首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular polysaccharides (EPS) of a copper-sensitive (Cus) and a copper-resistant (Cur) Pseudomonas aeruginosa strain were investigated in terms of their production, chemical nature and response towards copper exposure. The extent of EPS synthesis by the resistant strain (4.78 mg mg–1 cell dry wt.) was considerably higher over its sensitive counterpart (2.78 mg mg–1 dry wt.). FTIR-spectroscopy and gas chromatography revealed that both the polymers were acidic in nature, containing alginate as the major component along with various neutral- and amino-sugars. Acid content in the Cur EPS (480.54 mg g–1) was greater than that in the Cus EPS (442.0 mg g–1). Presence of Cu2+ in the growth medium caused a dramatic stimulation (approximately 4-fold) in EPS synthesis by the Cur strain, while in a similar condition, the Cus failed to exhibit such response. The polymer of the resistant strain showed elevated Cu2+ binding (320 mg g–1 EPS) compared to that of the sensitive type (270 mg g–1). The overall observations show the potential of the Cur EPS for its deployment in metal bioremediation.  相似文献   

2.
Trichoderma reesei Rut-C30 is a highly derepressed mutant which synthesised active cellulases in culture media containing glucose and lactose as the only carbon sources. The maximum biomass, filter paper and specific filter paper activities for cell growth on 20 g glucose l–1 were 20 g dry cell wt l–1, 1.9 FPU ml–1 and 4.8 FPU mg–1 protein respectively, while on 40 g glucose l–1 were 25 g dry cell wt l–1, 4.5 FPU ml–1 and 6.2 FPU mg–1 protein, respectively. This strain had a higher specific filter paper activity (6.2 FPU mg–1 protein) than was produced by other T. reesei mutants (3.6 FPU mg–1 protein).  相似文献   

3.
Response of Rhizobium leguminosarum to nickel stress   总被引:2,自引:0,他引:2  
Rhizobium leguminosarum strain P-5 biovar viciae was sensitive to Ni2+ (MIC, 75 M) and showed concentration-dependent Ni2+ uptake in a wide concentration range (50–500 M). Ni2+ uptake up to a certain threshold limit also increased thiol content (66 nmol mg–1 protein), proline content (10.85 nmol mg–1 protein) and urease specific activity (500 nmol min–1 mg–1 protein) maximum corresponding to 100 M Ni2+ as the external concentration or 151 nmol Ni2+ mg–1 protein as the intracellular buildup. Proline synthesis was stimulated most even at much lower Ni2+ concentration (25 M). Higher intracellular Ni2+ load neither favoured thiol nor proline biosynthesis nor urease activity. Ni2+ requirement of urease was ascertained by using EDTA-grown cells and the addition of bicarbonate (NaHCO3, 100 mM) to the crude extract. The induction of thiol or proline by Ni2+, therefore, reflects the possible strategies adopted by bacterial cells to overcome the environmental stress.  相似文献   

4.
Summary The nitrogen fixation rate in a 4-year-old stand of the woody legumeLeucaena leucocephala (Lam.) de Wit. was estimated in the field at a rather dry site in Tanzania by use of an acetylene reduction technique. The diurnal mean value during April–May was 35 nmol C2H4 mg–1 (dry weight) nodules h–1, with a variation between 22±8 and 48±12 nmol C2H4 mg–1 (dry weight) nodules h–1 in early morning and at midday, respectively. The nodule biomass was determined by auger sampling to be 51±16 kg (dry weight) ha–1. Most of the nodules were found at the 10–30 cm soil depth level. A rough calculation of the amount of nitrogen fixed annually arrived at 110±30 kg ha–1. The results give strong support for the use ofL. leucocephala for soil enrichment in less humid areas of tropical Africa.  相似文献   

