首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly purified synthetic polychlorinated biphenyls substituted in the meta and para positions of both phenyl rings and at one ortho position were administered to male Wistar rats and the effects of these compounds on the microsomal drug-metabolising enzymes were evaluated. The in vivo effects of these compounds were determined by measuring the microsomal benzo[a]pyrene hydroxylase, dimethylaminoantipyrine N-demethylase and NADPH-cytochrome c reductase enzyme activities, the cytochrome b5 content and the relative peak intensities and spectral shifts of the reduced microsomal cytochrome P-450 : CO and ethylisocyanide binding difference spectra. The results were compared to the effects of administering phenobarbitone (PB), 3-methylcholanthrene (MC), 2,2',4,4'-tetrachlorobiphenyl (TCBP-II) (a PB-type inducer), 3,3',4,4'-tetrachlorobiphenyl (TCBP-I) (an MC-type inducer), PB plus MC (coadministered) and TCBP-II + TCBP-I (coadministered) to the test animals. At dosage levels of 30 and 150 mumol . kg-1, pretreatment with 2,3,3',4,4'-pentachlorobiphenyl (PCBP-II), 2,3',4,4',5-pentachlorobiphenyl (PCBP-I), 2,3,3',4,4',5-hexachlorobiphenyl (HCBP-II) and 2,3,3',4,4',5-hexachlorobiphenyl (HCBP-III) gave hepatic microsomes with enzymic and spectral properties consistent with a mixed pattern of induction. These polychlorinated biphenyl (PCB) isomers and congeners have been identified as either major or minor components of the commercial PCB mixtures and must contribute to their activity as MC-type inducers. The only PCB isomer in this series which was not a mixed type inducer was 2,3',4,4',5,5'-hexachlorobiphenyl (HCBP-I) which appeared to be a PB-type inducer. This contrasted to the mixed-type activity observed for 2,3',4,4',5,5'-hexabromobiphenyl which was isolated from a commercial polybrominated biphenyl (PBB) mixture.  相似文献   

2.
Administration of 3,3',4,4',5,5'-hexa-,3,3',4,4',5-penta-, and 2,3,3'4,4'5-hexa-chlorobiphenyl to immature male Wistar rats caused a thymic atrophy at high dose levels (1.25, 1.0, and 100 mumol/kg, respectively) and induced the hepatic cytochrome P-448 dependent monooxygenases (benzo[a]pyrene hydroxylase and ethoxyresorufin O-deethylase) at both high and low (0.25, 0.01, and 5 mumol/kg, respectively) doses. In contrast, 2,2',4,4',5,5'-hexachlorobiphenyl (HCBP) (300 mumol/kg) did not elicit any of these effects but elevated hepatic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) cytosolic receptor protein levels (threefold) as previously reported. The effects of hepatic receptor modulation by 2,2',4,4',5,5'-HCBP (300 mumol/kg) on the enzyme induction activities of 3,3'4,4',5-penta-, 3,3'4,4',5,5'-hexa-, and 2,3,3',4,4',5-hexa-chlorobiphenyl were dose-dependent; no interactive effects were observed at high (toxic) doses of these compounds, whereas apparent synergistically increased hepatic microsomal monooxygenase induction activities were noted at the lower submaximal induction doses. It was concluded that the increased responsiveness of the rats was due to elevated hepatic 2,3,7,8-TCDD receptor levels.  相似文献   

