共查询到20条相似文献,搜索用时 15 毫秒
1.
M Corbetta G L Shulman 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1998,353(1373):1353-1362
Functional anatomical studies indicate that a set of neural signals in parietal and frontal cortex mediates the covert allocation of attention to visual locations across a wide variety of visual tasks. This frontoparietal network includes areas, such as the frontal eye field and supplementary eye field. This anatomical overlap suggests that shifts of attention to visual locations of objects recruit areas involved in oculomotor programming and execution. Finally, the fronto-parietal network may be the source of spatial attentional modulations in the ventral visual system during object recognition or discrimination. 相似文献
2.
When we search for a target in a crowded visual scene, we often use the distinguishing features of the target, such as color or shape, to guide our attention and eye movements. To investigate the neural mechanisms of feature-based attention, we simultaneously recorded neural responses in the frontal eye field (FEF) and area V4 while monkeys performed a visual search task. The responses of cells in both areas were modulated by feature attention, independent of spatial attention, and the magnitude of response enhancement was inversely correlated with the number of saccades needed to find the target. However, an analysis of the latency of sensory and attentional influences on responses suggested that V4 provides bottom-up sensory information about stimulus features, whereas the FEF provides a top-down attentional bias toward target features that modulates sensory processing in V4 and that could be used to guide the eyes to a searched-for target. 相似文献
3.
The spatial extent of directed visual attention (DVA) was examined in a series of experiments using precuing in a suprathreshold luminance detection (reaction time) paradigm. Previous findings (Hughes, H. C. and Zimba, L. D. J. Exp. Psychol.; Human Percept Perf., 1985, 11, 409-430) indicated that, in an empty visual field, the effects of DVA were primarily manifest as a uniform elevation of response times to all probe targets in the hemifield contralateral to the observer's expectancy. The present experiments were designed to determine whether increased spatial selectivity could be found when luminous markers indicated the exact location of the expected visual target. To maintain equivalent states of adaptation in both hemifields, luminous markers were also present at the same location in the contralateral hemifield. In general, hemifield effects were again obtained, but with two notable exceptions. First, marking locations in the unattended hemifield produced a local increase (enhanced interference) in RTs above the level characteristic of other locations within that hemifield. Second, when multiple locations were indicated with identical luminous markers, graded costs were obtained in both hemifields. However, scaling the markers according to estimates of cortical magnification factor (M) substantially reduced the slope of these inhibitory gradients, and the results once again approached those characteristic of an unstructured visual field. The findings suggest that when attention is directed to a marked location along the horizontal meridian, a transition in performance typically occurs at the vertical meridian. In addition, irrelevant stimuli some distance from the attentional focus interfere with detection times to unexpected targets that appear in the same vicinity. This interference may relate to an enhanced susceptibility to spatial interactions between the distractors and target away from the attentional focus. The interference appears to extend over a constant area of visual cortex, since it is reduced when the markers are M-scaled. 相似文献
4.
Proulx MJ 《PloS one》2010,5(12):e15293
Can objects or events ever capture one''s attention in a purely stimulus-driven manner? A recent review of the literature set out the criteria required to find stimulus-driven attentional capture independent of goal-directed influences, and concluded that no published study has satisfied that criteria. Here visual search experiments assessed whether an irrelevantly large object can capture attention. Capture of attention by this static visual feature was found. The results suggest that a large object can indeed capture attention in a stimulus-driven manner and independent of displaywide features of the task that might encourage a goal-directed bias for large items. It is concluded that these results are either consistent with the stimulus-driven criteria published previously or alternatively consistent with a flexible, goal-directed mechanism of saliency detection. 相似文献
5.
Baranov-Krylov IN Kanunikov IE Shuvaev VT Berlov DN Kavshbaia NA 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》2002,88(1):13-21
Cortical activation in visual discrimination tasks was estimated by measurement of the CNV (contingent negative variation) and N1-P3 components of visual ERPs in frontal, parietal, occipital and temporal leads recorded in 18 young healthy adults. In all investigated tasks, the maximal values of CNV and ERPa were observed in parietal regions. The estimation of cortical readiness state (CNV) is quite a useful procedure in the attention tasks because amplitude and stability of ERPs depend on preceding cortical excitability. The prevalence of parietal activation in visual attention tasks may be considered as the dominance of occipito-parietal way (stream) in human visual attention system. 相似文献
6.