5.
Copper-sensitive (Cus) and copper-resistant (Cur) strains of Pseudomonas aeruginosa were characterized in terms of Cu2+ sensitivity, uptake and its compartmentalization in the possible cell sectors. Minimum inhibitory concentrations (MICs) of Cu2+ for the Cur strain (3.2 mM and 0.12 mM in enriched- and in minimal-medium, respectively) were almost 5-fold higher over that of its sensitive counterpart. While Cus strain accumulated Cu2+ to a maximum of 1.8 mol mg–1 protein, Cur strain increased it to 2.37 mol mg–1 protein. Both the strains also demonstrated energy- and pH-dependent Cu2+ uptake through the broad-substrate range divalent cation (Zn2+, Mg2+, Co2+) uptake system as well as through the system specific for Cu2+. Cell-fractionation study revealed that in Cur strain, periplasm and membrane are the main Cu2+ binding sites, whereas, in case of Cus strain, it is the cytoplasm. The overall observations indicate that the Cur strain restricted Cu2+ sequestration exterior to the cytoplasm as the possible strategy for Cu-resistance. The chemical nature of Cu2+ deposition in the respective strains was also ascertained by X-ray powder diffraction analysis.  相似文献   

6.
Heavy metal sequestration by a multimetal resistant Pseudomonas strain isolated from a uranium mine was characterized for its potential application in metal bioremediation. 16S rRNA gene analysis revealed phylogenetic relatedness of this isolate to Pseudomonas fluorescens. Metal uptake by this bacterium was monophasic, fast saturating, concentration and pH dependent with maximum loading of 1048 nmol Ni2+ followed by 845 nmol Co2+, 828 nmol Cu2+ and 700 nmol Cd2+ mg?1 dry wt. Preferential metal deposition in cell envelope was confirmed by TEM and cell fractionation. FTIR spectroscopy and EDX analysis revealed a major role of carboxyl and phosphoryl groups along with a possible ion exchange mechanism in cation binding. Binary system demonstrated selective metal binding affinity in the order of Cu2+ > Ni2+ > Co2+ > Cd2+. A comparison with similar metal uptake reports considering live bacteria strongly indicated the superiority of this strain in metal sequestration, which could be useful for developing efficient metal removal system.  相似文献   

7.
Copper plays a key role in regulating the expression of enzymes that promote biodegradation of contaminants in methanotrophic consortia (MC). Here, we utilized MC isolated from landfill cover to investigate cometabolic degradation of trichloroethylene (TCE) at nine different copper (Cu2+) concentrations. The results demonstrated that an increase in Cu2+ concentration from 0 to 15 μM altered the specific first‐order rate constant k1,TCE, the expression levels of methane monooxygenase (pmoA and mmoX) genes, and the specific activity of soluble methane monooxygenase (sMMO). High efficiency TCE degradation (95%) and the expression levels of methane monooxygenase (MMO) were detected at a Cu2+ concentration of 0.03 μM. Notably, sMMO‐specific activity ranged from 74.41 nmol/(mgcell h) in 15 μM Cu2+ to 654.99 nmol/(mgcell h) in 0.03 μM Cu2+, which contrasts with cultures of pure methanotrophs in which sMMO activity is depressed at high Cu2+ concentrations, indicating a special regulatory role for Cu2+ in MC. The results of MiSeq pyrosequencing indicated that higher Cu2+ concentrations stimulated the growth of methanotrophic microorganisms in MC. These findings have important implications for the elucidation of copper‐mediated regulatory mechanisms in MC.  相似文献   

8.
Penicillin G acylase (pac) gene was cloned into a stable asd + vector (pYA292) and expressed in Escherichia coli. This recombinant strain produced 1000 units penicillin G acylase g–1 cell dry wt, which is 23-fold more than that produced by parental Escherichia coli ATCC11105. This enzyme was purified to 16 units mg–1 protein by a novel two-step process.  相似文献   