3.
All of the 13 possible polychlorinated biphenyl (PCB) isomers and congeners substituted at both para positions, at least two meta positions (but not necessarily on the same ring) and at two ortho positions have been synthesized and tested as rat hepatic microsomal enzyme inducers. The effects of these compounds were evaluated by measuring microsomal benzo-[a]pyrene (B[a]P) hydroxylase, 4-chlorobiphenyl (4-CBP) hydroxylase, 4-dimethylaminoantipyrine (DMAP) N-demethylase and NADPH-cytochrome c reductase activities, the cytochrome b5 content and the relative peak intensities and spectral shifts of the carbon monoxide(CO)- and ethylisocyanide(EIC)-difference spectra of ferrocytochrome P-450. The results were compared to the effects of administering phenobarbitone (PB), 3-methylcholanthrene (MC) and PB plus MC (coadministered). At dose levels of 150 mumol . kg-1, all of the PCB congeners, except 2,3',4,4',5',6-hexachlorobiphenyl, significantly enhanced hepatic microsomal cytochrome P-450 content, B[a] P hydroxylase and/or DMAP N-demethylase activities compared to the control (corn oil-treated) animals. Only 5 of these compounds, namely 2,3,4,4',5,6-hexa-, 2,2',3,3',4,4'-hexa-, 2,2',3',4,4',5-hexa-, 2,3,3',4,4',6-hexa-and 2,2',3,3',4,4',5-heptachlorobiphenyl, enhanced microsomal B[a]P hydroxylase, 4-CBP hydroxylase, NADPH-cytochrome c reductase and DMAP N-demethylase activities in a manner consistent with a mixed pattern of induction. The results suggest that PCB isomers and congeners substituted at both para positions, at least two meta positions, at two ortho positions and containing a 2,3-4-trichloro substitution pattern on one ring are mixed-type inducers; in addition the effects of 2,3,4,4',5,6-hexachlorobiphenyl were also consistent with a mixed pattern of induction.  相似文献   

4.
Several doses of Aroclor 1254 (polychlorinated biphenyl (PCB) mixture), Firemaster FF1 (polybrominated biphenyl (PBB) mixture), 2,2',4,4',5,5'-hexabromobiphenyl (HBB), 3,3',4,4',5,5'-hexachlorobiphenyl (HCB) and phenobarbital (PB) were administered to the marine fish sheepshead (Archosargus probatocephalus). The PCB and PBB mixtures caused induction of hepatic microsomal benzo[a]pyrene hydroxylase (AHH), 7-ethoxycoumarin O-deethylase (7-EC) and 7-ethoxyresorufin O-deethylase (ERF) activities, but not benzphetamine N-demethylase (BND), epoxide hydrolase (EH) or glutathione S-transferase (GSH-T) activities. This induction pattern is typical of that caused by polycyclic aromatic hydrocarbons (PAH) in fish and mammals or by tetrachlorodibenzo-p-dioxin (TCDD) in mammals. The extent of induction of AHH-activity and cytochrome P-450 content was higher when experiments were carried out in summer (water temperature 25 +/- 4 degrees C) than in winter (water temperature 11 +/- 3 degrees C). Firemaster FF1 (15 mg/kg) induced fish for at least 56 days in both summer and winter at which time the liver concentrations of PBB were in the ppm range. PCB concentrations in the ppm range have been found in fish from polluted lakes and seas, thus we may expect that environmental exposure to PCB is sufficient to induce hepatic mixed function oxidase (MFO) activities. The PCB isomer 3,3'4,4'5,5'-HCB, which induces the same spectrum of hepatic drug-metabolizing activities as TCDD and PAH in rats, had a broadly similar effect in the sheepshead. Another purified isomer, 2,2',4,4',5,5'-HBB, which induces the same enzymes as PB in rats, had no effect on drug-metabolizing activities in sheepshead. PB was also without effect on sheepshead hepatic drug-metabolizing enzymes, although a typical narcotic effect was produced in PB-treated sheepshead. Our studies provide further evidence that drug-metabolizing activities in fish liver are readily induced by chemicals like TCDD or PAH, but we fail to demonstrate induction after treatment of sheepshead with inducers of the PB type.  相似文献   

5.
The multistep synthesis and purification of 2,3,3',4,4',5-hexabromobiphenyl (HBBp) is described. Capillary gas chromatography revealed that HBBp comprises 0.05% of the industrial polybrominated biphenyl (PBB) mixture, fireMaster BP-6 (lot 7062). When administered to immature male Wistar rats, HBBp caused a dose-dependent increase in (a) the activity of benzo[a]pyrene (B[a]P) hydroxylase (AHH) and 4-chlorobiphenyl (4-CBP) hydroxylase and (b) the concentration of cytochrome P-450. Sodium dodecyl sulfate (SDS)-gel electrophoresis indicated that these increases in cytochrome P-450 and cytochrome P-450-dependent monooxygenase activities were accompanied by a dose-dependent intensification of a protein of relative molecular weight (Mr) 55 000 which comigrated with the major 3-methylcholanthrene(MC)-inducible form of cytochrome P-450 (i.e., cytochrome P-448). Like MC, but in contrast to phenobarbitone (PB), HBBp competitively displaced 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin ([3H]-TCDD) from the cytosolic protein thought to be the receptor for cytochrome P-448 induction. The results indicate that HBBp is a potent inducer of cytochrome P-448 and as such is the third MC-type inducer identified in fireMaster BP-6.  相似文献   