Increased activity in human visual cortex during directed attention in the absence of visual stimulation 总被引:48,自引:0,他引:48
When subjects direct attention to a particular location in a visual scene, responses in the visual cortex to stimuli presented at that location are enhanced, and the suppressive influences of nearby distractors are reduced. What is the top-down signal that modulates the response to an attended versus an unattended stimulus? Here, we demonstrate increased activity related to attention in the absence of visual stimulation in extrastriate cortex when subjects covertly directed attention to a peripheral location expecting the onset of visual stimuli. Frontal and parietal areas showed a stronger signal increase during this expectation than did visual areas. The increased activity in visual cortex in the absence of visual stimulation may reflect a top-down bias of neural signals in favor of the attended location, which derives from a fronto-parietal network. 相似文献
7.
Rodriguez-Sanchez AJ Simine E Tsotsos JK 《International journal of neural systems》2007,17(4):275-288
Selective Tuning (ST) presents a framework for modeling attention and in this work we show how it performs in covert visual search tasks by comparing its performance to human performance. Two implementations of ST have been developed. The Object Recognition Model recognizes and attends to simple objects formed by the conjunction of various features and the Motion Model recognizes and attends to motion patterns. The validity of the Object Recognition Model was first tested by successfully duplicating the results of Nagy and Sanchez. A second experiment was aimed at an evaluation of the model's performance against the observed continuum of search slopes for feature-conjunction searches of varying difficulty. The Motion Model was tested against two experiments dealing with searches in the visual motion domain. A simple odd-man-out search for counter-clockwise rotating octagons among identical clockwise rotating octagons produced linear increase in search time with the increase of set size. The second experiment was similar to one described by Thorton and Gilden. The results from both implementations agreed with the psychophysical data from the simulated experiments. We conclude that ST provides a valid explanatory mechanism for human covert visual search performance, an explanation going far beyond the conventional saliency map based explanations. 相似文献
8.
Spotting a prey or a predator is crucial in the natural environment and relies on the ability to extract quickly pertinent visual information. The experimental counterpart of this behavior is visual search (VS) where subjects have to identify a target amongst several distractors. In difficult VS tasks, it has been found that the reaction time (RT) is influenced by salience factors, such as the target-distractor similarity, and this finding is usually regarded as evidence for a guidance of attention by preattentive mechanisms. However, the use of RT measurements, a parameter which depends on multiple factors, allows only very indirect inferences about the underlying attentional mechanisms. The purpose of the present study was to determine the influence of salience factors on attentional guidance during VS, by measuring directly attentional allocation. We studied attention allocation by using a dual covert VS task in subjects who had 1) to detect a target amongst different items and 2) to report letters briefly flashed inside those items at different delays. As predicted, we showed that parallel processes guide attention towards the most relevant item by virtue of both goal-directed and stimulus-driven factors, and we demonstrated that this attentional selection is a prerequisite for target detection. In addition, we show that when the target is characterized by two features (conjunction VS), the goal-directed effects of both features are initially combined into a unique salience value, but at a later stage, grouping phenomena interact with the salience computation, and lead to the selection of a whole group of items. These results, in line with Guided Search Theory, show that efficient and rapid preattentive processes guide attention towards the most salient item, allowing to reduce the number of attentional shifts needed to find the target. 相似文献
9.
Antonino Raffone Narayanan Srinivasan Cees van Leeuwen 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1641)
Despite the acknowledged relationship between consciousness and attention, theories of the two have mostly been developed separately. Moreover, these theories have independently attempted to explain phenomena in which both are likely to interact, such as the attentional blink (AB) and working memory (WM) consolidation. Here, we make an effort to bridge the gap between, on the one hand, a theory of consciousness based on the notion of global workspace (GW) and, on the other, a synthesis of theories of visual attention. We offer a theory of attention and consciousness (TAC) that provides a unified neurocognitive account of several phenomena associated with visual search, AB and WM consolidation. TAC assumes multiple processing stages between early visual representation and conscious access, and extends the dynamics of the global neuronal workspace model to a visual attentional workspace (VAW). The VAW is controlled by executive routers, higher-order representations of executive operations in the GW, without the need for explicit saliency or priority maps. TAC leads to newly proposed mechanisms for illusory conjunctions, AB, inattentional blindness and WM capacity, and suggests neural correlates of phenomenal consciousness. Finally, the theory reconciles the all-or-none and graded perspectives on conscious representation. 相似文献
10.
