterns for spectrin, band 3, 4.1 and 4.2 proteins for human and bovine ghosts, are described.  相似文献   

6.
To determine the cause of the predilection of Babesia gibsoni for reticulocytes, the parasites were cultivated with various types of reconstituted erythrocyte ghosts, which were prepared by resealing erythrocyte ghosts together with variously treated erythrocyte lysate, in vitro. The level of parasitemia in the culture with reconstituted reticulocyte ghosts containing untreated reticulocyte lysate was significantly higher than that in the culture with reconstituted normocyte (mature erythrocyte) ghosts containing untreated normocyte lysate. The removal of mitochondria from reconstituted reticulocyte ghosts by filtration or centrifugation resulted in decreased of parasitemia in those cultures. In contrast, when mitochondria from reticulocytes were loaded into reconstituted normocyte ghosts, the parasitemia in the ghosts loaded mitochondria was increased to the same level as that in reconstituted reticulocyte ghosts. Furthermore, the parsitemia in the culture with reconstituted normocyte ghosts was proportional to the concentration of adenosine 5'-triphosphate in the ghosts. These results suggested that mitochondria of reticulocytes might enhance the multiplication of B. gibsoni through the generation of adenosine 5'-triphosphate within the cells.  相似文献   

7.
Electron spin resonance studies of erythrocyte membranes from patients with Huntington's disease and normal controls have been performed. Intact erythrocytes in each case were either untreated or subjected to proteolysis with the membrane impermeable enzymes, pronase, chymotrypsin, or trypsin. Membrane ghosts were prepared from untreated and protease-treated intact cells and spin labeled with protein- or lipid-specific spin probes. Comparison of the resulting electron spin resonance spectra confirmed our previous findings that in untreated samples the relevant parameter of the protein-specific spin label was increased in Huntington's disease (P < 0.02) suggesting an altered physical state of membrane proteins in this disorder, while no difference in erythrocyte lipid fluidity could be discerned. No significant difference in the physical state of membrane proteins in Huntington's disease and control as judged as spin labeling methods could be detemined in membrane ghosts prepared from protease-treated intact cells. These results, together with the known specificity of the proteases used in this study, suggest that a molecular defect in Huntington's disease erythrocytes is manifested in an exterior part of a membrane protein and supports our hypothesis that Huntington's disease is associated with a generalized cell membrane defect.  相似文献   

8.
Vitamin E and the Peroxidizability of Erythrocyte Membranes in Neonates   总被引:1,自引:0,他引:1  
We showed the increased susceptibility of neonatal biomembranes to oxidation by a kinetic analysis using an azo compound as a free-radical initiator and red blood cell (RBC) ghosts as a model membrane. When the RBC ghosts were oxidized, oxygen consumption was suppressed during the induction period in which membrane tocopherol was consumed at a constant rate, while increased oxygen uptake was observed after the tocopherol was exhausted. The total tocopherol content was similar in cord, maternal, and adult RBC ghosts, and there were no differences in the induction period (t/inh) among the three types of ghosts. While the oxygen uptake rate during the induction period (Rinh) was similar in cord and adult ghosts, the rate in the subsequent phase (Rp) was considerably faster in the cord ghosts. Fatty acid analysis in the membrane lipids showed that the active bisallylic hydrogen (active H) content was greater in cord ghosts than in adult ghosts. The active H content closely correlated with the Rp, but did not with the Rinh. The kinetic chain length (KCL), i.e., the ratio of the rate of propagation to that of initiation, was calculated from Rp and tocopherol consumption rate and KCL values were higher in cord ghosts than in adult ghosts. The faster Rp and the higher KCL of the cord ghosts were attributable to a greater active H content rather than to the tocopherol content.  相似文献   