6.
The purpose of this study was to explore the influence of different polychlorinated biphenyls (PCBs) upon the release of oleic and palmitic acid from the intracellular lipids, which were previously labeled with [3H]oleic or [3H]palmitic acid, respectively. Studies have been realized with Aroclor 1248 (a commercial PCB mixture with 48% chlorine by weight), and two pure PCB congeners: 3,3',4, 4'-tetrachlorobiphenyl (a non-ortho-substituted planar congener) and 2,2',4,4',5,5'-hexachlorobiphenyl (a di-ortho-substituted nonplanar congener). The treatment of cells with Aroclor 1248 increased [3H]oleic acid release in a concentration-dependent manner. Our results showed that only the di-ortho-substituted congener which prefers a nonplanar configuration stimulated the release of [3H]oleic acid from the intracellular phospholipids to the culture medium, while the exposure of cell cultures to the chosen non-ortho-substituted coplanar congener did not alter the release of [3H]oleic acid to the culture medium. Finally, none of the PCBs studied could increase the release of [3H]palmitic acid from the intracellular stores significantly. The possibility that these differential alterations in the fatty acid release affect cell function during PCB exposure should therefore be postulated.  相似文献   

7.
1. The catalytic activities of cytochromes P-450IA1 and P-450IIB1 in control and Aroclor 1254 treated rats and pigeons (1 mmol/kg) were assessed using [14C]4-chloro- and [14C]2,2',5,5'-tetrachlorobiphenyl as substrates. Treatment of rats resulted in increases of the total amount of chloroform-extractable metabolites of [14C]4-chlorobiphenyl from 37.2 (control) to 199.4 and 221.6 nmol/hr per mg microsomal protein at 48 and 120 hr post treatment. The portion of [14C]4-chloro-3',4'-dihydroxybiphenyl (M4) and of a second unidentified dihydroxylated metabolite (M3) increased during these incubations from 13.7% for controls to 53.5% at 48 hr and 69.12% at 120 hr post treatment. 2. [14C]4-chloro-3'-hydroxybiphenyl (M1) and [14C]4-chloro-4'-hydroxybiphenyl (M2) were the major metabolites formed by pigeon hepatic microsomes; however, the amounts formed were 38.7- and 29.3-fold less, respectively, than in untreated rats. Treatment of pigeons with Aroclor 1254 increased the metabolite formation from 1.0 (control) to 13.6 and 22.4 nmol/hr per mg microsomal protein at 48 hr and 120 hr post treatment respectively; however, only small amounts of metabolites M3 (0.5 nmol/hr per mg protein) and M4 (2.0 nmol/hr per mg protein) were detected. 3. Treatment of rats with Aroclor 1254 resulted in an approximately two-fold increase in the rate of metabolism of [14C]2,2',5,5'-tetrachlorobiphenyl, and the ratio of 3- to 4-hydroxylation increased from 0.45 (control) to 0.6 and 0.8 at 48 hr and 120 hr post treatment respectively. The rate of metabolism of [14C]2,2',5,5'-tetrachlorobiphenyl by control and Aroclor 1254 treated pigeons was up to 23-fold lower than in rats and there was no evidence for the formation of the diol metabolite M3. However, as with rats, the ratio of meta- to para-carbon atom hydroxylation increased from 0.58 (controls) to 0.72 at 120 hr post treatment. 4. From the evidence presented, it is suggested that cytochromes P-450IA1 and P-450IIB1 may not metabolize PCB-congeneric substrates via an obligatory arene oxide intermediate.  相似文献   