11.
An interocular conflict arises when different images are presented to each eye at the same spatial location. The visual system resolves this conflict through binocular rivalry: observers consciously perceive spontaneous alternations between the two images. Visual attention is generally important for resolving competition between neural representations. However, given the seemingly spontaneous and automatic nature of binocular rivalry, the role of attention in resolving interocular competition remains unclear. Here we test whether visual attention is necessary to?produce rivalry. Using an EEG frequency-tagging method to track cortical representations of the conflicting images, we show that when attention was diverted away, rivalry stopped. The EEG data further suggested that the neural representations of the dichoptic images combined without attention. Thus, attention is necessary for dichoptic images to be engaged in sustained rivalry and may be generally required for resolving conflicting, potentially ambiguous input and giving a single interpretation access to consciousness. 相似文献
12.
Computational modelling of visual attention 总被引:3,自引:0,他引:3
Five important trends have emerged from recent work on computational models of focal visual attention that emphasize the bottom-up, image-based control of attentional deployment. First, the perceptual saliency of stimuli critically depends on the surrounding context. Second, a unique 'saliency map' that topographically encodes for stimulus conspicuity over the visual scene has proved to be an efficient and plausible bottom-up control strategy. Third, inhibition of return, the process by which the currently attended location is prevented from being attended again, is a crucial element of attentional deployment. Fourth, attention and eye movements tightly interplay, posing computational challenges with respect to the coordinate system used to control attention. And last, scene understanding and object recognition strongly constrain the selection of attended locations. Insights from these five key areas provide a framework for a computational and neurobiological understanding of visual attention. 相似文献
13.
Selective attention can be employed to a restricted region in space or to specific objects. Many properties of this attentional window or spotlight are not well understood. In the present study, we examined the question whether the putative shape of the attentional spotlight can be determined by endogenous cueing within a visual search paradigm. Participants searched for a target among distractors, which were arranged within a vertical or horizontal rectangle. The shape of this rectangle was cued endogenously in a valid or invalid way. Response times (RTs) to correct identification of target orientation were recorded. In Experiment 1, the difference between valid and invalid RTs demonstrated that cueing resulted in elongated attentional areas. This was true only for a group of experienced psychophysical participants, whereas a group of inexperienced participants were not able to use cueing in this way. In Experiment 2, the line motion illusion was used to examine the spatial properties of the attended area. The results confirmed for both experienced and inexperienced participants that attention was confined to the cued elongated area only. We present converging evidence for an attentional spotlight whose shape can be adjusted flexibly by appropriate endogenous cueing. 相似文献
14.
This special feature issue is devoted to attention and visual search. Attention is a central topic in psychology and visual search is both a versatile paradigm for the study of visual attention and a topic of study in itself. Visual search depends on sensory, perceptual, and cognitive processes. As a result, the search paradigm has been used to investigate a diverse range of phenomena. Manipulating the search task can vary the demands on attention. In turn, attention modulates visual search by selecting and limiting the information available at various levels of processing. Focusing on the intersection of attention and search provides a relatively structured window into the wide world of attentional phenomena. In particular, the effects of divided attention are illustrated by the effects of set size (the number of stimuli in a display) and the effects of selective attention are illustrated by cueing subsets of stimuli within the display. These two phenomena provide the starting point for the articles in this special issue. The articles are organized into four general topics to help structure the issues of attention and search. 相似文献
15.
Can the brain attend to more than a single location at one time? In this issue of Neuron, McMains and Somers report psychophysical and fMRI evidence showing that subjects can attend to two separate locations concurrently and that divided spatial attention leads to separate zones of attentional enhancement in early visual cortex. 相似文献
16.
