首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Phycomyces blakesleeanus wild-type is yellow, because it accumulates beta-carotene as the main carotenoid. A new carotenoid mutant of this fungus (A486) was isolated, after treatment with ethyl methane sulfonate (EMS), showing a whitish coloration. It accumulates large amounts of phytoene, small quantities of phytofluene, zeta-carotene and neurosporene, in decreasing amounts, and traces of beta-carotene. This phenotype indicates that it carries a leaky mutation affecting the enzyme phytoene dehydrogenase (EC 1.3.-.-), which is specified by the gene carB. Biochemical analysis of heterokaryons showed that mutant A486 complements two previously characterized carB mutants, C5 (carB10) and S442 (carB401). Sequence analysis of the carB gene genomic copy from these three strains revealed that they are all altered in the gene carB, giving information about the nature of the mutation in each carB mutant allele. The interallelic complementation provides evidence for the multimeric organization of the P. blakesleeanus phytoene dehydrogenase.  相似文献   

2.
3.
4.
5.
Phytoene synthase, phytoene dehydrogenase and carotene cyclase are three of the four enzyme activities needed to produce the acidic carotenoid neurosporaxanthin from the precursor geranylgeranyl pyrophosphate. In the filamentous fungus Fusarium fujikuroi, these three enzyme activities are encoded by two closely linked genes, carRA and carB, oriented in the same direction in the genome. The two genes are separated by 548 bp and code for two polypeptides of 612 and 541 amino acids, respectively, which are highly similar to the homologous proteins from other filamentous fungi. The ORF of carRA contains a 96-bp insertion that is absent in the other fungal homologues. The 32 additional residues are located in one of the two repeated domains responsible for the cyclase activity in the homologous fungal proteins. We have determined the function of carRA by gene disruption. The resulting mutants were albino and had lost the ability to produce phytoene, as expected from the simultaneous loss of phytoene synthase and carotene cyclase. In the same experiments, we also found transformants in which carB had been deleted. These mutants accumulate phytoene, confirming the function of the gene previously shown by gene-targeted mutagenesis. Expression of carRA and carB is strongly induced by light. Loss of carB or disruption of the carRA ORF led to enhanced expression of the carRA gene, suggesting the existence of a feedback regulatory mechanism.  相似文献   

6.
7.
The effect of nine ionic and nine non-ionic detergents, over a 0.3–3.0% (w/v) concentration range, on the activity of the enzymes which convert [2-14C]mevalonic acid into phytoene (7,8,11,12,7′,8′,11′,12′-ψ,ψ-carotene) and β-carotene (β,β-carotene) has been investigated with cell extracts of the C115 carS42 mad-107(?) (β-carotene-accumulating) strain of Phycomyces blakesleeanus. The enzymes catalyzing the conversion of mevalonic acid into phytoene in the C115 and the C5 carB10(?) (phytoene-accumulating) strains of Phycomyces could be released from membranes with high molarity Tris-HCl buffer, but the other carotenogenic enzymes required solubilization with detergents. Enzymic activity was retained with only two ionic detergents (Zwittergents 3–8 and 3–10), whilst Tweens 40 and 60 were the least inhibitory of the non-ionic surfactants. Both Tween 60 and Zwittergent 3–08 solubilized almost 50% of the enzymic activities for the conversion of phytoene to β-carotene, but the former preparation was significantly more stable on storage at ?70°C.  相似文献   

8.
In Myxococcus xanthus, all known carotenogenic genes are grouped together in the gene cluster carB-carA, except for one, crtIb (previously named carC). We show here that the first three genes of the carB operon, crtE, crtIa, and crtB, encode a geranygeranyl synthase, a phytoene desaturase, and a phytoene synthase, respectively. We demonstrate also that CrtIa possesses cis-to-trans isomerase activity, and is able to dehydrogenate phytoene, producing phytofluene and zeta-carotene. Unlike the majority of CrtI-type phytoene desaturases, CrtIa is unable to perform the four dehydrogenation events involved in converting phytoene to lycopene. CrtIb, on the other hand, is incapable of dehydrogenating phytoene and lacks cis-to-trans isomerase activity. However, the presence of both CrtIa and CrtIb allows the completion of the four desaturation steps that convert phytoene to lycopene. Therefore, we report a unique mechanism where two distinct CrtI-type desaturases cooperate to carry out the four desaturation steps required for lycopene formation. In addition, we show that there is a difference in substrate recognition between the two desaturases; CrtIa dehydrogenates carotenes in the cis conformation, whereas CrtIb dehydrogenates carotenes in the trans conformation.  相似文献   