8.
D Dietrich  W J Hickey    R Lamar 《Applied microbiology》1995,61(11):3904-3909
The white rot fungus Phanerochaete chrysosporium has demonstrated abilities to degrade many xenobiotic chemicals. In this study, the degradation of three model polychlorinated biphenyl (PCB) congeners (4,4'-dichlorobiphenyl [DCB], 3,3',4,4'-tetrachlorobiphenyl, and 2,2',4,4',5,5'-hexachlorobiphenyl) by P. chrysosporium in liquid culture was examined. After 28 days of incubation, 14C partitioning analysis indicated extensive degradation of DCB, including 11% mineralization. In contrast, there was negligible mineralization of the tetrachloro- or hexachlorobiphenyl and little evidence for any significant metabolism. With all of the model PCBs, a large fraction of the 14C was determined to be biomass bound. Results from a time course study done with 4,4'-[14C]DCB to examine 14C partitioning dynamics indicated that the biomass-bound 14C was likely attributable to nonspecific adsorption of the PCBs to the fungal hyphae. In a subsequent isotope trapping experiment, 4-chlorobenzoic acid and 4-chlorobenzyl alcohol were identified as metabolites produced from 4,4'-[14C]DCB. To the best of our knowledge, this the first report describing intermediates formed by P. chrysosporium during PCB degradation. Results from these experiments suggested similarities between P. chrysosporium and bacterial systems in terms of effects of congener chlorination degree and pattern on PCB metabolism and intermediates characteristic of the PCB degradation process.  相似文献   

9.
Mature male Sprague-Dawley rats received a single IP injection of either 2,2',4,4',5,5'-hexachlorobiphenyl (HCB), 3,3',4,4'-tetrachlorobiphenyl (TCB) (300 microm/kg) in corn oil (10 ml/kg) or the corn oil vehicle alone, and were killed four days later after having been fasted overnight. The vehicle control group consisted of rats which were allowed free access to feed as well as pair-fed animals. Lipid analyses were conducted on liver, hepatic microsomes and serum. TCB- (but no HCB-) treatment resulted in a statistically significant increase in total liver lipids and triglycerides. Liver phospholipids remained unchanged. Both PCBs increased the cholesterol and phospholipids content of the liver microsomal fraction. Serum lipids measured were not statistically different from control values. While HCB had little effect on the fatty acid composition of liver lipids, TCB caused an increase in C 18:1 (n-9) and a decrease in C 20:4 (n-6). Both PCBs increased C 18:0 in the hepatic microsomal fraction, but TCB also decreased C 16:0. Neither PCB altered the fatty acid composition of serum total lipids. These data are consistent with the concept that specific alterations in lipid metabolism are dependent on the structure of the PCB.  相似文献   

10.
The synthesis of all possible laterally-substituted polybrominated biphenyl (PBB) congeners containing two para bromines is described. Using enzymic, electrophoretic and ligand-binding assays that distinguish between phenobarbitone(PB)- and 3-methylcholanthrene(MC)-type inducers, the synthetic PBBs were evaluated as inducers of liver microsomal drug-metabolizing enzymes in the immature male Wistar rat. 4,4'-Dibromobiphenyl resembled PB in its mode of induction whereas all the meta-brominated derivatives of 4,4'-dibromobiphenyl, namely 3,4,4'-tri, 3,4,4',5-tetra-, 3,3', 4,4'-tetra-, 3,3',4,4',5-penta- and 3,3',4,4',5,5'-hexabromobiphenyl, resembled MC in their mode of induction. The results obtained with 3,4,4'-tribromobiphenyl demonstrate that, in contrast to the polychlorinated biphenyls (PCBs), a single meta halogen substituent is sufficient to abolish the PB-type characteristics of 4,4'-dibromobiphenyl and convert it to a strictly MC-type inducer. PBBs which induce AHH activity must be substituted at both para positions and at one, two, three or four meta positions. Ortho-substitution of PBBs which contain only lateral bromine groups may also give compounds which are aryl hydrocarbon hydroxylase (AHH) inducers. One of the MC-type PBBs, namely 3,3',4,4'-tetrabromobiphenyl, which has been tentatively identified in the commercial PBB mixture, fireMaster BP-6, was at least 50 times more potent as an inducer of AHH activity than the commercial PBB mixture. The induction of AHH by 3,3',4,4'-tetrabromobiphenyl was accompanied by a dose-dependent decrease in both thymus and spleen weights. The thymus and/or spleen weights were decreased in rats treated with the other MC-type PBBs which further supports the correlation between the toxicity of the PBBs and their ability to induce AHH.  相似文献   