9.
Exposure of the exopolysaccharide (EPS)-synthesizing cyanobacterium Nostoc spongiaeforme to Zn2+ (20 M) transformed the biomass into white debris. However, a few blue–green pin-heads emerged after 2 weeks in the same Zn2+-containing medium and formed less mucoid microcolonies (1–2 mm) relative to the protruding colonies (2–4 mm) of the parent strain on nutrient agar. One of such survivors (designated as Zn20) that was stable through 10 successive transfers in Zn2+-lacking medium has been adopted for further characterization. The parent strain retained almost 88% of the total EPS synthesized, the rest being released into the ambient medium, while for Zn20, the EPS retained approximated to 74%. Although the Zn2+-sensitivity of the mutant was comparable with that of the parent (LD50, 7 M), Zn2+ uptake was still 5-fold higher in the former (2 g mg–1 biomass dry wt., 20 M, external concentration). Also, both the strains showed insignificant difference in Zn2+-sorption onto their isolated EPS. The mutant was characterized by having higher cell carbohydrate content (642.8 g mg–1 dry wt.) than its parent (513.6 g). The X-ray diffraction pattern revealed Zn2+ deposition on EPS from the parent mainly as zinc hypophosphite monohydrate [Zn(H2PO2)2·H2O], whereas there was a lack of distinct peaks in similar samples from Zn20, thus confirming the amorphous nature. There was participation in Zn2+ binding of only COO, N=O, NO2, SO2 groups in the parent while participation of P—O and C=O groups in mutant EPS was evident in IR spectra. The observations suggest that the mutant could be deployed to achieve sustained EPS synthesis, its release and metal sorption/desorption in repeated cycles.  相似文献   

10.
Ammonia-nitrogen excretion in Daphnia pulex   总被引:3,自引:2,他引:1  
Ammonia-nitrogen excretion rates were measured in natural summer and cultured populations of Daphnia pulex from Silver Lake, Clay County, Minnesota, USA during 1973. The mean rate of ammonia-nitrogen excretion for the summer populations was 0.20 µg N animal–1 day–1 or 5.11 µg N mg–1 dry body weight day–1 (N = 80) measured at 15°, 20°, and 25°C. These rates appear to be temperature and weight dependent, but they are probably affected by factors other than temperature and dry body weight. Ammonia-nitrogen excretion rates of Daphnia pulex cultured on Chlamydomonas reinhardi yielded the following relationship with temperature: Log10E = (0.061) T 1.773, where E is µg N animal–1 day–1 and T is temperature °C. The ammonia-nitrogen excretion on a mg–1 dry body weight day–1 basis was related to temperature according to the following similar expression Log10E = (0.043) T + 0.153, where E is µg N mg–1 dry body weight day–1, and T is temperature °C. The length-weight relationship of Daphnia pulex for the summer populations (N = 1583) was log10W = (0.526) Log10L + 1.357, where W is weight in µg and L is length in mm.  相似文献   

11.
The hyperthermophilic anaerobe Pyrococcus furiosus was found to grow on pyruvate as energy and carbon source. Growth was dependent on yeast extract (0.1%). The organism grew with doublings times of about 1 h up to cell densities of 1–2×108 cells/ml. During growth 0.6–0.8 mol acetate and 1.2–1.5 mol CO2 and 0.8 mol H2 were formed per mol of pyruvate consumed. The molar growth yield was 10–11 g cells(dry weight)/mol pyruvate. Cell suspensions catalyzed the conversion of 1 mol of pyruvate to 0.6–0.8 mol acetate, 1.2–1.5 mol CO2, 1.2 mol H2 and 0.03 mol acetoin. After fermentation of [3-14C]pyruvate the specific radioactivities of pyruvate, CO2 and acetate were equal to 1:0.01:1. Cellfree extracts contained the following enzymatic activities: pyruvate: ferredoxin (methyl viologen) oxidoreductase (0.2 U mg-1, T=60°C, with Clostridium pasteurianum ferredoxin as electron acceptor; 1.4 U mg-1 at 90°C, with methyl viologen as electron acceptor); acetyl-CoA synthetase (ADP forming) [acetyl-CoA+ADP+Piacetate+ATP+CoA] (0.34 U mg-1, T=90°C), and hydrogen: methyl viologen oxidoreductase (1.75 U mg-1). Phosphate acetyl-transferase activity, acetate kinase activity, and carbon monoxide:methyl viologen oxidoreductase activity could not be detected. These findings indicate that the archaebacterium P. furiosus ferments pyruvate to acetate, CO2 and H2 involving only three enzymes, a pyruvate:ferredoxin oxidoreductase, a hydrogenase and an acetyl-CoA synthetase (ADP forming).Non-standard abbreviations DTE dithioerythritol - MV methyl viologen - MOPS morpholinopropane sulfonic acid - Tricine N-tris(hydroxymethyl)-methylglycine Part of the work was performed at the Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karlvon-Frisch-Strasse, W-3550 Marburg/Lahn, Federal Republic of Germany  相似文献   