9.
10.
11.
In vitro phytoene desaturation was investigated in two Phycomyces blakesleeanus mutants, C5 and S442, in which phytoene is accumulated instead of beta-carotene. For strain C5 but not strain S442 the phenotypic block of phytoene conversion could be overcome in vitro by the addition of Tween 40. Immunodetection of phytoene desaturase revealed in all cases the presence of a 40-kilodalton protein.  相似文献   

12.
A genomic library for Neisseria gonorrhoeae, constructed in the lambda cloning vector EMBL4, was screened for clones carrying arginine biosynthesis genes by complementation of Escherichia coli mutants. Clones complementing defects in argA, argB, argE, argG, argIF, carA, and carB were isolated. An E. coli defective in the acetylornithine deacetylase gene (argE) was complemented by the ornithine acetyltransferase gene (argJ) from N. gonorrhoeae. This heterologous complementation is reported for the first time. The carAB operon from E. coli hybridized with the gonococcal clones that carried carA or carB genes under conditions of high stringency, detecting 80% or greater similarity and showing that the nucleotide sequence of the carbamoylphosphate synthetase genes is very similar in these two organisms. Under these conditions for hybridization, the gonococcal clones carrying argB or argF genes did not hybridize with plasmids containing the corresponding E. coli gene. Cocomplementation experiments established gene linkage between carA and carB. Clones complementing a gene defect in argE were also able to complement an argA mutation. This suggests that the enzyme ornithine acetyltransferase from N. gonorrhoeae (encoded by argJ) may be able to complement both argA and argE mutations in E. coli. The arginine biosynthesis genes in N. gonorrhoeae appear to be scattered as in members of the family Pseudomonadaceae.  相似文献   

13.
J K Epp  S G Burgett  B E Schoner 《Gene》1987,53(1):73-83
Two plasmids (pOJ158 and pOJ159) containing DNA fragments from the carbomycin(Cb)-producing strain Streptomyces thermotolerans were identified in Streptomyces griseofuscus based on their ability to confer resistance to Cb. The Cb-resistance determinants on pOJ158 and pOJ159 were designated carA and carB, respectively. In S. griseofuscus, pOJ159 also confers resistance to spiramycin, rosaramicin, lincomycin, and vernamycin B, but not to tylosin; in Streptomyces lividans, pOJ159 additionally confers resistance to erythromycin and oleandomycin. The carB gene was localized on pOJ159 to a 1.25-kb region whose nucleotide sequence was determined. The sequence has a G + C content of 68% and contains the coding sequence for carB and portions of the 5' and 3' untranslated regions. A comparison of the amino acid sequence of the protein encoded by carB (as deduced from the nucleotide sequence) with the deduced amino acid sequence of the RNA methylase from Streptomyces erythraeus (encoded by ermE) revealed extensive homology, suggesting that carB also encodes an RNA methylase. The region 5' to the coding sequence does not contain a small ORF or regions of complementarity that are commonly associated with translationally regulated macrolide-lincosamide-streptogramin B resistance genes. The 3' untranslated region contains an inverted repeat sequence that potentially can form a stable RNA stem-loop structure with a calculated delta G of -70 kcal.  相似文献   

14.
We have previously isolated ineffective (Fix-) mutants of Rhizobium meliloti 104A14 requiring both arginine and uracil, and thus probably defective in carbamoylphosphate synthetase. We describe here the molecular and genetic analysis of the R. meliloti genes coding for carbamoylphosphate synthetase. Plasmids that complement the mutations were isolated from a R. meliloti gene bank. Restriction analysis of these plasmids indicated that complementation involved two unlinked regions of the R. meliloti chromosome, carA and carB. Genetic complementation between the plasmids and mutants demonstrated a single complementation group for carA, but two overlapping complementation groups for carB. The cloned R. meliloti genes hybridize to the corresponding E. coli carA and carB genes which encode the two subunits of carbamoylphosphate synthetase. Transposon Tn5 mutagenesis was used to localize the carA and carB genes on the cloned R. meliloti DNA. The cloned R. meliloti carA and carB genes were unable to complement E. coli carA or carB mutants alone or in combination. We speculate on the mechanism of the unusual pattern of genetic complementation at the R. meliloti carB locus.  相似文献   