11.
Polychlorinated biphenyls (PCBs) elicit a spectrum of biochemical and toxic effects in exposed animals. In the present study, we assessed the effect of PCB structure, using four symmetrically-substituted PCBs, on cytochrome P450 (CYP)-mediated methoxy-, ethoxy- and benzyloxyresorufin O-dealkylase (MROD, EROD and BROD, respectively) activities. We found that 2,2',4,4'-tetrachlorobiphenyl (PCB 47), 2,2',5,5'-tetrachlorobiphenyl (PCB 52), 2,2',6,6'-tetrachlorobiphenyl (PCB 54) and 3,3',4,4'-tetrachlorobiphenyl (PCB 77) inhibited alkoxyresorufin O-dealkylase activities in hepatic microsomes from 3-methylcholanthrene (MC) or phenobarbital (PB)-treated rats. Measurement of the in vitro inhibitory potencies of the tetrachlorobiphenyls revealed that MROD, EROD and BROD activities were differentially inhibited and the degree of inhibition was determined by the chlorination pattern of the PCB. PCB 77 was more potent than PCB 47 or PCB 52 at inhibiting MROD and EROD activities in hepatic microsomes from MC-treated rats, while no inhibition of either activity was observed with PCB 54. In contrast, BROD activity measured in hepatic microsomes from PB-treated rats was inhibited by PCB 47, PCB 52 and PCB 54 but not by PCB 77. The mode of inhibition for each activity was also evaluated statistically. Inhibition of the alkoxyresorufin O-dealkylase activities could not be discerned in hepatic microsomes from corn oil-treated rats because the activities were inherently too low. No evidence for mechanism-based inhibition of MROD, EROD or BROD activities or an effect via CYP reductase was found. The results demonstrate that relatively coplanar PCBs such as PCB 77 preferentially inhibit EROD and MROD activities, whereas noncoplanar PCBs such as PCB 54 preferentially inhibit BROD activity.  相似文献   

12.
The lethality and 7-ethoxyresorufin O-deethylase (EROD)-inducing potency of some individual polycyclic aromatic hydrocarbons (PAHs) and coplanar polychlorinated biphenyls (PCBs) in chick embryos were measured in order to compare the mechanisms of action of these compounds. In previous studies it was found that coplanar PCBs and certain PAHs have a high embryolethality in the chicken and that they induce embryonic EROD activity. Although the most potent PAHs were almost as embryolethal as the PCBs when injected into hens' eggs 72 h prior to measurement, they were considerably less potent EROD inducers. In the present study, three coplanar PCBs (3,3',4,4'-tetrachlorobiphenyl (TCB), 3,3',4,4',5-pentachlorobiphenyl (PeCB) and 3,3',4,4',5,5'-hexachlorobiphenyl (HCB)) and four of the most toxic PAHs (benzo[a]anthracene (BaA), benzo[k]fluoranthene (BkF), indeno[1,2,3-cd]pyrene (IP) and dibenzo[a, h]-anthracene (DBahA] were administered to chick embryos in different ways, including co-administration. Additive embryolethality was found when BkF and PeCB were co-administered as well as when BaA and DBahA were given simultaneously. The PAHs were more effective as EROD inducers when injected on day 9 (24 h prior to measurement) than when injected on day 7 (72 h prior to measurement). The opposite was found for PeCB and HCB, whereas no difference in potency was noted when comparing TCB injected 24 and 72 h before EROD determination. These substance-related differences were probably due, at least partly, to differences in biotransformation rates. EROD activities found after treatment with high doses of BkF, IP, or DBahA on day 9 were similar to those measured after treatment with PeCB in doses high enough to give maximal induction. Co-administration of high doses of BkF and PeCB did not further increase the activity, indicating that the PAHs and coplanar PCBs induce EROD to a common maximal value. To decrease the influence of metabolization of the PAHs on their EROD-inducing potency, EROD was determined early in development (day 8) and soon after treatment (24 h) in one experiment. In that experiment, the PAHs proved to be only a few times less potent EROD inducers in relation to their embryolethalities compared with the PCBs. The results of the present study, a previously observed similarity in pathology between chick embryos treated with PAHs and embryos treated with coplanar PCBs, and the fact that the most toxic PAHs also are the most avid Ah receptor binders suggest that the coplanar PCBs and the PAHs largely exert their toxicity in chick embryos via an Ah receptor-mediated mechanism. The differences between the compounds in their EROD-inducing potency/embryolethality ratios could probably be explained by their different rates of biotransformation.  相似文献   