12.
Glutamine was transported inZymomonas mobilis by a mechanism following Michaelis-Menten kinetics with a Km value for glutamine 8 x 10–5 M and a Vmax value of 15.4 nmol.mg–1, min–1 or 40 nmol.mg–1.min–1 for cells growing on complete medium or minimal medium respectively. The transport of glutamine was energy-dependent and more or less specific for glutamine when cell were grown on rich media. Evidence provided via spheroplasts suggests the possible involvement of a periplasmic component in this transport system.  相似文献   

13.
The marine purple nonsulfur bacterium, Rhodopseudomonas sulfidophila, strain W4, was capable of photosynthetic growth on dinitrogen and malate. Higher growth rates were observed when either glutamate or ammonia replaced dinitrogen as nitrogen source and when bicarbonate was omitted from the culture medium. Although ammonia was released from cells growing on malate and N2, no nitrogenase activity could be detected unless -ketoglutarate was added to the culture medium. No nitrogenase activity was found in cultures grown in the presence of NH 4 + . In cultures grown on glutamate as nitrogen source, nitrogenase and hydrogenase activities were found to be 5.4 nmol C2H2 reduced · min-1 · mg-1 dry weight and 50 nmol methylene blue reduced · min-1 · mg-1 dry weight respectively. Such activities are significantly lower than those observed for other members of the Rhodospirillaceae e.g. Rhodopseudomonas capsulata. However, the hydrogenase activity would be sufficient to recycle all H2 produced by nitrogenase. It was indeed observed that growing cells did not evolve molecular hydrogen during photoheterotrophic growth and that H2 stimulated nitrogenase activity in resting cells of R. sulfidophila. The nitrogenase from this bacterium proved to be extremely sensitive to low concentrations of oxygen, half-inhibition occurring at between 1–1.5% O2 in the gas phase, depending on the bacterial concentration. Light was essential for nitrogenase activity. No activity was found during growth in the dark under extremely low oxygen concentrations (1–2% O2), which are still sufficient to support good growth. Resting cell suspensions prepared from such cultures were unable to reduce acetylene upon illumination. Optimum nitrogenase activities were broadly defined over the temperature range, 30–38°C, and between pH 6.9 and 8.0. The results are discussed in comparison with the non-marine purple nonsulfur bacterium, R. capsulata, which somewhat resembles R. sulfidophila.  相似文献   

14.
Expression in Nicotiana tabaccum L. plants containing the -glucuronidase (GUS) gene under the control of the 35S (CaMV promoter) was affected by tissue type and ontogenic development of the leaves. GUS activity in ontogenetically younger leaves was 1003–1022 nmol 7-hydroxy-4-methylcoumarin (MU) formed mg–1 (protein) min–1 and in ontogenetically older leaves was only 140–198 nmol (MU) mg–1 (protein) min–1.  相似文献   

15.
Three bacterial strains, two identified as Pseudomonas stutzeri and one as a strain of cucurbit yellow vine disease bacterium, isolated from a foundry soil and a tannery, respectively, in Pakistan, were resistant to up to 1 mM chromate and anaerobically reduced Cr(VI) up to 100 M. The highest removal was by P. stutzeri CMG463: 88 mol l–1 (88% of that supplied; specific rate was 3.0 nmol mg–1 protein h–1), while 58 and 76 mol l–1 (58% and 76%) were removed by P. stutzeri CMG462 and cucurbit yellow vine disease bacterium CMG480, respectively. These isolates were compared to strains isolated from an uncontaminated coastal site in the UK and designated as K2 (Pseudomonas synxantha) K3 (Bacillus sp.), and J3 (unidentified Gram-positive strain). Strain K3 was Cr-sensitive, partially lysed by Cr(VI), but had the highest removal of chromate anaerobically: 92 mol l–1 (92% of that supplied) at a specific rate of 71 nmol mg–1 protein h–1. Analysis of cell sections using transmission electron microscopy with energy dispersive X-ray analysis showed intracellular chromium in P. stutzeri but the cucurbit yellow vine disease bacterium and the Bacillus sp. precipitated chromium extracellularly. The isolates from the Cr-contaminated sites did not remove more Cr(VI), overall, than Cr-unstressed bacteria, but their tolerance to Cr(VI) is potentially useful for bioremediation, particularly since other studies have shown that the two P. stutzeri strains can bioaccumulate Cu2+.  相似文献   