The dark side of visual attention 总被引:5,自引:0,他引:5
The limited capacity of neural processing restricts the number of objects and locations that can be attended to. Selected events are readily enhanced: the bright side of attention. However, such focal processing comes at a cost, namely, functional blindness for unattended events: the dark side of visual attention. Recent work has advanced our understanding of the neural mechanisms that facilitate visual processing, as well as the neural correlates of unattended, unconscious visual events. Also, new results have revealed how attentional deployment is optimized by non-visual factors such as behavioral set, past experience, and emotional salience. 相似文献
17.
To what extent are the left and right visual hemifields spatially coded in the dorsal frontoparietal attention network? In many experiments with neglect patients, the left hemisphere shows a contralateral hemifield preference, whereas the right hemisphere represents both hemifields. This pattern of spatial coding is often used to explain the right-hemispheric dominance of lesions causing hemispatial neglect. However, pathophysiological mechanisms of hemispatial neglect are controversial because recent experiments on healthy subjects produced conflicting results regarding the spatial coding of visual hemifields. We used an fMRI paradigm that allowed us to distinguish two attentional subprocesses during a visual search task. Either within the left or right hemifield subjects first attended to stationary locations (spatial orienting) and then shifted their attentional focus to search for a target line. Dynamic changes in spatial coding of the left and right hemifields were observed within subregions of the dorsal front-parietal network: During stationary spatial orienting, we found the well-known spatial pattern described above, with a bilateral hemifield representation in the right hemisphere and a contralateral preference in the left hemisphere. However, during search, the right hemisphere had a contralateral preference and the left hemisphere equally represented both hemifields. This finding leads to novel perspectives regarding models of visuospatial attention and hemispatial neglect. 相似文献
18.
Past research has shown, separately, that endogenous location cues and high perceptual load search tasks increase the specificity of attentional deployment to task-relevant regions of the visual field, while complex task-irrelevant backgrounds greatly resembling task-relevant stimuli reduce it. Here, we investigated in the same study whether the perceptual load created by an endogenously cued set of task-relevant stimuli determines whether a surrounding complex background of similar task-irrelevant stimuli would interfere with search. Our results show that high perceptual load protects against interference from a complex background of similar but task-irrelevant stimuli, situated just beyond the boundaries of the task-relevant set. Furthermore, our findings demonstrate that search characteristics do not change when the relevant set is restricted attentionally to a smaller delineated area, even in the presence of a background. Finally, we found that the efficacy of endogenous location cueing is not dependent on the type of search task that occurs in the cued area. Our findings also reveal that alternative attention-directing strategies, such as guided search and signal detection, may be employed in such tasks in the absence of endogenous location cueing. 相似文献
19.
We investigated how visual attentional resources are allocated during reaching movements. Particularly, this study examined whether or not the direction of the reaching movement affected visual attention resource allocation. Participants held a stylus pen to reach their hand toward a target stimulus on a graphics tablet as quickly and accurately as possible. The direction of the hand movement was either from near to far space or the reverse. They observed visual stimuli and a cursor, which represented the hand position, on a perpendicularly positioned display, instead of directly seeing their hand movements. Regardless of the movement direction, the participants tended with quickly responding to the target stimuli located far from the start position as compared with those located near to the start position. These results led us to conclude that attentional resources were preferentially allocated in the areas far from the start position of reaching movements. These findings may provide important information for basic research on attention, but also contribute to a decrease of human errors in manipulation tasks performed with visual feedback on visual display terminals. 相似文献
20.
Goal-related activity in V4 during free viewing visual search. Evidence for a ventral stream visual salience map 总被引:6,自引:0,他引:6
Natural exploration of complex visual scenes depends on saccadic eye movements toward important locations. Saccade targeting is thought to be mediated by a retinotopic map that represents the locations of salient features. In this report, we demonstrate that extrastriate ventral area V4 contains a retinotopic salience map that guides exploratory eye movements during a naturalistic free viewing visual search task. In more than half of recorded cells, visually driven activity is enhanced prior to saccades that move the fovea toward the location previously occupied by a neuron's spatial receptive field. This correlation suggests that bottom-up processing in V4 influences the oculomotor planning process. Half of the neurons also exhibit top-down modulation of visual responses that depends on search target identity but not visual stimulation. Convergence of bottom-up and top-down processing streams in area V4 results in an adaptive, dynamic map of salience that guides oculomotor planning during natural vision. 相似文献