13.
This paper elucidates the effect of different polychlorinated biphenyls (PCBs) on the phospholipase D (PLD) activity in soluble and particulate fractions of rat renal proximal tubular culture cells. Treatment with Aroclor 1248 (a commercial PCB mixture) caused a marked increase in the activity of PLD in intact renal tubular cells. The PLD activity was increased by Aroclor 1248 in the particulate fraction while the enzyme activity was unaffected in the soluble fraction. This work also shows that PCB 153 (2,2',4,4',5,5'-hexachlorobiphenyl, a di-ortho-substituted nonplanar congener) can increase the activity of PLD only in the particulate fraction. The exposure of cell cultures to PCB 77 (3,3',4,4'-tetrachlorobiphenyl, a non-ortho-substituted planar congener) does not alter PLD activity. These results suggest that PCB effects are structure dependent. Therefore, in order to clarify the molecular mechanism of activation of PLD by PCBs, the contents of immunoreactive PLD were examined by immunoblot analysis. Renal tubular cells expressed a PLD protein of 120 kDa corresponding with the PLD1 mammalian isoform in both the particulate and the soluble fraction. Aroclor 1248, PCB 153, and PCB 77 do not induce changes in the levels of PLD protein. These data indicate that PCBs, particularly nonplanar congeners, increase PLD activity. Moreover, these changes could not be demonstrated in the enzyme content in rat renal tubular cell cultures.  相似文献   

14.
We measured rates of oxidative metabolism of two tetrachlorobiphenyl (TCB) congeners by hepatic microsomes of two marine mammal species, beluga whale and pilot whale, as related to content of selected cytochrome P450 (CYP) forms. Beluga liver microsomes oxidized 3,3',4,4'-TCB at rates averaging 21 and 5 pmol/min per mg for males and females, respectively, while pilot whale samples oxidized this congener at 0.3 pmol/min per mg or less. However, rates of 3,3',4,4'-TCB metabolism correlated with immunodetected CYP1A1 protein content in liver microsomes of both species. The CYP1A inhibitor alpha-naphthoflavone inhibited 3,3',4,4'-TCB metabolism by 40% in beluga, supporting a role for a cetacean CYP1A as a catalyst of this activity. Major metabolites of 3,3',4,4'-TCB generated by beluga liver microsomes were 4-OH-3,3',4',5-TCB and 5-OH-3,3',4,4'-TCB (98% of total), similar to metabolites formed by other species CYP1A1, and suggesting a 4,5-epoxide-TCB intermediate. Liver microsomes of both species metabolized 2,2',5,5'-TCB at rates of 0.2-1.5 pmol/min per mg. Both species also expressed microsomal proteins cross-reactive with antibodies raised against some mammalian CYP2Bs (rabbit; dog), but not others (rat; scup). Whether CYP2B homologues occur and function in cetaceans is uncertain. This study demonstrates that PCBs are metabolized to aqueous-soluble products by cetacean liver enzymes, and that in beluga, rates of metabolism of 3,3',4,4'-TCB are substantially greater than those of 2,2',5,5'-TCB. These directly measured rates generally support the view that PCB metabolism plays a role in shaping the distribution patterns of PCB residues found in cetacean tissue.  相似文献   