9.
Human erythrocyte ghosts but was able to fuse only iso-human erythrocyte ghosts. Iso- and hypo-human erythrocyte ghosts were incubated with the proteolytic enzyme pronase under isotonic (iso-human erythrocyte ghosts) or hypotonic (hypo-human erythrocyte ghosts) conditions. Gel electrophoresis and electron microscope (freeze-etching) studies revealed that most of the erythrocyte membrane polypeptides were hydrolyzed by pronase under hypotonic conditions. Sendai virus readily agglutinated both pronase-digested iso-human erythrocyte ghosts and hypo-human erythrocyte ghosts were fused by the non-viral fusogenic agent glyceromonooleate. Freeze-etching studies revealed that during fusion the membranes of pronase-digested human erythrocyte ghosts are intermixed.  相似文献   

10.
Cytoskeletons, or 'Triton ghosts,' that contained mainly actin and myosin II were prepared from Dictyostelium discoideum amoebae by extraction with Triton X-100. The Triton ghosts contracted immediately upon addition of ATP. However, under high-salt conditions in the presence of ATP, they did not contract but released myosin II. Almost all of the applied myosin II became associated with ghosts when myosin-free Triton ghosts, prepared in this way, were incubated with purified actin and then with myosin II from Dictyostelium. Immunofluorescence microscopy demonstrated that the associated myosin was localized in the cortical actin layer of the ghosts. Furthermore, the ghosts reconstituted with purified myosin resumed ATP-dependent contraction. Skeletal muscle myosin could also restore contractility to ghosts from which myosin had been extracted. The amount of myosin II necessary for the contraction of the ghosts was calculated by two methods. Less than 10% of the myosin II in intact cells was necessary for the contraction. These results show that myosin II is responsible for the contraction of the Dictyostelium cytoskeleton.  相似文献   

11.
Two steps were required for ATP-dependent endocytosis in resealed erythrocyte ghosts. The first step required incubation with Mg-ATP at 37 °C, while the second step required primaquine and occurred at 0 or at 37 °C. These two steps were apparently also required for ATP-dependent endocytosis in erythrocytes. Endocytosis in white ghosts was similar to that in resealed ghosts and erythrocytes; the main difference was that the requirement of primaquine for the second step was less strict in white ghosts; in them, appreciable endocytosis took place with no added primaquine. Nonetheless, endocytosis in all three types of cells was stimulated by primaquine. The fluidity of the membranes as sensed by spin-labeled phosphatidylcholine was measured with and without primaquine. The fluidity of erythrocytes was increased by addition of primaquine or by conversion of the erythrocytes to white ghosts; the effect primaquine had on the fluidity of white ghosts was not detectable by the spin label. This suggested that a fluidizing or loosening of the membrane structure was required for the second step of ATP-dependent endocytosis, and that this loosening could be accomplished either by primaquine or by the process of preparing white ghosts.  相似文献   

12.
FITC-conjugated bovine serum albumin (FITC-BSA) molecules were quantitatively introduced into human erythrocyte ghosts by gradual hemolysis. When the ghosts and L cells were fused with UV-inactivated HVJ (Sendai virus), FITC-BSA was introduced into the cytoplasm of the L cells and fluorescence could be observed inthe cells with a fluorescence microscope. A mixture of L cells and ghosts was introduced into a fluorescence activated cell sorter (FACS), which could separate the mononuclear cells on the basis of their light-scattering profile. Four distinct populations of mononuclear cells were found by fluorescence analysis. These populations were separated from the cell mixture and found to correspond to cells fused with one, two and three ghosts and unfused cells. After separation, the cells from each population could form colonies in culture. As a given macromolecule can be quantitatively introduced into erythrocyte ghosts with the FITC-BSA, after fusion of these ghosts with cells, this sorting method is useful for separating cells containing a definite number of macromolecules.  相似文献   