16.
Photomixotrophic callus and suspension cultures of salsh pine (Pinus elliottii var. elliottii Engelm.) have been established. Callus tissues contained up to 2.76 g chlorophyll mg-1 dry wt and suspensions 2.98 g chlorophyll mg-1 dry wt. Maximum photosynthetic oxygen evolution was 25–32 mol O2 h-1 mg-1 chlorophyll for callus and 35–39 mol O2h-1 mg-1 chlorophyll for suspension, respectively. Photomixotrophic callus was friable with a high moisture content during early and exponential growth, but evolved into a compact and dense tissue during the latter stage of growth. Compact photomixotrophic callus accumulated and deposited secondary metabolites in the central vacuole and developed large starch granules in the chloroplasts. Secondary metabolites were not observed in photomixotrophic suspensions or in heterotrophic calli and suspensions. Photomixotrophic callus contained numerous mitochondria closely associated with well-developed chloroplasts containing 2–6 thylakoids per granum. Heterotrophic callus was characterized by a poorly developed cytoplasm and cup-shaped mitochondria.  相似文献   

17.
Three cyanobacterial strains originating from different habitats were subjected to temperature shift exposures and monitored for levels of proline, thiol and activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Thermophile Mastigocladus laminosus (growth optimum, 40 °C), raised the proline level 4.2-fold at low temperature (20 °C), for the psychrophile Nostoc 593 (growth optimum, 20 °C), it was raised 8-fold at 40 °C while in the mesophile Nostoc muscorum (growth optimum, 30 °C), the imino acid level increased 2.3-fold during temperature shiftdown to 20 °C or 3.5-fold in sets facing shiftup (40 °C). Alterations in thiol levels in the above strains were in line with proline. It is suggested that such fluctuations reflect metabolic shifts as a response to stress. Interestingly, GAPDH activity was maximum at the respective growth temperature optimum of M. laminosus (122 nmol NADPH oxidized min –1 mg –1 protein) and Nostoc 593 (141 nmol NADPH oxidized min –1 mg –1 protein) while in N. muscorum, it increased at 40 °C (101 nmol NADPH oxidized min –1 mg –1 protein) and to 93.3 nmol NADPH oxidized min –1 mg –1 protein (20 °C) relative to 86 nmol NADPH oxidized min –1 mg –1 protein at 30 °C. It seems that extremophiles maintain the GAPDH activity/level during growth at their respective temperatures optimal while the mesophile increases it in order to cope up with temperature-stress.  相似文献   

18.
Removal of Cr(VI) from ground water by Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Chromium can be removed from ground water by the unicellular yeast, Saccharomyces cerevisiae. Local ground water maintains chromium as CrO4 2- because of bicarbonate buffering and pH and E h conditions (8.2 and +343 mV, respectively). In laboratory studies, we used commercially available, nonpathogenic S. cerevisiae to remove hexavalent chromium [Cr(VI)] from ground water. The influence of parameters such as temperature, pH, and glucose concentration on Cr(VI) removal by yeast were also examined. S. cerevisiae removed Cr(VI) under aerobic and anaerobic conditions, with a slightly greater rate occurring under anaerobic conditions. Our kinetic studies reveal a reaction rate (Vmax) of 0.227 mg h-1 (g dry wt biomass)-1 and a Michaelis constant (Km) of 145 mg/l in natural ground water using mature S. cerevisiae cultures. We found a rapid (within 2 minutes) initial removal of Cr(VI) with freshly hydrated cells [55–67 mg h-1 (g dry wt biomass)-1] followed by a much slower uptake [0.6–1.1 mg h-1 (g dry wt biomass)-1] that diminished with time. A materials-balance for a batch reactor over 24 hours resulted in an overall shift in redox potential from +321 to +90 mV, an increase in the bicarbonate concentration (150–3400 mg/l) and a decrease in the Cr(VI) concentration in the effluent (1.9-0 mg/l).  相似文献   