15.
A number of highly purified polychlorinated biphenyl (PCB) isomers and congeners were synthesized and administered to male Wistar rats at dosage levels of 30 and 150 μmol · kg−1. The effects of this in vivo treatment on the drug-metabolizing enzymes were determined by measuring the microsomal benzo[a]pyrene (B[a]P) hydroxylase, dimethylaminoantipyrine (DMAP) N-demethylase and NADPH-cytochrome c reductase enzyme activities, the cytochrome b5 content and the relative peak intensities and spectral shifts of the reduced microsomal cytochrome P-450: CO and ethylisocyanide (EIC) binding difference spectra. The results were compared to the effects of administering phenobarbitone (PB), 3-methylcholanthrene (MC) and PB plus MC (coadministered) to the test animals. The synthetic PCB congeners used in this study included 3,4,4′,5-tetrachlorobiphenyl (TCBP-1), 2,3′,4,4′-tetrachlorobiphenyl (TCBP-2), 2,3′,4,4′,5′-pentachlorobiphenyl (PCBP-1), 2,3,4,4′,5-pentachlorobiphenyl (PCBP-2), 2,3,3′,4,4′,5-hexachlorobiphenyl (HCBP-1), 2,3,3′,4′,5,6-hexachlorobiphenyl (HCBP-2), 2,3,3′,5,5′,6-hexachlorobiphenyl (HCBP-3), 2,2′,3,5,5′,6-hexachlorobiphenyl (HCBP-4) and 2,3,3′,4,5,5′-hexachlorobiphenyl (HCBP-5) and were used to reappraise the structure-activity rules for PCBs as hepatic microsomal enzyme inducers. The results suggested that (a) PCBs which induce MC or mixed-type activity must be substituted at both para positions, at least two meta positions but not necessarily on the same phenyl ring and can also contain one ortho chloro substituent; (b) due to the considerable structural diversity of the PB-type inducers the rules for induction of this activity by PCB congeners are not readily defined.  相似文献   

16.
The effects of 2,2',4,4',5,5'-hexachlorobiphenyl (2,4,5-HCB) or 3,3',4,4',5,5'-hexachlorobiphenyl (3,4,5-HCB) on hepatic ornithine decarboxylase (ODC) induction by dexamethasone were investigated. At one week after a single i.p. dose of corn oil or 2,4,5,-HCB and 4 h after administration of dexamethasone, rats exhibited 50- to 60-fold increases of ODC activity. However, rats that had received 3,4,5-HCB in place of 2,4,5-HCB exhibited only a 8-fold increase in ODC activity in response to dexamethasone administration. 2,4,5-HCB administration resulted in increased hepatic aryl hydrocarbon hydroxylase (AHH) activity. Administration of 3,4,5-HCB produced increased AHH activity and decreased N-demethylase activity. It is suggested that the ODC-inhibitory effects may have resulted from Ah-receptor-mediated events.  相似文献   

17.
We have investigated the metabolism of polychlorinated biphenyls and endogenous steroids by the major phenobarbital (PB)-inducible hepatic cytochromes P450 in dogs and rats, PBD-2 and PB-B, respectively. Previous results from our laboratory indicate that dog PBD-2 purified from microsomes of PB-treated animals is similar to rat PB-B with respect to structure and the regioselective metabolism of warfarin and androstenedione. The results also strongly suggest that PBD-2 is the P450 form responsible for metabolizing 2,2',4,4',5,5'-hexachlorobiphenyl (245-HCB) in liver microsomes from untreated dogs. In the present study, a cytochrome P450 with similar chromatographic behavior to that of PBD-2 has been purified from liver microsomes of untreated dogs. This protein is identical to PBD-2 based on (i) mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, (ii) reactivity with anti-PBD-2 IgG, (iii) amino-terminal sequence, and (iv) 245-HCB metabolite profile. Induction and antibody-inhibition data suggest that PBD-2 is responsible for the metabolism of 2,2',3,3',6,6'-hexachlorobiphenyl (236-HCB) in microsomes obtained from both untreated and PB-treated dogs. In contrast, metabolism of 4,4'-dichlorobiphenyl (4-DCB) by dog microsomes is poor, and does not appear to be catalyzed to a significant extent by PBD-2. Antibody-inhibition studies with intact microsomes corroborate previous results that androstenedione is metabolized by purified PBD-2 to the same major metabolite (16 beta-OH androstenedione) produced by rat PB-B. Dog PBD-2 metabolizes progesterone primarily to the 21-OH metabolite, while metabolism by rat PB-B leads to the formation of the 16 alpha-OH product. On the other hand, upon Ouchterlony double-immunodiffusion analysis, anti-PBD-2 IgG reacts strongly with PB-B but not PB-C, the major rat liver progesterone 21-hydroxylase. The data suggest that dog PBD-2 is a constitutive P450 important in the metabolism of various PCBs and endogenous steroids. Dog PBD-2 and rat PB-B appear to be similar enzymes, yet they differ in their regioselective metabolism of progesterone.  相似文献   