15.
16.
1. The incorporation of [2-(14)C,(5R)-5-(3)H(1)]mevalonic acid and [2-(14)C,5-(3)H(2)]-mevalonic acid into phytoene, phytofluene, zeta-carotene, neurosporene, alpha-, beta-, gamma- and delta-carotene and lycopene by slices of fruit from two tomato mutants (delta and tangerine) and into alpha- and beta-carotene by bean leaves has been studied. 2. In the formation of phytoene, all the pro-R-hydrogen atoms from C-5 of mevalonic acid are retained whereas two pro-S-hydrogen atoms are lost. 3. Possible mechanisms for the condensation of two molecules of all-trans-geranylgeranyl pyrophosphate are outlined. 4. In each dehydrogenation step from phytoene to the fully unsaturated carotenes, one pro-R-hydrogen atom from C-5 of mevalonic acid is lost, indicating that the sequential dehydrogenation is stereospecific and in the same sense at each step.  相似文献   

17.
The role of carotenoid genes crtB and crtE has been functionally assigned. These genes were cloned from Erwinia into Escherichia coli or Agrobacterium tumefaciens. Their functions were elucidated by assaying early isoprenoid enzymes involved in phytoene formation. In vitro reactions from extracts of E. coli carrying the crtE gene or a complete carotenogenic gene cluster in which crtB was deleted showed an elevated conversion of farnesyl pyrophosphate (FPP) into geranylgeranyl pyrophosphate (GGPP). These results strongly indicate that the crtE gene encodes GGPP synthase. Introduction of the crtB gene into A. tumefaciens led to the conversion of GGPP into phytoene. This activity was absent in similar transformants with the crtE gene. Thus, the crtB gene probably encodes phytoene synthase, which was further supported by demonstration that phytoene accumulated in E. coli harboring both the crtB and crtE genes.  相似文献   

18.
19.
Stereochemistry of phytoene biosynthesis by isolated chloroplasts   总被引:2,自引:2,他引:0  
The incorporation of [2-(14)C,(5R)-5-(3)H(1)]MVA* and [2-(14)C,5-(3)H(2)]MVA into geranylgeraniol and phytoene by a preparation of ;non-aqueous' bean leaf chloroplasts has been studied. In the formation of phytoene from two molecules of geranylgeranyl pyrophosphate, the loss of hydrogen is stereospecific, the hydrogen atom lost from C-1 of each molecule of geranylgeranyl pyrophosphate being that which was originally the pro-S hydrogen atom from C-5 of mevalonate. All the pro-R hydrogen atoms from C-5 of mevalonate are retained. These results with a cell-free system confirm and extend the observations made in previous work with tomato slices.  相似文献   

20.
Current state of carotenoid biosynthesis in chloroplasts of eucaryotes   总被引:1,自引:0,他引:1  
The author discusses the current state of biochemical and genetic aspects of carotenoid biosynthesis in chloroplasts of algae and higher plants. Two ways of biosynthesis of key C5-isoperene units have been considered: 1) from acetate (C2) via mevalonic acid (C6) and its enzymatic conversions up to isopenthenyl diphosphate (C5) and 2) from glucose (C6) to formation of glyceraldehyde-3-phosphate (C3), to piruvate and their condensation via intermediate products up to isopenthenyl diphosphate (C5). Further biosynthesis of carotenoids from isopenthenyl diphosphate (C5) and dimethylallyl diphosphate (C5) in every organism is effected by the common scheme with further conservation of them up to geranyl diphosphate (C10), farnesyl diphosphate (C15), geranylgeranyl diphosphate (C20) and synthesis of phytoene (C40). All stages of phytoene desaturation up to formation of acyclic compounds are discussed. It is shown how in the process of subsequent oxidation and formation of hydroxy-, epoxy- and oxo-groups cyclic xanthophylls in chloroplasts of plants and algae are formed. Genetic control over biosynthesis of carotenoids is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号