13.
Phospholipid asymmetry in human erythrocyte ghosts   总被引:6,自引:0,他引:6  
Using phospholipase digestion and the fluorescent probe merocyanine 540 the maintenance of phospholipid asymmetry in the plasma membrane of human erythrocyte ghosts was investigated. Digestion with phospholipase A2 indicated that ghosts prepared in the presence of Mg++ as the only divalent cation retained the normal phospholipid asymmetry characteristic of intact erythrocytes. These ghosts, like normal erythrocytes, also failed to stain with merocyanine 540. However, the presence of as little as 5-10 microM Ca++ during ghost preparation resulted in ghosts in which lipid asymmetry had been abolished, as indicated by phospholipase digestion. Moreover, these ghosts stained with merocyanine 540. In contrast to ghosts, intact erythrocytes treated with ionophore required millimolar levels of Ca++ ions to disrupt membrane lipid asymmetry. To discover the reason for this difference in behavior between ghosts and intact cells, ghosts were prepared from preswollen cells using only small volumes of buffer for lysis. These experiments demonstrated that as the cellular contents of erythrocytes are diluted, the asymmetric arrangement of phospholipids becomes more sensitive to disruption by Ca++.  相似文献   

14.
Mutants of Escherichia coli tolerant to the ghosts of T-even phages (T2, T4, and T6) have been isolated from a strain supersensitive to T6 phage. First, T6 supersensitive mutants were isolated from mutagenized E. coli W2252 by replica plating to T6 phage-overlaid agar. One of them, strain NM101, was mutagenized again, grown, and then plated with a high multiplicity of T4 and T6 ghosts. Surviving cells were checked for tolerance to ghosts and adsorption of phages. One such ghost-tolerant mutant, strain GT29, was tolerant to ghosts of both T4 and T6 phages and sensitive to T2 ghosts. This mutant was also sensitive to ethylenediaminetetraacetic acid and penicillin G and intermediately sensitive to acriflavine, sodium dodecyl sulfate, sodium deoxycholate, actinomycin D, and lysozyme. Another mutant, strain GT62, was tolerant not only to T4 and T6 ghosts but also to T2 ghosts. It was sensitive to sodium dodecyl sulfate, sodium deoxycholate, penicillin G, acridine orange, actinomycin D, phenethyl alcohol, and novobiocin and intermediately sensitive to acriflavine and lysozyme. Spontaneous revertants of strain GT62 were isolated with a frequency of 2.7 X 10(-9). It is suggested that ghosts attack host bacteria indirectly through the cell surface by a mechanism similar to the transmission hypothesis that was originally adopted by Nomura (1967) to explain the mechanism of the action of colicins, and that our ghost-tolerant mutants presumably have defects in the cell surface.  相似文献   

15.
We have examined yeast cell ghost preparations to assess their value in obtaining plasma membrane proteins. Ghosts prepared by two methods involving stabilization of spheroplast envelopes had similar protein patterns by two-dimensional gel electrophoresis, and approximately 200 proteins were resolved. Spheroplasts were lactoperoxidase iodinated, and recovery of label in ghost preparations was greater than 60%. Spheroplasts appeared to be impermeable to the lactoperoxidase reagents as judged by an examination of two-dimensional gel electrophoretic patterns of ghost proteins that had been iodinated in spheroplasts or in unsealed ghosts. Spheroplasts were also impermeable to pronase proteases. Surface iodination and surface proteolysis allowed us to identify exposed ghost proteins; the major ghost glycoprotein was exposed in spheroplasts.Two-dimensional patterns of ghost proteins were not heavily contaminated (?25% of all proteins) by proteins present in soluble or promitochondrial fractions, and estimates of surface label and total cell protein recovery suggested that the ghost fraction represents a cell envelope enrichment of 8–10 fold over whole cells.Resolution of ghost proteins by two-dimensional gel electrophoresis appears to be a powerful aid toward identifying membrane proteins.  相似文献   