18.
The synthesis and purification of a component of fireMaster BP-6 and fireMaster FF-1, 2,3′,4,4′,5-pentabromobiphenyl, is described. The compound was found to be a potent inducer of liver microsomal drug-metabolizing enzymes in the rat, enhancing those enzymic activities induced by both phenobarbitone and 3-methylcholanthrene (i.e. cytochromes P-450 and P-448). The pentabromobiphenyl enhanced the activities of benzo[a]pyrene hydroxylase, dimethylamino-antipyrine N-demethylase and NADPH-cytochrome c reductase. The hepatic cytochromes b5 and P-450 were increased and the Soret peak maximum of the latter was shifted to 448.5 nm. The relative peak intensities and spectral shifts for the ethylisocyanide-binding difference spectra confirmed the mixed induction characteristics of 2,3′,4,4′,5-pentabromobiphenyl.  相似文献   

19.
The metabolism of 3,3',4,4'-tetrachlorobiphenyl (TCB) has been studied in the chicken in ovo by analysis of bile from chick embryos. Four percent of the [14C]TCB dose injected into the air sac on day 13 of incubation was detected in the bile by day 19. An increase of more lipophilic TCB metabolites was observed by HPLC analysis after hydrolysis of the bile. TCB and three phenolic TCB metabolites were identified and quantified in the hydrolyzed bile: TCB (14 ng/gall bladder), 5-hydroxy-3,3',4,4'-tetrachlorobiphenyl (234 ng/gall bladder), 4-hydroxy-3,3',4',5-tetrachlorobiphenyl (45 ng/gall bladder) and 2-hydroxy-3,3',4,4'-tetrachlorobiphenyl (3 ng/gall bladder). The presence of two other TCB metabolites in the bile, a dihydroxy-tetrachlorobiphenyl and a dihydroxy-trichlorobiphenyl was also indicated. The method used in the present study is well suited for studies of metabolism in avian embryos in ovo. The three TCB metabolites identified all proved to be at least two orders of magnitude less toxic than TCB in a chick embryo test. These metabolites were also shown to bind with significantly lower affinity than TCB to the Ah receptor. TCB, 5-hydroxy-3,3',4,4'-tetrachlorobiphenyl, 4-hydroxy-3,3',4',5-tetrachlorobiphenyl and 2-hydroxy-3,3',4,4'-tetrachlorobiphenyl gave Kd values of 16, 33, 45 and 37 nM, respectively, in the Ah receptor test.  相似文献   

20.
When aromatic hydrocarbon (Ah)-responsive and -non-responsive strains of mice were pretreated with 3-methylcholanthrene (MC) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), vitamin C reduced the microsomal aryl hydrocarbon hydroxylase (AHH) activity. The AHH inhibitors 7,8-benzoflavone (7,8-BF) and 3-methylsulfonyl-3',4,4',5-tetrachlorobiphenyl (3-MSF-3',4,4',5-tetraCB) showed various inhibitory effects depending upon the types of microsomes, whereas vitamin C exhibited inhibition irrespective of the types of microsomes. 7,8-BF and 3-MSF-3',4,4',5-tetraCB as well as vitamin C suppressed the reverse mutation of the Salmonella typhimurium tester strains TA98 and TA100 induced by benzo[a]pyrene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号