19.
The growth of the anaerobic acetogenic bacterium Acetobacterium woodii DSM 1030 was investigated in fructose-limited chemostat cultures. A defined medium was developed which contained fructose, mineral salts, cysteine · HCl and Ca pantothenate (1 mg · 1–1) supplied in a vitamin supplement. Growth at high dilution rates was dependent on the presence of CO2 in the gas phase. The max was found to be 0.16 h–1 and the fructose maintenance requirement was 0.1 to 0.13 mmol fructose · (g dry wt)–1 · h–1. A growth yield of 61 g dry wt · (mol fructose)–1, corrected for the cell maintenance requirement and for incorporation of fructose carbon into cell biomass, was determined from the fructose consumption. A corresponding growth yield of 69 g dry wt · (mol fructose)–1 was calculated from the acetate production assuming that fructose fermentation was homoacetogenic. A YATP of 12.2 to 13.8 g dry wt · (mol ATP)–1 was calculated from these growth yields using a value of 5 mol ATP · (mol fructose)–1 as an estimate of the amount of ATP synthesised from fructose fermentation. The addition of yeast extract (0.5 g · 1–1) to the medium did not influence the max or cell yield. After prolonged growth under fructose-limited conditions the requirement of the culture for CO2 in the gas phase was reduced.Abbreviations YE yeast extract - IC inorganic carbon - D fermenter dilution rate : h–1 - MX maintenance requirement for X: mmol X · (g dry wt)–1 · h–1 - X may be fructose (Fruct), fructose consumed in energy metabolism (Fruct [E]), acetate (Ac) - ATP CO2, NH inf4 sup+ or Pi - qX specific rate of utilisation or consumption of X: mmol X · (g dry wt)–1 · h–1 - V fermenter volume: litre - rC · Cell, fermenter cell carbon production: mmol C · h–1 - YX yield of cells on X: g dry wt · (mol X)–1 - Y infx supmax the yield corrected for cell maintenance: g dry wt · (mol X)–1 - SATP stoichiometry of ATP synthesis from fructose: mol ATP · (mol frucose)–1 - x cell concentration: g dry wt · 1–1 - specific growth rate : h–1 - max maximum specific growth rate: h–1  相似文献   

20.
Bacterial Degradation of EDTA   总被引:1,自引:0,他引:1  
Degradation of EDTA (ethylenediaminetetraacetic acid) or metal–EDTA complexes by cell suspensions of the bacterial strain DSM 9103 was studied. The activity of EDTA degradation was the highest in the phase of active cell growth and decreased considerably in the stationary phase, after substrate depletion in the medium. Exponential-phase cells were incubated in HEPES buffer (pH 7.0) with 1 mM of uncomplexed EDTA or EDTA complexes with Mg2+, Ca2+, Mn2+, Pb2+, Co2+, Cd2+, Zn2+, Cu2+, or Fe3+. The metal–EDTA complexes (Me–EDTA) studied could be divided into three groups according to their degradability. EDTA complexes with stability constants K below 1016 (log K < 16), such as Mg–EDTA, Ca–EDTA, and Mn–EDTA, as well as uncomplexed EDTA, were degraded by the cell suspensions at a constant rate to completion within 5–10 h of incubation. Me–EDTA complexes with log K above 16 (Zn–EDTA, Co–EDTA, Pb–EDTA, and Cu–EDTA) were not completely degraded during a 24-h incubation, which was possibly due to the toxic effect of the metal ions released. No degradation of Cd–EDTA or Fe(III)–EDTA by cell suspensions of strain DSM 9103 was observed under the conditions studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号