16.
Phlorizin at 2 X 10(-4) M inhibited Na+ and Rb+-activated ATPase activities in human red cell membranes by 43%. It inhibited the 86Rb uptake activity of erythrocytes by only 15%. 86Rb uptake into resealed ghosts was inhibited strongly when phlorizin and ATP were preloaded in the ghosts before resealing. Na,K-ATPase activity in the resealed ghosts was also inhibited in the presence of phlorizin inside but not outside the ghosts. These findings suggested that the phlorizin site is located inside the cell.  相似文献   

17.
The effect of incubation with insulin on insulin-receptor internalization by erythrocyte ghosts was investigated. The number of surface insulin receptors decreased by 30-40% after incubation of ghosts with insulin. Total insulin-receptor binding to solubilized ghosts was the same in insulin-incubated and control ghosts, whereas insulin binding to an internal vesicular fraction was substantially increased in insulin-incubated ghosts. Our findings suggest that erythrocyte-ghost insulin receptors are internalized to a vesicular compartment in response to incubation with insulin.  相似文献   

18.
The present study investigated preparation of bovine and porcine erythrocyte membranes from slaughterhouse blood as bio‐derived materials for delivery of dexamethasone‐sodium phosphate (DexP). The obtained biomembranes, i.e., ghosts were characterized in vitro in terms of morphological properties, loading parameters, and release behavior. For the last two, an UHPLC/–HESI–MS/MS based analytical procedure for absolute drug identification and quantification was developed. The results revealed that loading of DexP into both type of ghosts was directly proportional to the increase of drug concentration in the incubation medium, while incubation at 37°C had statistically significant effect on loaded amount of DexP (P < 0.05). The encapsulation efficiency was about fivefold higher in porcine compared to bovine ghosts. Insight into ghosts’ surface morphology by field emission‐scanning electron microscopy and atomic force microscopy confirmed that besides inevitable effects of osmosis, DexP inclusion itself had no observable additional effect on the morphology of the ghosts carriers. DexP release profiles were dependent on erythrocyte ghost type and amount of residual hemoglobin. However, sustained DexP release was achieved and shown over 3 days from porcine ghosts and 5 days from bovine erythrocyte ghosts. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1046–1055, 2016  相似文献   

19.
The interaction of erythrocyte ghosts and vesicles with chromatographed hemoglobin (Hb) A and Hb S was studied under various conditions. Although no binding of either Hb A or Hb S to inside-out vesicles was detected, under conditions of physiological ionic strength and pH, several properties of white membrane ghosts were effected by the presence of Hb. Addition of Hb A and Hb S (2 g/dl) to membrane ghosts in 6 mM MgATP, 150 mM NaCl, 10 mM Tris-HCl buffer, pH 7.4, was found to effect the echinocyte-discocyte transition, the extent of endocytosis, the volume, and the sealing of ghosts. Our observations suggest that the structure of membrane ghosts is influenced by cytosol proteins and that the environment of the red cell membrane plays an important role in the definition and the control of the membrane structure and function.  相似文献   

20.
Cells of Distyostelium discoideum representing four developmental stages were atuo-analysed for constituent monosaccharides and their compositions compared. Rhamnose, ribose, fucose, glucose, mannose, galactose, glucosamine, galactosamine and an unidentified sugar were recovered after hydrolysis in 2 M HCl for 2 h at 100°C. The relative proportions of the individual sugars were found to vary as a function of development. The largest variations were in the proportions contributed by galactose (from 2% of vegetative cell carbohydrate to 12% of the carbohydrate of fruiting bodies) and galactosamine (present in measurable quantity only in fruiting bodies).Plasma membrane “ghosts” were found to have the same monosccharide constituents as whole cells, but in different proportions. Mannose contributed over 24% of the total carbohydrate recovered from aggregating cell “ghosts”, but only 13% of carbohydrate recovered from “ghosts” prepared from vegetative cells. Galactose was the most abundant sugar recovered from vegetative “ghosts”, and was second only to mannose in aggregating “ghosts”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号